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Abstract. Glioblastoma (GBM) is the most aggressive and 
lethal tumor of the central nervous system. The present study 
set out to identify reliable prognostic and predictive biomarkers 
for patients with GBM. RNA‑sequencing data were obtained 
from The Cancer Genome Atlas database and DNA methyla-
tion data were downloaded using the University of California 
Santa Cruz‑Xena database. The expression and methylation 
differences between patients with GBM, and survival times 
<1 and ≥1 year were investigated. A protein‑protein interaction 
network was constructed and functional enrichment analyses of 
differentially expressed and methylated genes were performed. 
Hub genes were identified using the Cytoscape plug‑in 
cytoHubba software. Survival analysis was performed using 
the survminer package, in order to determine the prognostic 
values of the hub genes. The present study identified 71 genes 
that were hypomethylated and expressed at high levels, and 
four genes that were hypermethylated and expressed at low 
levels in GBM. These genes were predominantly enriched in 
the ‘JAK‑STAT signaling pathway’, ‘transcriptional misregu-
lation in cancer’ and the ‘ECM‑receptor interaction’, which are 
associated with GBM development. Among the 24 hub genes 
identified, 15 possessed potential prognostic value. An integra-
tive analysis approach was implemented in order to analyze 
the association of DNA methylation with changes in gene 
expression and to assess the association of gene expression 
changes with GBM survival time. The results of the present 
study suggest that these 15 CpG‑based genes may be useful 
and practical tools in predicting the prognosis of patients 

with GBM. However, future research on gene methylation 
and/or expression is required in order to develop personalized 
treatments for patients with GBM.

Introduction

GBM is the most aggressive form of brain tumor, with high 
recurrence (~37%) and mortality rates (median survival time 
<1 year) in 2018 (1,2). GBM originates from astrocytes and 
is comprised of different types of cell  (3), which multiply 
rapidly and support GBM development via large vascular 
networks (4). The current standard treatment for GBM includes 
surgery, followed by radiation therapy and temozolomide 
chemotherapy (5). However, the median survival time for this 
procedure is <1 year and very few patients survive >3 years. 
Despite great efforts, little progress has been made in the 
treatment of GBM over the past decade (6,7). Furthermore, a 
series of phase III clinical trials for targeted drugs has failed 
to improve the overall survival of patients with GBM (8). Thus, 
it is critical to investigate potential biomarkers of GBM and 
provide novel insights into the diagnosis and treatment of the 
disease.

Changes in the expression of biomarkers are commonly 
described in oncological research. Biomarkers provide a 
framework and assurance for the strategy of diagnostic 
and therapeutic methods, with the aim of eradicating 
complications. Previous studies have identified prognostic 
biomarkers for GBM, such as long coding RNAs, circular 
RNAs, microRNAs and somatic mutations (9‑12). In the past 
decade, epigenetic modification, especially DNA methylation 
in carcinogenesis, has become a focus for cancer research. 
Several methylated markers have been reported. For example, 
O6‑methylguanine DNA methyltransferase promoter meth-
ylation is the major emblematic biomarker in GBM, which 
may predict the response to temozolomide treatment (13‑15). 
Epigenetic changes are heritable and reversible, affecting 
the spatial conformation of DNA and its transcriptional 
activities (16). DNA methylation is one of the main epigenetic 
mechanisms of gene expression regulation in eukaryotes (17). 
Changes in DNA methylation may affect gene expression and 
feedback mechanisms, with various positive and negative 
interactions (18). Thus, abnormally methylated CpG sites are 
considered potential prognostic factors for GBM.

As the majority of previous studies were performed on 
relatively small sample sizes and limited to a single epigenetic 
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level, the present study integrated 152 GBM RNA‑sequencing 
(RNA‑seq) samples and 151 GBM DNA methylation samples 
from public databases. Bioinformatics‑based methods were 
implemented to identify novel markers of phenotypically 
important associations among DNA methylation, gene expres-
sion and survival time in patients with GBM, using The Cancer 
Genome Atlas (TCGA) datasets.

Materials and methods

Data preparation. RNA‑seq data of 174 GBM samples were 
downloaded from the TCGA (https://portal.gdc.cancer.gov/) 
database in October, 2018 according to ‘glioblastoma’ search 
term. Repeat samples, non‑cancerous samples, paracancerous 
samples and samples without follow‑up information were 
removed using gdcRNA tools (version 4.6.3)  (19). Thus, a 
total of 152 GBM samples were included in the present study. 
RNA‑seq data were normalized using the trimmed mean of 
M‑values method (20).

DNA methylation data of 155  GBM samples were 
downloaded from the University of California Santa Cruz 
(UCSC)‑Xena database (https://xenabrowser.net/datapages/) 
in October, 2018 according to ‘glioblastoma’ search term. 
UCSC‑Xena is a bioinformatics tool used to visualize func-
tional genomics data from several sources, including TCGA 
database. DNA methylation was represented as β values, 
which are bounded variables of the form [M/(M + U + 100)] 
that are generated by the Illumina 450 k BeadChip array 
(Illumina, Inc.) (21). Samples without follow‑up information 
were removed, thus a total of 151 samples were used in the 
present study.

The DNA methylation dataset (151  patients) and the 
RNA‑seq dataset (152 patients) were compared, and 49 patients 
were found to be shared between the two datasets. The research 
flow chart is presented in Fig. S1.

Identification of differentially expressed genes (DEGs) 
according to survival time. Gene expression data were used 
for the differential expression analysis. The median survival 
time of patients with GBM is <1 year (1). Thus, the patients 
(n=152) were divided into two groups, survival time <1 year 
and survival time ≥1 year, according to the median survival 
time. Differential expression analysis was performed between 
the two groups using the edgeR package (version 3.8) (22). 
P<0.05 and |logFC|>0.585 were considered to indicate DEGs.

Identification of differentially methylated genes. Methylation 
data were used for the differential methylation analysis. The 
patients (n=151) were divided into two groups, survival time 
<1 year and survival time ≥1 year, according to the median 
survival time. Differentially methylated CpG sites were identi-
fied by comparing the two groups. CpG sites with ≥50% missing 
values were removed and CpG sites with <50% missing values 
were filled using K‑means (23). The remaining missing values 
were imputed using the ChAMP package (version 3.8) (24). 
Low‑quality probes were removed if they met the following 
criteria: Probes with non‑CpG sites, probes associated with 
single‑nucleotide polymorphisms, cross‑reactive probes and 
probes on the X and Y chromosomes. The β‑Mixture Quantile 
Normalization method was used for further type I and II probe 

correction (25,26). P<0.01 was considered to indicate differen-
tially methylated CpG sites.

Identification of differentially expressed and methylated 
genes. DNA methylation analysis focused on CpG sites that 
were located simultaneously in differentially methylated sites 
and differentially expressed genes. Thus, the differentially 
expressed genes and the differentially methylated genes were 
integrated.

Protein‑protein (PPI) network construction. The Search Tool 
for the Retrieval of interacting Genes/Proteins (STRING) 
database (http://string‑db.org) is used to identify associations 
between known proteins and predicted proteins  (27), and 
was used in the pwresent study to construct a PPI network. 
The PPI network was visualized using Cytoscape software 
(version 3.8.0)  (28). Each node represents a gene, protein 
or molecule. Furthermore, the connections between nodes 
represent the interactions of these biological molecules, 
which can be used to identify interactions between the 
proteins encoded by DEGs and methylated genes in GBM. 
The corresponding protein in the central node can be a core 
protein or a key candidate gene with critical physiological 
regulatory functions.

Gene ontology (GO) and kyoto encyclopedia of genes and 
genomes (KEGG) pathway enrichment analyses. Functional 
enrichment analyses were performed to determine poten-
tial biological processes and pathways enriched by the 
DEGs and methylated genes in GBM. KEGG pathway 
enrichment analysis of the differentially expressed and 
methylated genes was performed using the clusterProfiler 
package (version 3.8) (29,30), and GO enrichment analysis was 
performed using Cytoscape plug‑in ClueGO (version 2.5.3), 
which visualizes the non‑redundant biological terms for large 
clusters of genes in a functionally grouped network (31). The 
cut‑off value for significant terms was set as P<0.05.

Identification of hub genes. Cytoscape plug‑in cytoHubba 
(version 1.6) is commonly used to identify hub genes and 
subnetworks from complex interactomes  (32). The four 
local‑based methods; Density of maximum neighborhood 
component (DMNC), MNC, maximal clique centrality 
(MCC) and degree, were used to predict and evaluate essen-
tial proteins according to ranking nodes in the network. The 
top 30 genes within the four methods were screened and 
overlapped, and the overlapping genes were considered to be 
hub genes.

Survival analysis. The expression values of the hub genes 
were visualized in box plots and heat maps. Survival analysis 
was performed using the survminer package (version 0.4.6; 
https://cran.r‑project.org/) and the cut‑off values were identi-
fied according to the surv_cutpoint function. Survival times 
were evaluated using Kaplan‑Meier survival curves and 
differences were analyzed using the log‑rank test. P<0.05 was 
considered to indicate a statistically significant difference. 
Subsequently, Cox proportional hazards regression analysis 
was performed to further assess the results of Kaplan‑Meier 
survival analysis.
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Results

Identification of DEGs according to survival time. A total 
of 152 GBM gene expression profiles were obtained from 
the UCSC‑Xena database. The patients were divided into 2 
groups; survival time <1 year (short group) and survival time 
≥1 year (long group) according to the median survival time. A 
total of 429 downregulated genes and 672 upregulated genes 
were identified, according to survival time, with P<0.05 and 
|logFC|>0.585. The results were visualized as hierarchical 
clusters and volcano plots, as presented in Fig. 1.

Identification of differentially methylated genes. A total of 151 
GBM DNA methylation profiles were obtained from TCGA 
database. The clinical characteristics of patients with GBM in 
the TCGA database are presented in Table I. A total of 4,079 
differentially methylated CpG sites were identified, including 
509 hypermethylated sites and 3,570 hypomethylated sites 
(P<0.01; Fig. S2A). The present study screened the top 50 
methylation sites in descending order of the absolute value 
of logFC, as presented in Fig. S2B. Following annotation of 
the differentially methylated CpG sites, 370 hypermethylated 
genes and 1,987 hypomethylated genes were identified.

Identification of differentially expressed and methylated 
genes. DNA methylation may downregulate gene expression. 
Thus, the present study examined the intersection of the differ-
entially expressed and methylated genes. A total of 49 genes 
from 152 patients overlapped the DNA methylation array 
data from 151 patients. The clinical characteristics of patients 
with GBM from TCGA dataset are presented in Table I. A 
total of 71 genes that were hypomethylated and expressed at 
high levels, and four genes that were hypermethylated and 
expressed at low levels in GBM were identified.

PPI network construction and functional enrichment 
analyses. Within the STRING database, the expression prod-
ucts of the differentially expressed and methylated genes in 
GBM were used to construct the PPI network (Fig. 2A), with 
a total of 63 genes (confidence score, >0.15). KEGG pathway 
enrichment analysis demonstrated that these genes were 
predominantly enriched in the ‘JAK‑STAT signaling pathway’, 
‘protein digestion and absorption’, ‘steroid hormone biosyn-
thesis’, ‘cytokine‑cytokine receptor interaction’, ‘prolactin 
signaling pathway’, ‘transcriptional misregulation in cancer’ 
and ‘ECM‑receptor interaction’ (Fig. 2B). GO enrichment 
analysis demonstrated that these genes were predominantly 
enriched in ‘cellular response to corticosteroid stimulus’, ‘cell 
fate determination’, ‘collagen fibril organization’ and ‘collagen 
biosynthetic process’ (Fig. 2C), which may contribute to GBM 
development.

Hub genes and survival analysis. The top 30 genes were 
screened by combining the four local‑based methods 
(DMNC, MNC, MCC and degree) in the Cytoscape plug‑in 
cytoHubba based on differentially expressed and methylated 
genes. The 24 overlapping genes were considered hub genes 
(Fig. 3). Subsequently, the expression values of the 24 hub 
genes were visualized as box plots, as presented in Figs. 4 and 
S3. These hub genes had significantly differential expression 

in patients who had a survival time ≥1 year (long group) 
compared with patients who had a survival time <1 year 
(short group) (P<0.05). Survival analysis was performed in 
order to further assess the prognostic values of the hub genes. 
Among the 24 hub genes, 15 possessed potential prognostic 
value by comparing patients who experienced longer survival 
times with patients who experienced shorter survival times. 
Patients with hypomethylated genes expressed at high levels 
had shorter survival times compared with patients expressing 
hypermethylated genes at low levels, including COL1A1 
(P=0.0280), CYP1B1 (P=0.0370), CYR61 (P=0.0087), 
ELANE (P=0.0051), FAM20C (P=0.0019), HAL (P=0.0160), 
HIC1 (P=0.0210), KRT19 (P=0.0150), LIF (P=0.0097), 
LOX (P=0.0180), PAX3 (P=0.0110), SFRP2 (P=0.0110) and 
SOCS3 (P=0.0200) (Fig. 5). Furthermore, patients with high 
expression levels of the hypomethylated COMP gene had 
longer survival times compared with patients with low levels 
of the hypermethylated COMP gene (P=0.0400). In addi-
tion, patients with low levels of the hypermethylated DLL1 
gene had shorter survival times compared with patients with 
high expression levels of the hypomethylated DLL1 gene 
(P=0.0047). The details of the 15 hub genes are presented in 
Table II. Cox proportional hazards regression analysis was 
performed to evaluate Kaplan‑Meier survival analysis results, 
which are presented in Table III.

Functional enrichment analysis of the 15 hub genes. Functional 
enrichment analyses were performed to determine the poten-
tial biological processes and signaling pathways enriched by 
the differentially expressed and methylated genes in GBM. 
KEGG pathway analysis demonstrated that the hub genes were 
predominantly enriched in the ‘JAK‑STAT signaling pathway’, 
‘transcriptional misregulation in cancer’, ‘focal adhesion’ and 
‘PI3K‑Akt signaling pathway’ (Fig. 6A). These pathways have 

Table I. Clinical characteristics of patients with glioblastoma.

	 TCGA	 UCSC‑Xena
Characteristic	 (n=152)	 (n=151)

Age, years		
  Median	   61	   60
  Range	 21‑89	 21‑85
Sex		
  Male	   98	   88
  Female	  54	  63
Ethnicity, n 		
  Asian	    5	    0
  Black or African American	   10	   24
  White	 136	 118
  N/A	     1	     9
Vital status, n		
  Living	  30	  45
  Dead	 122	 106

TCGA, The Cancer Genome Atlas; UCSC‑Xena, University of 
California Santa Cruz‑Xena.
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been confirmed to be involved in GBM development and progres-
sion. GO enrichment analysis demonstrated that these hub genes 

were predominantly enriched in ‘skeletal system development’, 
‘ossification’ and ‘striated muscle cell differentiation’ (Fig. 6B).

Figure 2. PPI network construction and functional enrichment analyses. (A) PPI network. Nodes represent proteins; lines represent the interactions between 
proteins. (B) KEGG pathway enrichment analysis results. (C) Gene Ontology enrichment analysis results. A node represents a term; lines represent the interac-
tions between terms; node colors represent the enrichment degree of the terms. The darker the color, the higher the degree of enrichment. PPI, protein‑protein 
interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

Figure 1. Differentially expressed genes of glioblastoma. (A) Hierarchical clustering. (B) Volcano plots. Red represents upregulated genes; blue represents 
downregulated genes between the longer survival time (≥1 year) group and the shorter survival time group (<1 year). NOT, no difference; logFC, log‑fold 
change. 
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Discussion

GBM is a brain tumor associated with a poor prognosis. 
Despite advancements made in the treatment of GBM, the 
median survival time remains <1  year, and few patients 
survive >3 years (33,34). In the present study, patients from 
TCGA database were divided into two groups, survival time 
<1 year and survival time ≥1 year, according to the median 
survival time. Gene expression and DNA methylation were 
compared between the genes in both groups. DNA methylation 

has been demonstrated to be associated with survival outcome 
via changes in gene expression  (35). A previous study of 
GBM used a joint analysis method of DNA methylation and 
changes in gene expression to identify prognostic biomarkers 
for patients with GBM (36). The hypermethylation or hypo-
methylation of DEGs has a major impact on the development 
and progression of different types of tumor, either acting as 
oncogenes or anticancer genes. The current study successfully 
presented a number of genes that were significantly modulated 
by DNA methylation.

In the present study, KEGG pathway enrichment analysis 
demonstrated that the differentially expressed and methyl-
ated genes were predominantly enriched in the ‘JAK‑STAT 
signaling pathway’. Along with the ‘JAK‑STAT signaling 
pathway’, ‘transcriptional misregulation in cancer’ and 
‘ECM‑receptor interaction’ have been confirmed to serve 
a critical role in GBM development (37‑41). GO enrichment 
analysis demonstrated that these genes were predominantly 
enriched in ‘cell fate determination’, ‘collagen fibril organiza-
tion’ and ‘collagen biosynthetic process’, which may contribute 
to GBM development (42‑45).

Cancer involves a complex regulatory network and the 
integration of multiple biomarkers into an aggregation model 
can improve the prognostic value compared with a single 
biomarker (46). For example, the expression of transmem-
brane protein 41A is associated with metastasis by modulating 
E‑cadherin in radically resected gastric cancer (47). In the 
present study, 24 hub genes were identified by overlapping 
the top 30 genes within four local‑based methods (DMNC, 
MNC, MCC and degree), in the Cytoscape plug‑in cyto-
Hubba. Among the 24 hub genes, 15 possessed potential 
prognostic value between patients who experienced longer 
survival times and patients who experienced shorter survival 
times. The hypomethylated genes expressed at high levels, 
including COL1A1, CYP1B1, CYR61, ELANE, FAM20C, 

Table II. Hub genes (n=15) in glioblastoma.

Symbol	 Group	 LogFC	 LogCPM	 P‑value	 FDR	 Change	 Methylation

COL1A1	 protein_coding	 0.948349	 9.177457	 2.369x10‑3	 0.116097	 UP	 Hypomethylation
CYP1B1	 protein_coding	 0.905022	 4.648310	 7.350x10‑4	 0.053914	 UP	 Hypomethylation
CYR61	 protein_coding	 0.857787	 7.004545	 4.660x10‑5	 0.007693	 UP	 Hypomethylation
ELANE	 protein_coding	 0.820009	 ‑0.896520	 5.280x10‑4	 0.043721	 UP	 Hypomethylation
FAM20C	 protein_coding	 0.645844	 7.793972	 1.160x10‑4	 0.015224	 UP	 Hypomethylation
HAL	 protein_coding	 0.860970	 ‑1.280750	 5.460x10‑5	 0.008582	 UP	 Hypomethylation
HIC1	 protein_coding	 0.620305	 2.999093	 5.230x10‑4	 0.043431	 UP	 Hypomethylation
KRT19	 protein_coding	 0.967123	 ‑1.356580	 2.650x10‑4	 0.027310	 UP	 Hypomethylation
LIF	 protein_coding	 0.878622	 4.793528	 1.020x10‑3	 0.066857	 UP	 Hypomethylation
LOX	 protein_coding	 0.635535	 5.807618	 5.588x10‑3	 0.190609	 UP	 Hypomethylation
PAX3	 protein_coding	 0.704507	 1.890802	 3.279x10‑2	 0.430150	 UP	 Hypomethylation
SFRP2	 protein_coding	 1.350652	 3.849805	 6.910x10‑5	 0.010316	 UP	 Hypomethylation
SOCS3	 protein_coding	 0.759382	 6.741612	 1.930x10‑4	 0.021922	 UP	 Hypomethylation
COMP	 protein_coding	 3.352002	 0.442354	 9.550x10‑14	 5.78E‑10	 UP	 Hypomethylation
DLL1	 protein_coding	 ‑1.806420	 5.384099	 2.780x10‑12	 6.22E‑09	 DOWN	 Hypermethylation

LogFC, log‑fold change; LogCPM, log‑counts per million; FDR, false discovery rate.

Table III. Cox proportional‑hazards regression model analysis 
of the 15 hub genes.

Hub gene	 HR	 CI	 P‑value

COMP	 0.972	 0.848‑1.115	 0.688
DLL1	 0.860	 0.703‑1.053	 0.144
CYR61	 0.978	 0.776‑1.234	 0.853
HAL	 1.032	 0.873‑1.219	 0.715
SFRP2	 0.995	 0.866‑1.143	 0.947
FAM20C	 0.930	 0.676‑1.279	 0.656
SOCS3	 1.308	 0.975‑1.754	 0.073
KRT19	 1.003	 0.868‑1.159	 0.967
HIC1	 1.085	 0.784‑1.503	 0.622
ELANE	 1.028	 0.884‑1.196	 0.722
CYP1B1	 0.971	 0.752‑1.253	 0.819
LIF	 0.878	 0.717‑1.074	 0.206
COL1A1	 0.928	 0.712‑1.210	 0.580
LOX	 1.000	 0.789‑1.268	 0.999
PAX3	 0.901	 0.821‑0.989	 0.029

HR, hazard ratio; CI, confidence interval.
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Figure 4. Box plots demonstrating the expression values of the hub genes in GBM.

Figure 3. Identification of hub genes. Top 30 genes identified by (A) degree, (B) MCC, (C) MNC and (D) DMNC, respectively. (E) Venn diagram of the hub 
genes identified in the four methods. The same color represents the same subpart. MCC, maximal clique centrality; MNC, maximum neighborhood compo-
nent; DMNC, density of MNC. 
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HAL, HIC1, KRT19, LIF, LOX, PAX3, SFRP2 and SOCS3, 
were associated with a poor prognosis of GBM. Furthermore, 
the hypermethylated DLL1 gene and hypomethylated COMP 
gene, expressed at low levels, were demonstrated to have 
worse clinical outcomes. Among the 15 hub genes corre-
sponding with candidate CpG sites, 7 have been reported 
as GBM‑associated genes. For example, COL1A1 has the 
potential to stratify patients with GBM into subgroups, to 
determine the risk of recurrence  (48). Overexpression of 
CYR61 has been reported to enhance the tumorigenicity of 
glioma cells and stimulate the β‑catenin‑TCF/Lef and Akt 
signaling pathways via the activation of integrin‑linked 

kinase (49,50). Furthermore, LIF possesses a self‑renewal 
capacity that prevents the differentiation of glioma‑initiating 
cells (51). As an evolutionarily conserved metabolic gene, 
LOX is involved in gliomagenesis  (52). PAX3 is overex-
pressed in GBM and strictly regulates the tumorigenicity of 
glioma cells (53). The transcriptional inhibition of p53 by 
PAX3 may contribute to glioma formation and the differ-
entiation of glioma stem cells (54). The hypermethylation 
of SFRP2 occurs in >40% of primary GBMs  (55,56). A 
previous study demonstrated that patients with hypermeth-
ylated SOCS3 were associated with a significantly poor 
prognosis compared with healthy controls (57). However, the 

Figure 5. Survival analysis of patients with glioblastoma by Kaplan‑Meier method. 

Figure 6. Functional enrichment analyses of the 15 hub genes. (A) KEGG pathway enrichment analysis results. (B) GO enrichment analysis results. KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology. 
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results of the present study demonstrated that patients with 
hypomethylated SOCS3 at low levels had a shorter survival 
time compared with patients with hypermethylated SOCS3 
at high levels Thus, further research is required in order to 
clarify these inconsistencies.

Overall, the present study identified 15 prognostic 
biomarkers for GBM based on DNA methylation and mRNA 
expression levels, including COL1A1, CYP1B1, CYR61, 
ELANE, FAM20C, HAL, HIC1, KRT19, LIF, LOX, PAX3, 
SFRP2, SOCS3, COMP and DLL1. The results of the current 
study demonstrated that these genes are regulated by aberrant 
methylation, which could serve a crucial role in GBM. These 
genes have the potential to serve as candidate prognostic 
biomarkers and therapeutic targets in GBM; however, the 
results require validation within larger cohorts to evaluate 
their potential as biomarkers in GBM. Furthermore, future 
studies are required to determine the molecular mechanisms 
underlying these genes.

The present study implemented an integrative analysis 
approach to analyze DNA methylation with changes in gene 
expression and assess the association of gene expression 
changes with GBM survival time. A total of 15 CpG‑based 
genes were identified to possess potential value to predict the 
prognosis of patients with GBM. However, future studies are 
required on these gene methylation and/or gene expression 
biomarkers to develop personalized treatments for patients 
with GBM.

There are a number of limitations associated with 
the present study. GBM isocit rate dehydrogenase 
(IDH)‑wild‑type is the most common astrocytic glioma (58). 
Thus, existing prognostic factors for this type of tumor 
should commonly be used for comparative analysis of novel 
prognostic factors for GBM. However, there are currently no 
available data within TCGA cohorts. Thus, the present study 
lacks comparative analyses between the status of IDH‑1/2 
genes and the 15 CpG‑based genes. Furthermore, although 
GBM‑specific prognostic biomarkers were identified via 
integrative analysis of DNA methylation and gene expres-
sion, the present study lacks validation by functional studies 
both in vitro and in vivo.
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