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Abstract. Invasive breast carcinoma (BRCA) is a serious 
disease that threatens the survival time of those affected. 
Alternative splicing (AS) involved in BRCA pathogenesis may 
be a potential therapeutic target. However, to the best of our 
knowledge, a systematic analysis of survival-related alternative 
splicing events (SREs) has not yet been reported. The aim of the 
present study was to identify SREs and analyze their potential 
biological functions as BRCA prognostic biomarkers. An UpSet 
plot demonstrated AS global characteristics. Cox's proportional 
hazards regression model quantitatively demonstrated the prog-
nostic relevance of AS events. Functional enrichment analysis 
investigated the potential pathways through which AS events 
affect BRCA progression. The receiver operating characteristic 
curve model determined the clinical significance of AS events 
represented using percent-spliced-in (PSI) values. The regula-
tory network of splicing factors (SFs) and AS events laid the 
foundation for studying the role of SFs in BRCA. The present 
study identified 1,215 SREs and their distribution characteris-
tics, suggesting that AS events in exon skipping (ES) primarily 
exerted normal physiological functions, while AS events in 
alternative terminator sites had the most significant prognostic 
effect. The present study demonstrated that survival-associated 
genes are involved primarily in certain biological processes 
of ribosomal proteins. In the diagnostic model, the alternative 
acceptor site, alternative donor site, alternative promoter site 
and ES performed well. ELAVL4 was the key gene associ-
ated with prognosis and SREs. In conclusion, a number of AS 
events affect BRCA initiation, progression and prognosis. The 
PSI value of AS events has the potential to diagnose BRCA 
and predict a prognosis; however, this must be confirmed in 
additional studies.

Introduction

Breast cancer is a global problem that primarily threatens the 
health of women, but can also affect men. In 2011, a study 
based on patients with breast cancer in Denmark, Finland, 
Geneva, Norway, Singapore and Sweden over the past 40 years 
reported that world standardized incidence rates of female 
breast cancer were 66.7 per 105 individuals per year and 
those of male breast cancer were 0.40 per 105 individuals per 
year (1). Epidemiological studies have demonstrated that breast 
cancer is closely associated with social factors, particularly 
quality of healthcare and ethnicity (2,3). In the United States, 
the mortality rate of non-Hispanic black women with breast 
cancer was 8.8% higher compared with that of non-Hispanic 
white women with breast cancer between 2010 and 2014 (4). 
The incidence rates of breast cancer have increased from about 
100 per 105 women in 1975 to about 125 per 105 women in 
2015 (5). As the breast is not an essential organ, cancer in situ 
does not usually lead directly to death. With invasive breast 
carcinoma (BRCA), some of the tumorigenic cells are in a 
poorly differentiated state and lose proper regulation ability. 
These cells can leave the lesion and spread with the blood to 
other tissues or lymph nodes and develop into new tumors, 
leading to organ dysfunction and patient death.

Alternative splicing (AS) is a tumorigenesis mechanism 
that has been studied in a number of tumors and is widely 
accepted as explaining the aforementioned phenomenon. 
Through AS, an mRNA precursor can produce a number 
of mRNA splicing isoforms, which generates protein diver-
sity (6). Proteins created by AS exhibit a number of molecular 
properties and interactions that have a significant role in both 
normal and abnormal life activities (7,8).

The role of AS in BRCA has recently been investigated, 
with studies analyzing certain AS events in breast cancer; 
these studies have demonstrated the potential for specific AS 
events to classify and diagnose cancer (9,10). Tien et al (11) 
demonstrated that the mutation of cyclin-dependent kinase 12, 
which disrupts DNA repair, affected a DNAJB6 isoform and 
the DNA damage response activator by regulating last-exon 
splicing; thereby causing tumorigenesis and invasion. The 
complexes of transactive response DNA binding protein 43 
(TDP43) and serine/arginine-rich splicing factor 3 (SRSF3) 
can modulate the AS events of protease-activated receptor 3 
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(PAR3) and endocytic adaptor protein, which suggests that 
TDP43 or SRSF3 knockdown inhibits tumor progression, and 
the higher expression level of TDP43 in triple-negative breast 
cancer may suggest a poor patient prognosis (12).

As previous studies have demonstrated the potential of AS 
events as molecular markers and therapeutic targets (13,14), 
the investigation of full transcriptome AS events and 
survival-related alternative splicing events (SREs) in BRCA 
should be a priority in research. The aim of the present study 
was to reveal new features of BRCA by integrating and 
comparing AS events at the full transcriptome level and to 
validate their clinical values using a number of models.

Materials and methods

Acquisition of data on alternative splicing events. The Cancer 
Genome Atlas (TCGA), which comprises high-throughput 
sequencing data and clinical information on 33 types of 
tumor, including BRCA, was used in the present study (www.
cancer.gov/tcga). TCGA SpliceSeq database calculates the 
percent-spliced-in (PSI) value for all AS events in each tumor, 
which can then be used for AS analyses (15). The PSI value is 
a ratio that presents the efficiency of splicing exons into tran-
scripts (splicing isoforms). As presented in Fig. 1, AS events 
were further divided into seven types: Alternative promoter 
(AP), alternative donor site (AD), alternative terminator (AT), 
exon skipping (ES), mutually exclusive exons (ME), alternative 
acceptor site (AA) and retained intron (RI). The PSI values for 
the AS events in 1,207 tissue samples were downloaded from 
TCGA SpliceSeq comprising 1,094 samples from cancerous 
tissues and 113 samples from healthy tissues. As some volun-
teers donated both cancerous and healthy tissues, the present 
study contains 1,097 sets of clinical data, which means that 
each sample has the corresponding clinical information.

Identification of SREs. Some of the 1,094 cancerous tissue 
samples were removed by integrating clinical information to 
make the results more objective. Although males can also have 
breast cancer, the present study considered the large differences 
in sex hormones between men and women and selected 1,081 
samples from only female patients. This slightly reduces the 
clinical significance; however, it notably avoids the bias caused 
by biological differences (16). From the 1,081 female samples, 
1,019 patients with an overall survival (OS) from 31 days 
to >13 years were selected for univariate survival analysis. 
The R package survival (version 3.1-11) was used to conduct 
univariate survival analysis, which calculated the relation-
ship between each AS event and OS. This step is performed 
in RStudio software (version 1.1.442) (17) using R language 
(v3.5.1) (18). OS is the time from the start of the random 
assignment to death. For patients who were lost to follow-up 
or survived until the end of the study, OS was considered to be 
the time from the start of the random assignment to the date 
of the last follow-up. Cox's proportional hazards regression 
analysis quantitatively demonstrated the association between 
the PSI values and OS using the following four key values: 
Hazard ratio (HR), coefficient (coef) value and maximum and 
minimum values for 95% confidence intervals. Generally, in 
cancer studies, a factor is considered to have a bad effect on 
a prognosis if its HR >1. The coef value is associated with 

the direction and extent of the event and its influence on the 
outcome. Specifically, when an event decreases OS, the corre-
sponding coef value is positive. Conversely, when an event 
increases OS, the corresponding coef value is negative. The 
stronger the influence of the event on the outcome, the greater 
the absolute coef value. The smaller P-value is, the more the 
reliable the result. Therefore, when the number of SREs of an 
AS type was >10, the present study chosen 10 SREs with the 
smallest P-value were used to calculate the weighted PSI value. 
As an aberrant biological process is caused by several AS 
events, the weighted PSI value of each AS type is theoretically 
more biologically significant compared with the PSI value of 
a single AS event. The weighted PSI value of AA is the sum 
of the PSI values of the top 10 survival-associated AS events 
multiplied by the corresponding coef values. In addition, the 
PSI values were calculated for the top 10 most significant 
AS events in all SREs and the weighted PSI value that was 
obtained was considered to represent all AS events. Samples 
were divided into two groups according to these weighted PSI 
values. The Kaplan-Meier estimator and the log-rank test were 
used to determine whether there was a significant difference 
in survival rates between the two groups. These calculations 
were performed by R packages: Survival (version 3.1-11) and 
survminer (version 0.4.6) and the result of P<0.05 has statis-
tical significance.

Distribution of AS events and the UpSet plot. For its greater 
efficiency, an UpSet plot, rather than a Venn plot, was used to 
display the intersections among multiple datasets. Using this 
plot, the present study could sort the data by gene frequency 
or by the number of AS types contained within the set to more 
clearly represent distribution features. Survival-related genes 
(SRGs) were those involved in SREs. The UpSet plot was 
used to visualize the distribution of AS event-related genes 
and SRGs within the different AS types. The plot was created 
using R package: UpSetR (v1.4.0) (19).

Protein‑protein interaction (PPI) network and enrichment 
analysis. In order to identify the genes at the core of the patho-
logical process and determine how they regulate each other, 
the present study submitted SRGs to the Search Tool for the 
Retrieval of Interacting Genes/Proteins (www.string-db.org/). 
The PPI network was constructed using a threshold of 0.4 to 
avoid missing key genes. The degree of connectivity was used 
to describe the association between nodes. A node with a high 
degree of connectivity may have a wide impact on other nodes 
and was considered a hub gene. Gene Ontology (GO), Kyoto 
Encylcopedia of Genes and Genomes (KEGG), and Reactome 
contain a large number of canonical descriptions of genes and 
pathways that can be used to study the functions and pathways 
with which target genes may be involved (20,21). The present 
study used ClueGO (v2.5.6) (22), a plugin for Cytoscape 
(v3.7.2) (23), to annotate the physiological functions of SRGs.

Diagnostic test and 5‑year survival model. Diagnostics were 
conducted to test the ability of the weighted PSI values to 
distinguish between cancerous and healthy tissues. A receiver 
operating characteristic (ROC) curve was plotted to determine 
whether the weighted PSI values from the top 10 SREs with 
the most prognostic significance and those for each AS type 
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could be used to predict a prognosis. A total of two models 
in the present study consisted of some weighted PSI values, 
although it was unclear whether these values could be used as 
indicators for distinguishing the different groups; however, the 
area-under-curve (AUC) value could be used as an indicator. 
Therefore, the ROC curves were used to present the value of the 
indicators for distinguishing between cancerous and healthy 
tissues in the present study, and to assess the ability to predict 
whether patient OS could be >5 years. The distinction between 
the two models was that one reflected the impact of AS events 
on initiation of the disease, while the other was associated with 
its progression. After performing the diagnostic tests, a 5‑year 
survival model was created using SPSS v19.0 (IBM Corp.).

SFs and regulation network. SFs comprise numerous types 
of proteins, such as serine/arginine-rich (SR) protein, which 
contains a protein domain with long repeats of serine and 
arginine amino acid residues (24). SpliceAid 2 (www.introni.
it/spliceaid.html) is a database of SFs in cancerous and healthy 
tissues (25); 71 SFs that were identified in BRCA and their 
corresponding genes were obtained from this database. TCGA 
provided the third-level transcriptome data for these BRCA 
genes. In order to exclude interferences, such as gene length, 
sequencing amount and sample specificity, the original read 
counts were normalized to increase reliability. SR SFs were 

identified using Cox's proportional hazards regression model. 
If the Pearson correlation coefficient >0.4, the corresponding 
SF was positively correlated with AS events. The regulatory 
network was visualized using Cytoscape (v3.7.2) (21).

Results

Characteristics of AS in invasive breast carcinoma. The 
present study identified 45,421 AS events in BRCA, which 
were associated with 10,480 genes (Fig. 2A). ES had the most 
AS events (17,702). A total of 233 AS events was found in 
ME, notably fewer compared with other AS types. ES had 
the largest number of associated genes (6,811). The number 
of genes associated with ME was 227, which was smaller than 
that of any other AS type. Some genes were found in only one 
type of AS event in BRCA, while others were demonstrated 
to be involved in several types (Fig. 3A). The largest group 
of genes (1,782) was contained in only the ES type, which 
accounted for 26.1% of the associated ES genes. The propor-
tion of genes only associated with one AS type were 8.4, 
9.7, 19.6, 28.3, 5.2 and 16.0% in AA, AD, AP, AT, ME and 
RI, respectively, which indicated that only a few genes were 
involved in only one type of AS. Therefore, the majority of 
event-associated genes were involved in more than one type of 
AS event. The group consisting of AT and ES contained most 

Figure 1. A total of seven alternative splicing types. Each rectangle represents a part of pre-mRNAs. The two rectangles connected by lines indicate that the 
corresponding two sequences are joined together after alternative splicing.
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genes (680) compared with other groups with only two AS 
types. The group consisting of AP, AT and ES was the largest 
group (286 genes) among the groups that contained three types 
of AS events.

SREs and SRGs identified using survival analysis. A series of 
SREs and SRGs identified using Cox's proportional hazards 
regression model (P<0.05) were investigated; the results of the 
survival analyses are presented in Table SI. In general, 1,215 
events in 818 genes appeared to have potential links to OS. 
Although there were 17,702 AS events in ES, only 268 were 
associated with a prognosis. The AS type with the largest 
number of events and genes was not ES, but AT. Fig. 2B pres-
ents the number of SREs and SRGs in each type of AS.

The largest percentage of SRGs (778; 95.1%) was associ-
ated with only one type of AS event. The different distributions 
of AS event-associated genes and SRGs indicated that mRNA 
produced by SRGs appeared to be more specific. The group 
that included genes from only AT contained 298 SRGs and 
represented the group with the most genes. The intersections 
of the seven AS types are presented in Fig. 3.

Prognostic models based on the weighted PSI value of AS 
types. The PSI values of the 10 most significant splicing events 
in each AS type were weighted to obtain a weighted PSI value 
for each type. As ME had only four SREs, its weighted PSI 
value was calculated using only these four events (Table I). 
P-value was <0.01 for all items, which indicated that the 
weighted calculation method was reliable. In the present study, 
AP and ME had higher hazard ratios (HRs) than the other AS 
types, which suggested that the AS events contained in AP 
and ME may increase both the risk of disease and a poor prog-
nosis. All coef values for AA, AD, AT, ES, RI and the 10 most 
significant splicing events were negative, which indicated that 
their effects on prognosis were positive. Kaplan-Meier survival 
curves were plotted to display the differences in survival rate 
over time (Fig. 4). The ends of the curves for AA, AP and AT 
were very close and may have been affected by other factors, 
such as age (Fig. 4A, C and D). In addition, the weighted PSI 
values based on the 10 AS events in each AS type (a total of 
70 events) were also calculated. The corresponding survival 
curve is presented in Fig. S1, which shows trends similar to 
those in Fig. 4G and indicates that the weighted PSI value 

Figure 2. Distribution of SREs and related genes in invasive breast carcinoma. The y-axis is AS type. The x-axis is the number of cases. (A) Green strips represent 
the number of AS events. Blue strips represent the number of AS event-associated genes. (B) Green strips represent the number of SREs. Blue strips represent the 
number of SRGs. AS, alternative splicing; SRE, survival-related alternative splicing event; SRG, survival-related gene; BRCA, breast carcinoma; RI, retained intron; 
ME, mutually exclusive exons; ES, exon skipping; AT, alternative terminator; AP, alternative promoter; AD, alternative donor site; AA, alternative acceptor site.

Table I. Information of survival analysis based on the weighted PSI value.

AS type HR Coef 95% CI lower 95% CI upper P‑value

AA 0.487 ‑0.720 ‑0.916 ‑0.523 <0.001
AD 0.443 ‑0.815 ‑0.998 ‑0.632 <0.001
AP 1.511 0.413 0.292 0.533 <0.001
AT 0.697 -0.361 -0.449 -0.273 <0.001
ES 0.564 ‑0.572 ‑0.685 ‑0.459 <0.001
ME 2.079 0.732 0.347 1.116 <0.001
RI 0.701 ‑0.356 ‑0.482 ‑0.230 <0.001
TOP10 0.682 ‑0.382 ‑0.475 ‑0.290 <0.001

Coef is used to represent the quantitative relationship between variables and results. Absolute values represent correlation strength, positive 
numbers represent positive correlations, and negative numbers represent negative correlations. AS, alternative splicing; Coef, coefficient; CI, 
confidence interval; HR, hazard ratio; RI, retained intron; ME, mutually exclusive exons; ES, exon skipping; AT, alternative terminator; AP, 
alternative promoter; AD, alternative donor site; AA, alternative acceptor site; TOP10, 10 SREs with the smallest P-values.
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was a good measure for distinguishing between groups with a 
longer and shorter OS.

Fig. 5A presents the ROC curves that tested the ability of 
the weighted PSI value to determine the patients' 5‑year OS 
rate; the quantitative results are presented in Table II. AD 
(AUC=0.723) was considered to be the best indicator of a 
prognostic model; AUC of all other values were <0.7.

PPI network and enrichment analysis based on SREs. The 
PPI network (Fig. 6) indicated that there were 13 hub genes 
connecting >20 nodes, the majority of which were ribosomal 

protein genes; these were listed in Table III. A total of 22, 7 
and 29 items were enriched in the GO, KEGG and Reactome 
databases, respectively. The results of the enrichment analysis 
are presented in Table IV and the P-values of all items were 
<0.05. The items in this table were sorted by the percentage 
of associated genes, which clearly showed the proportion of 
the submitted genes occupying the genes contained in each 
function or pathway. The items enriched in GO (biological 
processes), KEGG and Reactome databases with the highest 
percentage of associated genes were ‘regulation of ribo-
nuclease activity’, ‘ubiquinone and other terpenoid-quinone 

Figure 3. UpSet plot for all AS events. Blue strip shows the number of events included in each AS type. Dots and lines represent subsets of AS events. The AS 
types corresponding to the dots are contained in the subtype. The histogram represents the number of genes in each subset. (A) All genes. (B) Survival-related 
genes. AS, alternative splicing; RI, retained intron; ME, mutually exclusive exons; ES, exon skipping; AT, alternative terminator; AP, alternative promoter; AD, 
alternative donor site; AA, alternative acceptor site.
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Figure 4. Survival curve for the weighted percent-spliced-in value. Red and blue lines represent changes in survival probability in days in the group with lower 
and higher values, respectively. Red and blue areas represent the 95% confidence interval. The number of individuals in a group who remain alive at a certain 
point in time is the number at risk, which was exhibited in the lower part of each plot. (A) The AA type, (B) AD type, (C) AP type, (D) AT type, (E) ES type 
and (F) ME type. 
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biosynthesis’ and ‘PKA activation in glucagon signaling’, 
respectively.

Diagnostic tests. The diagnostic tests comprised eight indi-
cators with weighted PSI values for the seven AS types and 
those calculated from the PSI values of the 10 most significant 
SREs. Fig. 5B shows the ROC curve for each indicator in the 
diagnostic test, which imply that certain AS types, such as AT 
and ME, are unsuitable for use as diagnostic indicators. The 
AUC values of AT and ME were 0.593 and 0.633, respectively, 
and, in general, an indicator with AUC <0.7 was not considered 
to be useful. AA appeared to be the most efficient indicator 
for distinguishing between the two groups (AUC=0.823). 
quantitative results of each ROC curve are provided in Table V.

Regulatory network based on SFs and SREs. A total of 51 SFs 
were matched with read counts, which were used for survival 

analysis using Cox's proportional hazards regression model; 
however, under the condition that P<0.05 was considered to 
be significant, only one gene, ELAVL4, was selected. The 
HR of ELAVL4 was 1.01, which suggested that it was a risk 
factor that may indicate a poor prognosis. The present study 
also demonstrated that OS changed with time (Fig. 4I). The 
group with a lower expression level of ELAVL4 had a higher 
OS rate than that with a higher expression level, which was 
more notable in patients with OS >7 years. By calculating the 
Pearson correlation coefficient, 11 SREs were selected, six of 
which were positively associated and five of which were nega-
tively associated with ELAVL4 expression levels. In particular, 
the six that were positively associated were associated with a 
poor prognosis, while the five that were negatively associated 
were associated with an improved prognosis, which suggested 
the positive and negative effects of the association between 
SREs and ELAVL4 expression levels (Fig. 7).

Figure 4. Continued. (G) RI type, (H) based on the 10 most significant SREs. (I) Third‑level transcriptome data for ELAVL4. AA, alternative acceptor; AD, alterna-
tive donor; AP, alternative promoter; AT, alternative promoter; ES, exon skipping; ME, mutually exclusive exon; RI, retained intron; SRE, alternative splicing event.
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Discussion

Biomarkers do not simply classify tumors into several types, 
but rather represent certain properties of the tumor, which are 
of significance for precision medical treatment. The traditional 
classification of a tumor is based primarily on its location, 
pathological morphology and distant metastasis; however, 
more molecular level‑based classification methods have previ-
ously been proposed. For example, the presence of estrogen 
and/or progesterone receptors suggests that endocrine therapy 
has a favorable therapeutic effect (26). Gene expression 
level profiling is used to understand the differences in gene 
expression levels and pathogenesis of cancerous and healthy 
tissues in BRCA and could be used in BRCA classification for 
different prognoses (27-29). Although gene expression level 
profiling has been extensively studied, little is currently known 
about the AS profile of BRCA. Previous research has focused 

on elucidating the pathological mechanisms of a single AS 
event or SF, which may lead to neglecting their population 
characteristics, regulatory relationships and clinical values. 
The present study identified a series of SREs through survival 
analysis and used a 5‑year survival model and diagnostic tests 
to evaluate the ability of AS events to diagnose BRCA and 
predict a prognosis. Identification of SREs and the construction 
of the SF-AS event regulatory network has laid the foundation 
for subsequent classification.

Gene mutations are considered to be the major cause of 
tumorigenesis and >90% of coding genes are considered to 
have undergone AS events (25). Independently of gene muta-
tions, AS events can also result in products expressed by deviant 
genes (8,26). For example, TP53 is one of the first‑discovered 
tumor-suppressor genes, and its isoform, produced by AS, 
modulates its tumor-suppressor function; whereas, the dysreg-
ulation of the TP53 isoforms are found in a variety of tumors, 
which are closely associated with aberrant AS events (30). 
Aberrant AS produces cancer-specific mRNA that could 
further disrupt the normal function of tumor suppressors and 
activate oncogenic pathways (13). Furthermore, aberrant AS 
events are involved in the establishment of the tumor micro-
environment, thus promoting tumor growth, invasion and 
metastasis (31). For example, RNA-binding proteins participate 
in the specific expression of isoforms of vascular endothelial 
growth factor through AS, resulting in a unique angiogenic 
profile of colorectal cancer (32). In the present study, AS 
events were represented by PSI values, which allowed them to 
be quantitatively analyzed. Based on the correlation between 
PSI values and prognosis, a series of SREs were identified, 
and their distribution characteristics in BRCA were exhibited 
using an UpSet plot.

The present study demonstrated that ES was the type with 
the most AS events, while AT had the most SREs. The distri-
bution of AS-associated genes was consistent with AS events, 
which means that AT also has the most SRGs. The difference 
in the distribution between AS events and SREs suggested 
that AT had a notable effect on prognosis. The pathological 
role of ES is worthy of further investigation because the 
number of SREs in ES ranks second. In other tumor studies, 
ES is the most common type of AS, with ME events being 
the least common (33,34). SRE distribution exhibits different 

Table II. Information of ROC curve on predicting 5‑year survival.

AS type Cut‑off Sensitivity Specificity AUC 95% CI lower 95% CI upper P‑value

AA ‑76.343 0.633 0.670 0.675 0.616 0.733 <0.001
AD ‑16.144 0.806 0.554 0.723 0.672 0.773 <0.001
AP 12.169 0.776 0.452 0.648 0.591 0.705 <0.001
AT ‑0.797 0.480 0.762 0.655 0.598 0.713 <0.001
ES ‑504.463 0.704 0.578 0.680 0.623 0.736 <0.001
ME 68.350 0.888 0.240 0.575 0.516 0.634 0.016
RI ‑249.080 0.857 0.382 0.632 0.576 0.687 <0.001
TOP10 ‑332.922 0.592 0.666 0.660 0.603 0.716 <0.001

AUC, area under curve; CI, Confidence interval; RI, retained intron; ME, mutually exclusive exons; ES, exon skipping; AT, alternative termi-
nator; AP, alternative promoter; AD, alternative donor site; AA, alternative acceptor site; TOP10, 10 SREs with the smallest P-values.

Table III. Degree value of hub genes in protein-protein interac-
tion network.

Gene Degree value

RPS15 27
RPL35A 26
RPL9 25
RPS15A 25
RPS29 24
RPS5 24
RPS3 23
RPL23 23
GNB2L1 22
RPL13 22
RPL7L1 22
RPS9 22
RPL18A 21

Degree value: The degree of connection was used to describe the 
connectivity of a particular node to other nodes. 
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Figure 5. ROC curves for 5‑year survival and diagnostic models. The ROC curves present the sensitivity and (1‑specificity) values for indicators at different 
cutoff values. (A) The 5‑year survival model. (B) Diagnostic model. ROC, receiver operating characteristic; RI, retained intron; ME, mutually exclusive exons; 
ES, exon skipping; AT, alternative terminator; AP, alternative promoter; AD, alternative donor site; AA, alternative acceptor site. TOP10, 10 SREs with the 
smallest P-values.

Figure 6. Protein-protein interaction network for survival-associated genes. Color intensity represents the number of nodes connected to one node. Thick and 
thin lines represent strong and weak co-expression associations, respectively.
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characteristics. Overall, for BRCA and colon adenocarcinoma, 
the majority of SREs are found in AT, not in ES, while for 
esophageal, stomach and rectal adenocarcinomas, and diffuse 

large B-cell lymphoma, the ES type contains more SREs 
than the AT type. This difference may correspond to the 
common properties of tumors from different tissues (35). In 
addition, SRGs exhibit characteristics different from those in 
AS-associated genes. Although the number of SRGs with only 
one AS event is highest, which may be due to the stability of 
the associated pre-mRNA, there are also a number of genes 
with two or more AS events; however, the pathways that influ-
ence a prognosis remain unclear.

AS events could be further regulated by a group of SFs. A 
previous study demonstrated that individual SR proteins can 
restore pre-mRNA splicing in cell extracts depleted of multiple 
SR family proteins (36). The SR protein family contains a 
number of proteins with phylogenetic conservation and structural 
relevance, with their characteristic domains containing multiple 
serine and arginine residues. Numerous human diseases, such 
as cancer and human immunodeficiency virus, are associated 
with the SR protein family (37,38). SpliceAid 2 integrates 
existing research and includes 71 SFs and their distributions in 
various tissues (25). SF gene mutations constitute early events 
that most likely play a role in initiation of the tumorigenesis 
of certain types of tumor (37). The results of a cohort study 
demonstrated that SF3B1 mutations occur in >20% of patients 

Table IV. Items with higher percent of associated genes in enrichment analysis.

A, Gene Ontology (Biological Processes)   

Items P-value Associated genes, % Gene number

1. Regulation of ribonuclease activity <0.01 42.86 3
2. Ribosomal small subunit export from nucleus <0.01 42.86 3
3. Ribosomal subunit export from nucleus <0.01 35.71 5
4. Ribosomal RNA‑containing ribonucleoprotein complex export from nucleus <0.01 31.25 5
5. Cotranslational protein targeting to membrane <0.01 17.14 18

B, Kyoto Encyclopedia of Genes and Genome   

Items P-value Associated genes, % Gene number

1. Ubiquinone and other terpenoid-quinone biosynthesis 0.01 27.27 3
2. Thiamine metabolism 0.01 25.00 4
3. Vasopressin-regulated water reabsorption <0.01 18.18 8
4. Pyruvate metabolism <0.01 17.95 7
5. Thyroid cancer 0.01 16.22 6

C, Reactome   

Items P-value Associated genes, % Gene number

1. PKA activation in glucagon signaling <0.01 29.41 5
2. TP53 regulates transcription of genes involved in G2 cell cycle arrest <0.01 27.78 5
3. Constitutive signaling by ligand‑responsive EGFR cancer variants <0.01 26.32 5
4. Signaling by EGFR in Cancer <0.01 26.32 5
5. Signaling by ligand‑responsive EGFR variants in cancer <0.01 26.32 5

PKA, protein kinase A; EGFR, epidermal growth factor receptor.

Figure 7. Regulatory network for SFs and alternative splicing events. The 
green node represents the survival-related SF, named ELAVL4. Red and blue 
nodes represent SREs that increase and decrease risk, respectively. Purple and 
orange lines represent the positive and negative correlations of connected nodes, 
respectively. Thick lines indicate a strong correlation, thin lines indicate a weak 
correlation. SRE, alternative splicing events; SF, splicing factor; HR, hazard ratio.
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with uveal melanoma (39). SFs are also involved in the biological 
processes of BRCA, such as tumorigenesis, growth, infiltration 
and metastasis, and are thus involved in prognosis (9,12,40-42). 
SFs and AS have been found in the immune-evasion pathway of 
tumors (43). As one SF may regulate more than one AS event, 
each SF has multiple pathogenic pathways; this suggests that 
SF-based treatment may be a broad spectrum. AS events and SFs 
may be key targets for the treatment of cancer and merit further 
investigation. In addition, the present study incorporated SFs into 
the regulatory network to clarify the results. Enrichment analysis 
was used to determine the physiological functions and signaling 
pathways involved in SREs. The present study also examined 
whether SREs can be markers for diagnosis and prognosis, 
which will provide a reference for subsequent studies. Given 
the prognostic relevance of SRGs, their regulatory networks and 
biological functions in BRCA merit further study.

The PPI network examined the hub genes, which are 
primarily ribosomal protein genes. Previous studies reported 
that a number of ribosomal proteins were involved in the 
initiation and progress of BRCA. Knockdown of ribosomal 
protein S15A represses the proliferation of breast cancer 
cells in vitro by inducing apoptosis (44). Studies have demon-
strated that ribosomal protein S6 kinase 4 had anti-invasive 
and anti‑metastatic activities (45,46). Ribosomal protein S3 
upregulates the X-linked inhibitor of apoptosis to confer the 
resistance of breast cancer cells to certain chemotherapeutic 
drugs (47). The PPI network suggests that AS may be one of 
the pathways by which ribosomal protein genes are involved 
in tumorigenesis. In previous studies, functional enrichment 
analyses were used to identify that the signaling pathways 
associated with ribosomes are found in esophageal, colon and 
rectal adenocarcinomas (33,34). The annotation of functions 
and pathways found in the GO, KEGG and Reactome data-
bases were used to understand their pathological mechanisms. 
The results of enrichment analysis based on the GO database 
indicated that the proportion of SRGs within the gene group 
involved in the ribosome-associated biological processes was 
higher than that in other functional gene groups, such as the 
regulation of ribonuclease activity, ribosomal small-subunit 
export from the nucleus and ribosomal subunit export from 
the nucleus. To the best of our knowledge, few studies have 
previously noted changes in these biological processes and 

how SRGs involved in these processes affect the prognosis for 
patients with BRCA.

In the present study, survival curves demonstrated that the 
combined effects of SREs were highly associated with patient 
OS; however, not all AS types represented by weighted PSI 
values were able to predict a prognosis. Some AS types with 
lower AUC values, such as AT and ME, did not appear to be 
suitable predictors for the 5‑year survival outcome, which 
may have three possible explanations. First, the number of AS 
events used to calculate the weighted PSI values may have been 
too small to reflect the overall characteristics. Secondly, the 
calculation of SRGs participating in different functions may 
have masked some of the original attributes. The third cause 
may have been the special properties of BRCA as the indica-
tors based on weighted PSI values were excellent in predicting 
a prognosis in gastrointestinal pan-adenocarcinomas (34). The 
diagnostic model implies that the weighted PSI values of AA, 
AD, AP and ES are reliable predictors. It is worth noting that 
although the sensitivity of AD is only 0.549, the specificity is 
0.852, which suggests that there may be some AS events in 
AD that create significant changes in cancerous and healthy 
tissues; therefore, more research on SREs in AD is required.

ELAVL4 was associated with OS in patients with BRCA, 
which was consistent with the results of previous studies on 
non-small-cell lung cancer and meningioma (48,49). The 
present study indicates that ELAVL4 has a potential regulatory 
relationship with multiple SRGs, and that the AS is the potential 
mechanism by which they affect BRCA. Another uncertainty 
of the analyses in the present study is that it is difficult to infer 
the functional impact of AS and the altered protein structure. 
Certain AS events will totally drive structural changes in protein 
outputs; however, current algorithms may not precisely quantify 
those variations. New computational methods are necessary to 
replicate the present study to confirm the results. In addition, all 
results should be tested using another set of samples to deter-
mine the reliability of the results of the present study.

The present study systematically identified a number of 
SREs in BRCA, described the distribution characteristics of 
SREs and SRGs and mapped the regulatory networks based 
on the SRGs, as well as investigating potential pathological 
mechanisms. ELAVL4 has a potential regulatory relationship 
with multiple SRGs and is worth further investigation. Further 

Table V. Information of receiver operating characteristic curve on diagnostic test.

AS type Cut‑off Sensitivity Specificity AUC 95% CI lower 95% CI upper P‑value

AA ‑77.313 0.788 0.735 0.823 0.786 0.861 <0.001
AD ‑16.946 0.549 0.852 0.756 0.707 0.804 <0.001
AP 11.661 0.805 0.712 0.798 0.757 0.839 <0.001
AT ‑1.520 0.796 0.422 0.593 0.548 0.638 0.001
ES ‑505.318 0.823 0.711 0.819 0.785 0.853 <0.001
ME 68.415 0.460 0.739 0.633 0.582 0.684 <0.001
RI ‑248.709 0.743 0.555 0.672 0.628 0.717 <0.001
TOP10 ‑333.612 0.832 0.478 0.692 0.652 0.733 <0.001

AUC, area under curve; CI, Confidence interval; RI, retained intron; ME, mutually exclusive exons; ES, exon skipping; AT, alternative termi-
nator; AP, alternative promoter; AD, alternative donor site; AA, alternative acceptor site; TOP10, 10 SREs with the smallest P-values.
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studies are needed to examine the potential of AS events as 
prognostic biomarkers and to provide insight on subsequent 
identification of therapeutic targets.
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