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Abstract. Lung adenocarcinoma (LUAD) is a major subtype 
of non‑small cell lung cancer. Despite significant progress in 
its diagnosis and treatment, the mortality and morbidity rate 
of LUAD remains high worldwide. The aim of the present 
study was to perform a systematic investigation of the tumor 
microenvironment (TME) and identify TME-related genes of 
prognostic value in patients with LUAD. Firstly, the immune 
scores and stromal scores of patients with LUAD from The 
Cancer Genome Atlas were calculated using the Estimation 
of STromal and Immune cells in MAlignant Tumors using 
Expression data algorithm, and a total of 281 prognostic 
TME‑related genes were identified. Subsequently, functional 
analysis and protein-protein interaction network analysis 
revealed that these genes were mainly related to immune 
response, inflammatory response and chemotaxis. Finally, 
two independent LUAD cohorts from the Gene Expression 
Omnibus database were used to validate these genes, and 4 
genes (GTPase IMAP family member 1, T-cell surface glyco-
protein CD1b, integrin alpha-L and leukocyte surface antigen 
CD53) were identified, and downregulation of these genes was 
indicated to be associated with poor overall survival rate in 
patients with LUAD. In conclusion, a comprehensive analysis 
of TME was performed and 4 prognostic TME-related genes 
in patients with LUAD were identified.

Introduction

Lung adenocarcinoma (LUAD) is a subtype of non-small cell 
lung cancer (NSCLC) and represents the most common histo-
logical type of NSCLC (1). Although significant progress has 

been made in the treatment of LUAD with the use of molecular 
targeted therapies, the 5-year survival rate of patients with 
LUAD is still <20% (2). Therefore, novel biomarkers are 
urgently required for significant improvements in prognosis. 
Progress has been made in the application of immunotherapy 
in the treatment of LUAD. For example, the application of 
programmed cell death-1 (PD-1) inhibitors, PD-ligand 1 
inhibitors and cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4) inhibitors have been shown to enhance intratu-
moral immune responses and improve prognosis in patients 
with LUAD in numerous preclinical or clinical studies (3-6). 
However, some studies have also identified the limitations 
of immunotherapy, including severe adverse effects and 
low response in some patients (7). One of the factors which 
diminishes the efficacy of tumor immunotherapy is the tumor 
microenvironment (TME) (8,9), which is heterogeneous 
in composition and contains cellular components, growth 
factors, proteases and extracellular matrix (10). As a result, it is 
particularly important to identify TME-related biomarkers in 
order to identify patients who will have an improved prognosis 
after receiving immunotherapy.

The TME regulates major hallmarks of cancer, 
including angiogenesis, inflammation, immune suppres-
sion, epithelial-mesenchymal transition and metastasis (11). 
Previous studies have demonstrated that immune‑inflamed 
TMEs express high levels of cytotoxic lymphocytes as 
well as immune activation markers, and tumor purity is 
decreased (12,13). Tumors with this type of TMEs are often 
associated with a favorable prognosis (14), however, patients 
with immune-excluded TMEs or a high tumor purity have 
a poorer survival instead. In addition, Givechian et al (15) 
reported that patients with immune-inflamed LUAD were 
associated with improved overall survival (OS) compared 
with patients with immune-excluded LUAD. Behind this 
phenomenon, genes such as CD8 and PRF1 (12,15-17) or 
signaling pathways such as ribosomal, metabolic and chemo-
kine signaling pathways (15,18) may serve an important role. 
Therefore, recognizing these genes and utilizing them provides 
a deep understanding of TME in patients with LUAD, which 
could guide immunotherapy. With the development of bioin-
formatics, some algorithms have been applied to evaluate the 
tumor purity of TME according to the specific gene expres-
sion signature of immune or/and stromal cells (19,20). In 2013, 
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Yoshihara et al (20) invented an algorithm termed Estimation 
of STromal and Immune cells in MAlignant Tumors using 
Expression data (ESTIMATE) to analyze stromal and immune 
cells that form the major non-tumor constituents of tumor 
samples. This algorithm calculates the stromal and immune 
scores to predict the tumor purity of tumor tissues. In the 
present study, The Cancer Genome Atlas (TCGA) database and 
ESTIMATE algorithm were utilized to identify TME-related 
genes to predict outcomes in patients with LUAD.

Materials and methods

Database. Level 3 gene expression data for 517 patients 
with LUAD was downloaded from TCGA data portal 
(https://tcga-data.nci.nih.gov/tcga/) and was analyzed using 
the Illumine Hiseq 2000 RNA Sequencing v.2 platform 
[University of North Carolina (UCSC) TCGA genome char-
acterization center; October 10, 2017] and RNA sequencing 
data was downloaded from UCSC Xena browser (https://xena.
ucsc.edu/). Clinical data, including age, sex, histological type, 
tumor metastasis conditions, epidermal growth factor receptor 
(EGFR) mutation status, overall survival time and outcome 
were downloaded from TCGA data portal. Immune and 
stromal scores of 517 patients with LUAD were calculated by 
applying the ESTIMATE algorithm to the downloaded dataset. 
For validation, the Gene Expression Omnibus (GEO) database 
was used to compare gene expression profiling of patients with 
LUAD with clinical data of survival and outcome. Finally, two 
independent datasets, GES37745 (n=106) (21) and GES29013 
(n =31) (22), were used to validate the identified genes.

Identification of differentially expressed genes (DEGs). Based 
on the ESTIMATE results, all samples were divided into 
high/low immune-score groups and high/low stromal-score 
groups to select intersection genes. The cut-off value of iden-
tifying high immune score group or low immune score group 
was 980.35. The cut-off value for identifying high stromal 
score group or low stromal score group was 36.85. DEG data 
analysis was performed using limma package (23). The cut-off 
values for screening DEGs were set as fold change (FC) >2 
or <-2 and P<0.05. Volcano plots were generated using the 
ggplot2 package in R software v.3.5 (24).

Construction of protein‑protein interaction (PPI) network. The 
Search Tool for the Retrieval of Interacting Genes (STRING) 
online database was used to analyze the PPI network of 
DEGs (25). The DEGs were uploaded to the STRING online 
website and the interactive relationships were determined. The 
cut‑off value of the minimum required interaction score was 
set as 0.700. Subsequently, the Cytoscape software v.3.6 (26) 
was used to construct the PPI network and Molecular Complex 
Detection (MCODE) was used to identify the top three 
complete module clusters (26).

Functional analysis of DEGs. The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) website 
was used to perform Gene Ontology (GO) analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis and 
the false discovery rate <0.05 was defined as the cut-off 
value (27).

Statistical analysis. All data are presented expressed as the 
mean ± standard deviation. Student's t-test (two groups) and 
one-way ANOVA (multiple groups) were used to compare 
the immune and stromal scores in different groups using 
Graph-Pad Prism v7.0 software. (GraphPad Software, Inc.). 
The post hoc test used following ANOVA was Tukey's 
multiple comparisons test. OS curves were created using the 
Kaplan-Meier survival analysis and estimated using two-sided 
log rank test. Differential analysis of expressed genes and 
volcano plots was performed using R software v.3.5. P<0.05 
was considered to indicate a statistically significant difference.

Results

Stromal and immune scores are significantly associated with 
TNM stage, epidermal growth factor receptor mutation status, 
distant metastasis and clinical outcome in patients with 
LUAD. To determine the relationship between ESTIMATE 
scores and clinical characteristics, the gene expression data 
as well as clinical information of 517 patients with LUAD 
were downloaded from the TCGA database. The dataset 
included patients in which initial pathological diagnosis was 
made between 1991 and 2013. Among these patients, 277 
cases (54%) were male and 240 cases (46%) were female. The 
immune and stromal scores of each patient were determined, 
the stromal scores ranged from -1,959.31 to 2,098.77, and the 
immune scores ranged from -1,355.85 to 3,286.67. As presented 
in Fig. 1A, the immune scores of each TNM stage were 
compared. The average immune scores of patients with stage I 
were the highest amongst all of the TNM stages, followed by 
that of stage II, and stage III. Patients with stage IV had the 
lowest immune scores (Fig. 1A; P=0.0305, one-way ANOVA). 
Fig. 1B revealed the stromal scores of each TNM stage. The 
stromal scores were highest in patients with stage II LUAD, 
followed by stage I, stage III and stage IV (Fig. 1B; P=0.1111).

Subsequently, the immune and stromal scores were 
compared between the distant metastasis group and the 
non-distant metastasis group. The average immune and stromal 
scores of the distant metastasis group were significantly 
lower compared with that in the non-distant metastasis group 
(Fig. 1C and D). The immune and stromal scores between 
lymph node metastasis group and non-lymph node metastasis 
were also compared, however, the results revealed there was 
no statistically significant difference between the two groups 
(Fig. S1A and B).

To the best of our knowledge, the frequency of EGFR gene 
mutation among Asian populations with NSCLC is ~30% (28). 
In Fig. 1E and F, the average immune and stromal scores 
in the EGFR mutant group and the EGFR wild-type group 
were shown. The stromal score of the EGFR mutant group 
was significantly higher compared with that of the EGFR 
wild-type group (P<0.0001), while the immune score of the 
EGFR mutant group was also higher compared with that of 
the EGFR wild-type group, although the result was not statisti-
cally significant (P=0.5113).

To determine the association between OS and immune and 
stromal scores, patients were divided into two groups based on 
high or low scores using median value and Kaplan-Meier survival 
curves were subsequently plotted. As indicated by Fig. 1G, the 
median OS time of the low immune score group was significantly 
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shorter compared with that of the high immune score group (1,229 
vs. 1,725 days; P=0.0068 using the log-rank test). As shown in 
Fig. 1H, the median OS time of the low stromal score group was 

shorter compared with that of the high stromal score group (1,293 
vs. 1,600 days; P=0.0527; log-rank test), although there were no 
statistically significant differences between the two groups.

Figure 1. Immune and stromal scores are significantly associated with TNM stage, EGFR mutation status, distant metastasis and clinical outcome in patients 
with LUAD. Distribution of (A) immune and (B) stromal scores of each TNM stage. Distribution of (C) immune and (D) stomal scores for distant metastasis 
and non-distant metastasis LUAD cases. Distribution of (E) immune and (F) stromal scores for EGFR wide-type and EGFR mutant LUAD cases. Analysis of 
patients' overall survival based on (G) immune and (H) stromal scores. EGFR, epidermal growth factor receptor; LUAD, lung adenocarcinoma.
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Identification of DEGs of immune and stromal score groups. 
The gene expression matrix file of 517 patients with LUAD 
downloaded from TCGA database was used to assess the gene 
expression profile differences between high immune/stromal 
scores and low immune/stromal scores. As shown in 
Fig. 2A and B, volcano plots revealed the DEG profile of 
low immune/stromal score groups compared with high 
immune/stromal score groups. A total of 902 downregulated 
genes and 54 upregulated genes were identified in the immune 
score group (low vs. high, FC >2 or <-2; P<0.05). Similarly, a 
total of 1,006 downregulated genes and 31 upregulated genes 
were identified in the stromal score group (low vs. high; FC 
>2 or <-2; P<0.05). Furthermore, 519 downregulated DEGs as 
well as 20 upregulated DEGs were found in both the immune 
and stromal groups (Fig. 2C and D; Table SI). Only the 
519 intersection downregulated genes were included in the 
further analysis. The 20 intersection upregulated DEGs were 

not included due to being the minority of common DEGs. 
Furthermore, the current analysis was primary focused on 
downregulated genes, the overexpression of which might 
become a target for future gene therapy. The prognostic value 
of the 20 upregulated genes was performed (Table SII) and 
the results revealed that the hazard ratio (HR) of these genes 
was ~1, and the P-value of most of these genes was >0.05. 
The 519 DEGs were used for all subsequent analysis. The 
DAVID online tool was used to determine the potential func-
tions of these genes. Fig. 2E-G revealed the top GO terms 
of these genes. These genes were involved in biological 
processes (BPs), including ‘immune response’, ‘inflamma-
tory response’ and ‘chemotaxis’ (Fig. 2E). The molecular 
functions (MFs) of these genes included ‘receptor activity’, 
‘chemokine activity’ and ‘transmembrane signaling receptor 
activity’ (Fig. 2G). Cellular components (CCs) of these genes 
included integral component of plasma membrane, ‘external 

Figure 2. Identification of DEGs in high and low immune and stromal score groups. (A) Volcano plot of DEGs based on immune scores of low score group 
vs. high score group. (B) Volcano plot of DEGs based on stromal scores of low score group vs. high score group. Venn diagram analysis of (C) common 
downregulated DEGs and (D) common upregulated DEGs. Top ten (E) Biological process, (F) Cellular component and (G) Molecular function, Gene Ontology 
terms of common downregulated DEGs. (H) Top ten KEGG pathways of common downregulated DEGs. DEGs, differentially expressed genes; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; FDR, false discovery rate.
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side of plasma membrane’ and ‘plasma membrane’ (Fig. 2F). 
The potential pathways these genes may be associated with 
were also investigated using DAVID. The top 10 KEGG path-
ways these genes are involved in included ‘Staphylococcus 
aureus infection’, ‘cytokine-cytokine receptor interaction’, 
‘cell adhesion molecules (CAMs)’ and ‘chemokine signaling 
pathway’.

Prognostic value analysis of 519 common downregulated 
DEGs. To determine if the 519 common downregulated genes 
were associated with OS, Kaplan-Meier survival curves were 
plotted. A total of 281 genes were identified to be associ-
ated with favorable OS using log-rank test (P<0.05; HR<1; 
Table SIII). Kaplan-Meier survival curves for some of the 
genes are presented in Fig. 3. Kaplan-Meier survival curves for 
10 representative genes were selected and these 10 genes were 
found to have multiple connections with other genes (Fig. 4).

PPI network construction of 281 DEGs of prognostic value. 
The PPI network using STRING online tool was used to iden-
tify the interaction among the identified DEGs. This network 
was comprised of 273 nodes and 580 edges and Cytoscape 
software was used to visualize the network (Fig. 4A). The 
top three modules of this PPI network were selected using 
the MCODE plugin. The first module (Fig. 4B) contained 
26 nodes and 162 edges, and protein tyrosine phosphatase 
receptor type C, lymphocyte cytosolic protein 2, HLA class 
II histocompatibility antigen DR beta 5 chain, HLA class II 
histocompatibility antigen DQ alpha 1 chain, HLA class II 
histocompatibility antigen DQ beta 1 chain and C-C chemo-
kine receptor type 5 were of interest as they were found to 
have multiple connections with other genes. The second 
module (Fig. 4C) contained seven nodes and 21 edges, iden-
tifying CTLA-4 and B-lymphocyte antigen CD19 as the most 

connected genes. The third module (Fig. 4D) was formed by 
11 nodes and 32 edges, and integrin alpha-L (ITGAL) and 
P2X purinoceptor 1 had the highest connectivity degree 
values.

Functional analysis of genes of prognostic value. GO and 
KEGG pathway analysis of genes of prognostic value was 
subsequently performed. Fig. 5A shows the BPs in which 
these genes are involved, and the top 10 terms were identi-
fied including ‘immune response’, ‘T cell receptor signaling 
pathway’, ‘adaptive immune response’, and ‘regulation of 
immune response’. Fig. 5B shows the top 10 CC terms, including 
‘external side of membrane’, ‘MHC class II protein complex’ 
and plasma membrane. Fig. 5C shows the top 10 significant MF 
terms of these genes, which were ‘transmembrane signaling 
receptor activity’, ‘MHC class II receptor activity’, ‘C-C 
chemokine receptor activity’ and ‘peptide antigen binding 
activity’. A total of 10 significant KEGG pathway terms were 
also identified including ‘cell adhesion molecules (CAMs)’ 
and ‘cytokine-cytokine receptor interaction’.

Validation in the GEO database. To confirm that the prog-
nostic genes identified using TCGA analysis were also 
important in other LUAD cases, two independent eligible 
cohorts of LUAD cases from the GEO database (accession 
numbers GES37745 and GES29013) were selected for valida-
tion, and the calculated OS rate of genes was performed the 
GEO database (P<0.05; HR<1; Table SIV). Only 4 genes were 
validated as positively associated with prognosis. They were  
GTPase IMAP family member 1 (GIMAP1), T-cell surface 
glycoprotein CD1b (CD1B), ITGAL and leukocyte surface 
antigen CD53 (CD53). The HR value of these 4 genes in the 
GSE37745 dataset were as follows: GIMAP1, 0.51 (P=0.01); 
CD1B, 0.51 (P=0.01); ITGAL, 0.58 (P=0.01) and CD53, 0.63 

Figure 3. Kaplan-Meier survival curves for some of the DEGs associated with overall survival.
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(P=0.02). The HR value of the 4 aforementioned genes in the 
GSE29013 dataset were as follows: GIMAP1, 0.50 (P=0.02); 
CD1B, 0.51 (P=0.04); ITGAL, 0.71 (P=0.01) and CD53, 0.54 
(P=0.04). Although other genes were associated with prog-
nosis in the TCGA database, they were not associated with 
prognosis from the GEO database. As a result, GIMAP1, 
CD1B, ITGAL and CD53 were validated as positively associ-
ated with prognosis and downregulation of these 4 genes was 
associated with poor prognosis (Fig. 6).

Discussion

A number of different studies have applied the ESTIMATE 
algorithm to breast, prostate and colon cancer, indicating that 
it was a useful and effective tool for analyzing large data-
sets (29-31). Previous studies also applied this algorithm to 
mining TME‑related genes and identified high number of novel 
genes that were associated with prognosis in glioblastoma and 
cutaneous melanoma (32,33). To the best of our knowledge, 

Figure 4. PPI network construction of 281 downregulated DEGs of prognostic value. (A) PPI network of the 281 downregulated DEGs constructed with 
Cytoscape software. (B‑D) Top three modules of the PPI network. The color of a node in the PPI network reflects the log fold change value based on immune 
scores, and the size of the node indicates the number of proteins interacting with the designated protein based on immune scores. PPI, protein-protein 
interaction.

Figure 5. Functional analysis of genes of prognostic value. (A) Biological process, (B) Cellular component and (C) Molecular function of Gene Ontology terms. 
(D) KEGG pathway analysis. KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.
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the current study is the first study where the ESTIMATE 
scoring algorithm was used to identify tumor-related genes 
that were associated with the OS of patients with LUAD in 
the TCGA database. A total of 281 prognosis-related genes 
were identified and were found to be involved in the immune 
and inflammatory response and were subsequently validated 
in two LUAD cohorts from the GEO database. Finally, a total 
of 4 prognosis-related genes were associated with OS in the 
TCGA and GEO database.

Firstly, patients with stage III-IV TNM LUAD had 
lower immune and stromal scores compared with those 
with stage I-II TNM LUAD. Patients with distant metas-
tasis had lower immune and stromal scores compared with 
those without distant metastasis. The Kaplan-Meier survival 
curves revealed that patients with low immune/stromal 
scores had a poorer prognosis compared with those with high 
immune/stromal scores. All of the aforementioned results 
suggested that high immune/stromal scores were associated 
with the prognosis of patients with LUAD. This is consistent 
with previous reports that the inflamed and immunogenic 
TME was associated with favorable patient survival in lung 
adenocarcinoma (15,34).

Secondly, downregulated DEGs were identified from the 
comparison of low vs. high immune score groups, and also 
from the comparison of low vs. high stromal score groups. 
Subsequently, 519 DEGs that were downregulated in both the 
immune and the stromal score groups were analyzed further. 
GO and KEGG pathway analysis of these genes revealed that 
the majority were related to immune response, inflammatory 
response, T cell co-stimulation and chemokine-mediated 
signaling pathway. It is noteworthy that Staphylococcus 
aureus infection was ranked first in the KEGG pathway 
analysis. Pulmonary bacterial infections are frequently found 
in advanced stages of lung cancer (35). Hattar et al (36) also 
reported that purified lipoteichoic acids of S. aureus could 
induce growth of lung adenocarcinoma cell lines and these 
effects were mediated by inflammatory mediators such as 
ligation of Toll-like receptor 2 and interleukin (IL)-8. Thus, 
infections with Gram-positive bacteria might cause persistent 
inflammation and activated inflammatory cascades, which 
contribute to tumor growth in lung cancer. The results of 
GO and KEGG pathway analysis indicated that a number of 
immune cells, chemokines, cytokines and extracellular matrix 
components could be involved in regulating the relationship 
between LUAD and TME (11).

Thirdly, the prognostic value of the 519 DEGs was 
assessed and 281 DEGS were associated with OS in patients 
with LUAD. GO and KEGG pathway analysis of the 281 genes 

of prognostic value was performed, majority of which were 
related to immune and inflammatory response (Fig. 5A). A 
PPI network of the 281 genes was created and the top three 
modules were selected using a MCODE plugin. There was high 
connectivity between the nodes in these modules, including 
CCR7, HLA-DQB1 and CTLA4, which have been reported 
to be associated with regulating immune and inflammatory 
responses and OS of patients with LUAD (3,37-39).

Finally, two independent LUAD cohorts from GEO 
database were used to validate the prognostic value of genes 
identified in TCGA database. Only 4 genes, GIMAP1, CD1B, 
ITGAL and CD53, were found to have prognostic value in 
the TCGA database and 2 datasets from the GEO database. 
GIMAP1 belongs to the family of guanosine triphospha-
tases of the immunity-associated proteins (GIMAPs) (40). 
Previous studies have shown that the deregulated expres-
sion of GIMAP genes is associated with lymphomas (41). 
GIMAP1 is required for the establishment and maintenance 
of B cell survival and mature B cells do not survive without 
GIMAP1 expression (42). CD1B is a member of the CD1 
molecule family which specializes in presenting lipid 
antigens to T cells (43). The activation of CD1 restricts T 
cells in vivo leading to rapid antitumor cytotoxicity and 
interferon-γ production, which could prevent tumor metas-
tasis (44). Bagchi et al (45) reported that CD1B-autoreactive 
T cells could recognize phospholipid antigens and exert anti-
tumor immunity against CD1B+ T cell lymphoma. ITGAL, 
which is also known as LFA-1 and CD11a, is a member of the 
integrins family and is expressed on all leukocytes. LFA-1 is 
associated with myeloid cell function in the TME and plays 
an important role in the function of regulatory T (T-reg) cells 
that infiltrate tumors. A previous study indicated that neutro-
phils were recruited into the tumor via increased expression 
of LFA-1, activated by estradiol and transforming growth 
factor β1 in a mouse model of estrogen receptor-positive 
breast cancer (46). In colon cancer, another study reported 
that IL-18 was involved in eosinophil-mediated antitumor 
activity by upregulating LFA-1 and ICAM-1 (47). LFA-1 is 
also necessary for the development and function of T-reg 
cells and knockdown of LFA-1 leads to an increase in auto-
immunity (48). CD53 is a member of the tetraspanin family 
and participates in the formation of a complex with integrins 
on the plasma membrane (49). It has been reported that CD53 
is associated with asthma risk in the general population 
and recurrent bacteria, fungi and viruses infections (50,51); 
however, the relationship between CD53 and cancer has rarely 
been reported. Through reviewing the literature, these 4 
genes were found to be immune/inflammation‑related genes; 

Figure 6. Validation of The Cancer Genome Atlas results in two lung adenocarcinoma cohorts from the Gene Expression Omnibus database. Kaplan-Meier 
survival curves for the verified genes.
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however, the relationship between these 4 genes and lung 
cancer has also been rarely reported. In the present study, 
downregulation of these 4 genes was associated with a worse 
OS in patients with LUAD, therefore, they have potential to 
become novel cancer biomarkers.

There are some limitations to the present study, which 
are noteworthy. Firstly, the exploration occurred at a bioin-
formatics level, thus further experiments are required to 
validate the exact mechanism of these 4 genes in vitro and 
in vivo. Secondly, patients with LUAD in TCGA database 
received different treatments, such as chemotherapy, targeted 
molecular therapy or immunotherapy. These treatments 
could affect gene expression and OS rates of patients. Thus, 
clinical potential of these 4 genes requires a larger sample 
size to be confirmed.

In conclusion, using the ESTIMATE algorithm to calcu-
late the immune and stromal scores of patients with LUAD in 
TCGA database, it was found that low immune/stromal scores 
were associated with a worse TNM stage, a greater likelihood 
of distant metastasis and an unfavorable overall survival in 
patients with LUAD. TME‑related genes were identified and 
4 of them were validated in two independent LUAD cohorts 
from GEO database. These 4 genes were GIMAP1, CD1B, 
ITGAL and CD53, and were strongly associated with immune 
response and inflammatory response. The present study has 
obtained an improved comprehensive understanding of TME 
by mining TCGA database and identified 4 immune/inflam-
matory-related genes, which have the potential to predict 
prognosis of patients with LUAD.
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