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Abstract. Uterine corpus endometrial carcinoma (UCEC) is 
often diagnosed at an early clinical stage based on abnormal 
vaginal bleeding. However, the prognosis of UCEC is poor. 
The present study was conducted to identify novel tumor 
grade‑related genes with the potential to predict the prognosis 
and progression of UCEC. A total of three gene expres-
sion microarray datasets were downloaded from the Gene 
Expression Omnibus database, and one RNA‑sequencing 
dataset with corresponding clinical information of patients 
with UCEC was obtained from The Cancer Genome Atlas 
database. In summary, 1,447 differentially expressed genes 
(DEGs) were identified between endometrial cancerous tissues 
and normal endometrial tissues. Weighted gene co‑expression 
network analysis was performed to assess the associations 
between DEGs and clinical traits. In total, five genes were found 
to be highly associated with the tumorigenesis and prognosis 
of UCEC. Among them, BUB1 mitotic checkpoint serine/thre-
onine kinase B, cyclin B1, cell‑division cycle protein 20 and 
non‑SMC condensing I complex subunit G were involved in 
cell cycle regulation pathways, and DLG‑associated protein 5 
was involved in the Notch receptor 3 signaling pathway 
based on functional enrichment analyses. Of the five genes, 

four were highly expressed in endometrial cancerous tissues 
compared with normal endometrial tissues at the protein level. 
In addition, the higher expression of these genes predicted a 
higher tumor grade and worse overall survival. In conclusion, 
the present study revealed a 5‑gene signature that can be used 
to predict the progression of UCEC.

Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the 
most common cancer types that affects women worldwide (1). 
According to the 2009 International Federation of Gynecology 
and Obstetrics classification, stage I or stage II UCEC is cate-
gorized as early stage UCEC (2,3). In total, ~75% of UCEC 
cases are diagnosed at stage I of the disease. At this early stage, 
patients clinically present with abnormal vaginal bleeding (4). 
Due to early diagnosis, the 5‑year survival rate of patients with 
UCEC is ~90% (5). However, in a subset of patients diagnosed 
with early stage UCEC, the disease manifests in a poorly 
differentiated form and is classified as grade III UCEC (6). 
High‑grade stage I UCEC progresses rapidly and presents with 
a high metastatic rate within a short time (6). Higher‑grade 
classification takes into account the number of tumor cells 
undergoing differentiation, which allows the more malignant 
biological behavior to be observed (7). High‑grade UCEC 
frequently presents with lymph‑vascular space invasion and 
deep myometrial infiltration (8). Therefore, there is an urgent 
need to investigate the underlying mechanisms that drive the 
tumorigenesis and progression of stage I UCEC. The thera-
peutic strategy employed in the treatment of UCEC depends 
on the tumor grade. For stage I UCEC, surgical intervention 
is preferred, and total hysterectomy and removal of oviduct 
and ovaries are standard treatments (6). For high‑grade UCEC, 
adjuvant treatments, such as radiotherapy and chemotherapy, 
are preferred, as they achieve improved outcomes (9,10). Due 
to its high recurrence rate, the 5‑year overall survival (OS) rate 
of grade 3 UCEC ranges between 20 and 40% (11). Therefore, 
novel and specific targeted therapies with fewer negative 
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side effects are urgently needed to improve the outcomes for 
patients with high‑grade stage I UCEC.

It has previously been reported that the PI3K/AKT/mTOR 
signaling axis is frequently dysregulated in UCEC  (12). 
However, a trial testing the clinical efficacy of mTOR inhibi-
tors against UCEC revealed a response rate of <10% (13). 
Other therapeutic strategies have also been evaluated, 
including use of inhibitors of PI3K (14), vascular endothelial 
growth factor/fibroblast growth factor receptor (15,16), poly 
(ADP‑ribose) polymerase (17) and programmed cell death 
protein 1/programmed death‑ligand 1  (18), with outcomes 
showing the limited efficacy of these agents.

Advances in the application of high‑throughput microarray 
technology in research, coupled with the availability of public 
databases, has made bioinformatics analysis a powerful means 
for identifying critical biomarkers in cancer (19‑21). However, 
to the best of our knowledge, very few studies (22,23) have 
investigated the interconnection among genes. By contrast, 
numerous studies have focused on the identification of 
differentially expressed genes (DEGs) between cancer and 
normal tissues (24‑26). Weighted gene co‑expression network 
analysis (WGCNA) allows the identification of associations 
between genes and the clinical features of cancer based on 
scale‑free networks (27). WGCNA has previously been used 
to identify genes associated with clinical features of cancer, 
such as stage, tumor grade and metastasis (28‑30).

In the present study, WGCNA was performed on micro-
array data obtained from the Gene Expression Omnibus 
(GEO) database and UCEC RNA‑sequencing (RNA‑seq) data 
from The Cancer Genome Atlas (TCGA). The publicly avail-
able data were screened to identify DEGs for determination 
of their association with tumor grade. The present study may 
help to identify novel tumor grade‑associated genes with the 
potential to predict the prognosis and progression of UCEC, 
which may provide insight for an improved understanding of 
UCEC pathogenesis.

Materials and methods

Data source. A workflow diagram for the present study is 
shown in Fig. 1. The following datasets were downloaded 
from the publicly available endometrial carcinoma (EC) GEO 
database (http://www.ncbi.nlm.nij.gov/geo/): GSE17025 (31), 
GSE56026 (32) and GSE115810 (33). Datasets GSE17025 and 
GSE56026 were based on the Affymetrix Human Genome 
U133 Plus 2.0 Array, while dataset GSE115810 was based 
on the Affymetrix Human Genome U133A Array (both 
Affymetrix; Thermo Fisher Scientific, Inc.). The GSE17025 
dataset, which consists of 91 stage I EC samples and 12 normal 
endometrium samples, was used to identify the DEGs that are 
associated with tumor grade. This GSE17025 dataset consisted 
of 30 grade I samples, 36 grade II samples and 25 grade III 
samples. An UCEC RNA‑seq dataset and its corresponding 
clinical information was also downloaded from TCGA 
database (https://www.cancer.gov/tcga) using the following 
inclusion criteria: i) Histological diagnosed UCEC; ii)  no 
other malignancy except UCEC; and iii) available detailed 
clinical and follow‑up information. This dataset contains 581 
samples, of which 35 are normal endometrial tissue samples 
and 546 are UCEC samples. This TCGA dataset was used to 

investigate the expression levels of the DEGs and to analyze 
OS. The GSE115810 and GSE56026 datasets were used as test 
datasets for the validation of the association of DEG expres-
sion levels with various tumor grades.

Data preprocessing. A quality control analysis of the raw 
microarray data was performed using the ‘Affy’ package (34) 
for R software (R version 3.6) using the following functions: 
The relative logarithmic expression (RLE) and the normalized 
unscaled standard errors (NUSE) (35). Data were considered 
to be of sufficiently high quality if the box plot center was at ~0 
for the RLE function and ~1 for the NUSE function. Data that 
failed to meet the quality threshold were excluded from down-
stream analysis. Next, raw microarray data were subjected to 
background correction, normalization and logarithmic conver-
sion using the Robust Multi‑Array Average function in the 
‘Affy’ package for R software (R version 3.6) (36).

Identification of DEGs. Subsequently, the gene expression 
profile data from the GSE17025 dataset were analyzed using 
the ‘limma’ package (37) for R software (R version 3.6). This 
was performed to identify DEGs in EC compared with normal 
endometrial samples. Only candidate genes within the cut‑off 
limit of |log2 fold‑change (FC)|≥1 and an adjusted P‑value of 
<0.05 were selected for further analysis.

Construction of co‑expression network. To construct a 
co‑expression network, a matrix was assembled with the 
gene symbols as column names and expression profiles as 
the row names. Another matrix was assembled using the 
corresponding clinical information with the similar approach. 
Next, normal endometrium samples and UCEC samples with 
missing data or genes with zero variance, were all removed 
using the goodSamplesGenes function of the ‘WGCNA’ 
package in R software (R version 3.6). Following this step, the 
‘WGCNA’ package was employed to construct a co‑expression 
network of the DEGs, as described previously (27). Briefly, 
Pearson's correlation matrices were conducted for all pair‑wise 
genes. Next, power functions were applied to establish a 
weighted adjacency matrix. The following function was used: 
amn=|cmn|ß, where amn indicates adjacency between gene m 
and gene n, and cmn indicates Pearson's correlation between 
gene m and gene n. The best power (ß value) was applied as a 
soft‑thresholding parameter that permitted emphasis on strong 
DEG correlations while penalizing weak correlations (38). 
Next, adjacencies were transformed into topological overlap 
matrices to minimize interference from noise and spurious 
associations (39). Any genes exhibiting identical expression 
profiles were grouped together into gene modules using hierar-
chical clustering. Minimum module size was set at 30 genes as 
previously described (40). Finally, the dissimilarity of module 
eigengenes (MEs) was calculated and a cutoff threshold of 
0.25 was applied to merge highly identical modules together. 
Principal component analysis was employed to identify MEs 
as the major component for each module.

Elucidation of tumor grade‑associated modules. Next, the 
MEs, together with the corresponding clinical features, 
were used for module‑trait relationship analysis in R soft-
ware (R version 3.6) (38). To this end, Pearson's correlation 
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coefficients and P‑values were calculated and plotted into 
a heatmap to clearly visualize any tumor grade‑related 
modules. Genes that were associated with clinical features of 
the samples were also calculated. These genes were used to 
calculate module significance, which is given as the mean of 
the individual gene significance values for the genes present 
in a given module. Finally, the ‘highest module’, which is the 
module with the strongest correlation with clinical features of 
UCEC, was identified.

Functional enrichment analyses. Next, functional enrichment 
analyses were performed to identify the biological processes 
associated with the DEGs. This was achieved using Gene 
Ontology (GO) analysis of all genes in the highest module with 
the ‘clusterProfiler’ package (41) in R software (R version 3.6). 
For this analysis, the statistical cutoff threshold was set at 
P<0.05. Genes in the highest threshold were also subjected to 
Reactome pathway analysis (42,43). The pathway enrichment 
threshold was set at a false discovery rate <0.05.

Identification of hub genes. Modules were further analyzed 
to identify module hub genes. Hub genes are defined as those 
genes that exhibit the highest correlation with certain clinical 

features (38). Hub genes were selected from the highest module 
based on module membership (correlation between the MEs 
and the gene expression profiles) and gene significance (corre-
lation between genes and certain UCEC clinical features). 
Module memberships and gene significance were both 
derived using the absolute values from Pearson's correlation 
analysis in R software (R version 3.6). The following criteria 
were used to select hub genes: cor.geneModuleMembership 
>0.8 and cor.geneTraitSignificance >0.3 (38). Next, STRING 
(version 11; https://string‑db.org/) (44) was used to construct 
protein‑protein interaction (PPI) networks for genes of interest 
selected from the highest module. To visualize the results of 
this analysis, Cytoscape (version 3.7.0; http://www.cytoscape.
org/) (45) was used, applying a minimum required interaction 
score of 0.700. Hub genes were identified and highlighted 
using CytoHubba  (46), a Cytospace plug‑in. To prioritize 
potential hub genes, the following methods were employed 
in CytoHubba: Maximal clique centrality (MCC), maximum 
neighborhood component (MNC), degree, edge percolated 
component (EPC) and bottleneck (BN). The top 20 genes, 
returning the highest connectivity score using each method 
were considered to be hub genes. To further narrow the list 
of potential hub genes, the lists generated using the respective 

Figure 1. Flow chart outlining the data preparation, processing, analysis and validation in the present study. PPI, protein‑protein interaction; BUB1B, 
BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1, cyclin B1; CDC20, cell‑division cycle protein 20; DLGAP5, DLG‑associated protein 5; 
NCAPG, non‑SMC condensing I complex subunit; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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methods were combined and the overlapping candidates were 
selected as the real hub genes.

Validation and survival analysis based on TCGA database. 
UCEC RNA‑seq data for 581 samples were downloaded from 
TCGA database. This dataset was used to analyze the expression 
levels of real hub genes in normal compared with tumor tissues. 
First, the best expression cut‑off threshold was set for each 
gene. This was achieved by taking the gene expression value 
with the highest survival difference between the two groups as 
the lowest Renyi test P‑value. Next, the 541 UCEC samples for 
which corresponding clinical information was available were 
split into high and low expression groups. Kaplan‑Meier (KM) 
survival analysis was performed to determine the associations 
between real hub genes and OS rate. The Human Protein Atlas 
(http://www.proteinatlas.org) (47) was employed to map the 
tissue protein expression pattern for the real hub genes.

Statistical analysis. The R software (R version 3.6) was used to 
identify DEGs, screen out key modules and perform functional 
enrichment analyses (27,37,41). The associations between clin-
ical features and MEs were assessed by Pearson's correlation 
analysis in R software (R version 3.6) (38). Subsequently, the 
following statistical analyses were performed using GraphPad 
Prism 7 (version 7.0a; GraphPad Software, Inc.). KM was 
used to analyze OS, and the differences between the study 
groups were compared using the Renyi test (48). To evaluate 
the associations between expression levels of real hub genes 
and UCEC tumor grade, an unpaired two‑tailed Student's t‑test 
or one‑way ANOVA followed by Tukey's post‑hoc test were 
performed for data comparisons. All values are presented 
as the mean ± standard deviation. P<0.05 was considered to 
indicate a statistically significant difference. 

Results

Identification of DEGs. Following preprocessing and normal-
ization of gene expression data, gene expression matrices were 
generated for the 103 samples in the GSE17025 dataset. To 
match clinical features with sample name, a dendrogram was 
generated using one of the cluster methods named ‘complete’ 
from the ‘WGCNA’ package in R software. Clinical features 
for the 91 tumor samples, including age, ethnicity, histology, 
disease stage and tumor grade characteristics, were derived 
from this dataset (Fig. 2A). In the reported cases, the mean age 
of patients with EC was 60.80±10.71 years, the oldest patient 
was 91 years old and the youngest was 37 years old. In terms 
of ethnicity, 68 patients were Caucasian, 18 were African 
American, 2 were American Indian, 1 was Asian and 1 was 
Hispanic (data from 1 patient was missing). The histological 
pattern of 79 cases was typical of the endometrioid EC type, 
while that of the other 12 cases was typical of the papillary 
serous EC type. Excluding 1 case with stage I EC that could not 
be further subdivided into stages, the other 90 cases consisted 
of 30 stage IA cases, 37 stage IB cases and 23 stage IC cases. 
Next, the samples were categorized into EC tissues or normal 
tissues based on indicated pathology. After applying a cut‑off 
threshold of |log2FC|≥1 and an adjusted P<0.05, 1,447 DEGs, 
including 439 upregulated DEGs and 1,008 downregulated 
DEGs, were identified (Fig. 2B and C).

Construction of a weighted co‑expression network and 
identification of key modules. The expression levels of 1,447 
DEGs from 91 UCEC samples and the corresponding clinical 
information were assembled into matrices for co‑expression 
analysis. To ensure a scale‑free network, a power of β=3 (scale 
free R2=0.9) was applied as soft‑thresholding (Fig. 3A and B). 
From this analysis, nine key modules were identified for down-
stream analysis (Fig. 3C). From this analysis, the blue module 
(highest module) demonstrated the highest correlation with 
tumor grade (r=0.54; P=4x10‑8; Fig. 3D). The highest module 
contained 428 tumor grade‑related genes (r=0.73; P=2x10‑72; 
Fig. 3E).

The ‘clusterProfiler’ package in R software was then used 
to conduct GO enrichment analysis to identify the biological 
processes associated with the DEGs. It was identified that 
the DEGs were involved in ‘chromosome segregation’ 
(P=3.830x10‑27), ‘nuclear division’ (P=1.993x10‑25), ‘organ-
elle fission’ (P=1.694x10‑24) and ‘mitotic nuclear division’ 
(P=2.428x20‑24; Fig. 4A). Pathway analysis revealed that 216 
out of 428 genes of the highest module were associated with 
the ‘cell cycle, mitotic’ pathways (P=1.11x10‑16), the ‘cell 
cycle’ (P=1.11x10‑16), ‘cell cycle checkpoint’ (P=2.12x10‑11) 
and ‘mitotic spindle checkpoint’ (P=4.693x10‑10). Out of the 
728 enriched pathways, the top 25 pathways are presented in 
Table I. The pathway enrichment threshold was set at a false 
discovery rate <0.05.

Identification of hub genes. A total of 60 hub genes exhibiting 
high connectivity in the blue module were identified with cor.
geneModuleMembership >0.8 and cor.geneTraitSignificance 
>0.3. A PPI network of all genes in the blue module was 
generated using Cytoscape to visualize interactions among the 
genes. This revealed 178 nodes and 2,435 edges. Of the 178 
nodes, 134 genes (red nodes) were upregulated, whereas 44 
genes (purple nodes) were downregulated. For each node, the 
intensity of color was proportional to the level of gene expres-
sion in the tumor compared with non‑tumor tissues (Fig. 4B). 
To identify hub genes, the following CytoHubba plug‑in 
methods were employed: MCC, MNC, degree, EPC and BN. 
From these analyses, the top 20 hits produced by each method 
were considered as hub genes. The hub gene lists produced by 
each method were then combined and the overlapping candi-
dates were selected as the real hub genes for further analysis. 
These real hub genes were BUB1 mitotic checkpoint serine/
threonine kinase B (BUB1B), cyclin B1 (CCNB1), cell‑divi-
sion cycle protein 20 (CDC20), DLG‑associated protein 5 
(DLGAP5) and non‑SMC condensing I complex subunit G 
(NCAPG) (Fig. 5A).

Validation of hub gene expression levels. Subsequently, the 
five real hub genes were subjected to validation analysis. To do 
so, the expression levels of the five genes were first analyzed 
in the GSE17025 dataset. The results demonstrated that all five 
genes were highly expressed in UCEC tissues compared with 
normal tissues. In addition, patients who had more advanced 
tumor grades exhibited significantly higher expression levels of 
the five genes compared with patients with lower grade tumors 
(Fig. 5B). In the testing datasets GSE115810 and GSE56026, 
BUB1B, DLGAP5 and NCAPG expression demonstrated 
significant association with tumor grade in the GSE56026 
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dataset, while in the GSE115810 dataset, CDC20 exhibited a 
significant association with tumor grade (Fig. 5C and D). To 
further evaluate the clinical significance of the five genes, the 
associations between gene expression levels and clinical traits, 
including clinical stage, histological diagnosis and age, were 
investigated using the GSE17025 dataset. All five genes were 
expressed as at significantly higher level in stages Ia, Ib and Ic 
compared with those in normal tissues; however, no significant 
differences were observed in the expression of these genes 
among stage Ia, Ib and Ic EC samples (Fig. 5E). In terms of 
tumor histology, there were no significant differences in gene 
expression levels between endometrioid EC and papillary 
serous EC (Fig. 5F). In addition, the gene expression levels 
were not correlated with the age of the patients (Fig. 5G).

Reactome pathway analysis for the hub genes. The 5 
hub genes identified in the aforementioned step were also 
subjected to Reactome pathway analysis, which revealed that 
BUB1B, CCNB1, CDC20 and NCAPG were involved in cell 

cycle processes and particularly in the ‘mitotic prometaphase’ 
pathway. DLGAP5 was associated with the NOTCH3 intracel-
lular domain, a component of the Notch pathway involved in 
gene transcription processes (Table II) (49).

Survival analysis based on TCGA database. To validate the 
aforementioned results, TCGA RNA‑seq data for 546 UCEC 
samples and 35 normal endometrial tissue samples were used 
for further analyses. The gene expression levels of the five real 
hub genes were compared between normal endometrial tissue 
and UCEC tissue. Consistent with results from GEO analysis, 
it was identified that all real hub genes were expressed at a 
significantly higher level in UCEC samples compared with 
those in normal endometrial tissue samples (Fig.  6A‑E). 
Subsequently, the best expression cut‑off point for each real 
hub gene was set and the 541 UCEC samples for which clinical 
information was available were separated into two groups 
that yielded maximal difference with regard to survival at 
the lowest Renyi test P‑value. BUB1B (P=0.0053), CCNB1 

Figure 2. Identification of DEGs in GSE17025. (A) Clinical traits of 91 tumor samples from the GSE17025 dataset. White represents missing age, missing 
ethnicity and endometrioid histology data. Red for histology represents papillary serous endometrial carcinoma. The color intensity is proportional to the 
age, tumor grade and pathological stage, and the alphabetical order of ethnicity (African American, American Indian, Asian, Caucasian and Hispanic). (B) A 
heatmap plot showing gene expression levels of 103 samples from the GSE17025 dataset. Red indicates a high gene expression level and blue indicates a low 
gene expression level. The color intensity is proportional to gene expression level. (C) A volcano plot of DEGs in GSE17025. The upregulated DEGs selected 
based on the cut‑off criteria (|log2 fold‑change|≥1 and adj. P<0.05) are shown in red, and the downregulated DEGs are shown in blue. DEG, differentially 
expressed gene; adj., adjusted; BUB1B, BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1, cyclin B1; CDC20, cell‑division cycle protein 20; 
DLGAP5, DLG‑associated protein 5; NCAPG, non‑SMC condensing I complex subunit.
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Figure 3. Identification of modules associated with the clinical traits of UCEC by weighted gene co‑expression network analysis. (A) Analysis of the scale‑free 
fit index for various soft‑thresholding powers (β). (B) Analysis of the mean connectivity for various soft‑thresholding powers. (C) Dendrogram of all differ-
entially expressed genes clustered based on a dissimilarity measure (1‑TOM). (D) Heatmap showing the correlation between module eigengenes and clinical 
traits of UCEC. (E) Scatter plot of module eigengenes in the blue module in the GSE17025 dataset. The hub genes in the module are represented by dots in the 
upper‑right corner of the plot. UCEC, uterine corpus endometrial carcinoma; ME, module eigengene.



ONCOLOGY LETTERS  20:  2396-2410,  20202402

Figure 4. GO functional enrichment analysis and PPI network of genes in the blue module. (A) GO functional enrichment analysis of genes in the blue module. 
The x‑axis shows the gene ratio and the y‑axis shows the GO terms. The P‑value of each term is colored as shown in the key. The size of dot is proportional to 
the number of genes. (B) PPI network of genes in the blue module. The color intensity in each node is proportional to the variation of expression (upregulated 
genes are shown in red and downregulated genes are shown in purple). The nodes with a bold circle represent network hub genes identified by weighted gene 
co‑expression network analysis. PPI, protein‑protein interaction; GO, Gene Ontology.
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(P=0.0307), CDC20 (P=0.0011), DLGAP5 (P=0.0036) and 
NCAPG (P=0.0056) were significantly associated with the 
OS rate of patients with UCEC, suggesting that patients with 
UCEC with higher expression of the five genes exhibited a 
poor prognosis (Fig. 6F‑J).

Verification of the expression of hub genes at the protein level. 
To investigate the protein expression patterns of the five hub 
genes in samples of patients with UCEC and further interrogate 
the prognostic significance of these genes, the expression levels 
of CCNB1, CDC20, DLGAP5 and NCAPG were analyzed in 
The Human Protein Atlas database (Fig. 7). The expression 
level of BUB1B protein was not analyzed as its information 
was not available in The Human Protein Atlas database. In 
agreement with the earlier analysis, this analysis revealed that 
the CCNB1, CDC20, DLGAP5 and NCAPG proteins were 
expressed at higher levels in UCEC tissues compared with 
those in normal tissues. Analysis of IHC images revealed that 
CCNB1, CDC20, DLGAP5 and NCAPG proteins were local-
ized in the cytoplasm and cell surface membranes of UCEC 
cells. Notably, CDC20 exhibited a strong nuclear localization. 
All patient information obtained from The Human Protein 
Atlas database is provided in Table III.

Discussion

UCEC and normal endometrial tissues exhibit a high degree 
of genetic heterogeneity (6). Although 75% of UCEC cases 
are diagnosed at stage I, a significant subset of patients with 
UCEC are identified at a high‑grade disease stage (4). The 
current therapeutic strategies for this condition do not effec-
tively control progression of UCEC (50). To improve disease 
outcomes, novel therapeutic strategies with higher specificity 
and efficacy are urgently needed, particularly for high‑grade 
UCEC. Previous studies have suggested that activated leuko-
cyte cell adhesion molecule and L1 cell adhesion molecule are 
key players in the oncogenesis of early stage and moderately 
to poorly differentiated UCEC, respectively (50,51). In the 
present study, WGCNA revealed five tumor grade‑related 
genes. The association of these genes with UCEC was vali-
dated by evaluating their mRNA and protein levels in UCEC 
samples. The current results demonstrate that this group of 
tumor grade‑related genes plays a critical role in the develop-
ment of UCEC. These genes can be used to predict prognosis 
and are ideal therapeutic targets in UCEC.

WGCNA has previously been employed to identify 
genes associated with clinical features from various publicly 

Table I. Top 25 Reactome pathways of tumor grade‑associated genes in uterine corpus endometrial carcinoma.

				    False discovery
Pathway	 Description	 Count	 P‑value	 rate

R‑HSA‑69278	 Cell Cycle, Mitotic	 65/570	 1.11x10‑16	 4.36x10‑14

R‑HSA‑1640170	 Cell Cycle	 74/682	 1.11x10‑16	 4.36x10‑14

R‑HSA‑69620	 Cell Cycle Checkpoint	 36/279	 2.12x10‑11	 5.57x10‑9

R‑HSA‑69618	 Mitotic Spindle Checkpoint	 21/110	 4.69x10‑10	 9.20x10‑8

R‑HSA‑141444	 Amplification of signal from unattached kinetochores	 19/94	 1.27x10‑9	 1.66x10‑7

	 via a MAD2 inhibitory signal
R‑HSA‑141424	 Amplification of signal from the kinetochores	 19/94	 1.27x10‑9	 1.66x10‑7

R‑HSA‑2500257	 Resolution of Sister Chromatid Cohesion	 22/134	 2.78x10‑9	 3.12x10‑7

R‑HSA‑68877	 Mitotic Prometaphase	 27/207	 5.77x10‑9	 5.65x10‑7

R‑HSA‑68886	 M Phase	 38/390	 1.28x10‑8	 1.12x10‑6

R‑HSA‑68882	 Mitotic Anaphase	 25/208	 9.87x10‑8	 7.54x10‑6

R‑HSA‑2467813	 Separation of Sister Chromatids	 24/194	 1.06x10‑7	 7.54x10‑6

R‑HSA‑2555396	 Mitotic Metaphase and Anaphase	 25/211	 1.29x10‑7	 8.36x10‑6

R‑HSA‑5663220	 RHO GTPases Activate Formins	 20/149	 3.54x10‑7	 2.12x10‑5

R‑HSA‑195258	 RHO GTPase Effectors	 28/316	 6.44x10‑6	 3.60x10‑4

R‑HSA‑1538133	 G0 and Early G1	 9/38	 8.45x10‑6	 4.39x10‑4

R‑HSA‑539107	 Activation of E2F1 target genes at G1/S	 9/43	 2.22x10‑5	 0.001
R‑HSA‑69205	 G1/S‑Specific Transcription	 9/43	 2.22x10‑5	 0.001
R‑HSA‑1362277	 Transcription of E2F targets under negative control by	 7/25	 3.00x10‑5	 0.001
	 DREAM complex
R‑HSA‑6791312	 TP53 Regulates Transcription of Cell Cycle Genes	 10/65	 1.01x10‑4	 0.004
R‑HSA‑453279	 Mitotic G1‑G1/S phases	 17/173	 1.28x10‑4	 0.005
R‑HSA‑983189	 Kinesins	 10/68	 1.46x10‑4	 0.005
R‑HSA‑156711	 Polo‑like kinase mediated events	 6/23	 1.62x10‑4	 0.006
R‑HSA‑2514853	 Condensation of Prometaphase Chromosomes	 5/15	 1.88x10‑4	 0.006
R‑HSA‑179409	 APC‑Cdc20 mediated degradation of Nek2A	 6/25	 2.53x10‑4	 0.008
R‑HSA‑69481	 G2/M Checkpoints	 15/154	 3.43x10‑4	 0.011
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available databases. A previous study used this method to 
identify 5 EC‑related modules and prioritize 11 aberrantly 
expressed genes, and it was determined that only 6 genes had 
mutations with relevance to EC  (25). The present study is 
more extensive than this previous study. First, the associations 
between DEGs and tumor clinical features were analyzed. This 
analysis uncovered the blue module, which was significantly 
associated with high tumor grades, and 60 hub genes were 
identified. Furthermore, MCC, MNC, degree, EPC and BN 
methods of Cytoscapes's CytoHubba plug‑in were employed to 
select high‑ranking genes in the blue module with the highest 
connectivity scores from a PPI network of the 428 DEGs. 
This analysis produced five overlapping hub genes in the 

co‑expression network and PPI network. These five candidates 
were found to be strongly associated with higher tumor grades. 
Survival analysis revealed that high expression of these genes 
predicted a poor OS rate in UCEC. Further analysis demon-
strated that mRNA expression levels of these genes were in line 
with the results obtained from the gene co‑expression analysis. 
Although the expression level of BUB1B protein was not avail-
able in The Human Protein Atlas database, the other four genes 
were found to be upregulated in UCEC tissues. However, the 
underlying mechanisms explaining how these genes impact the 
progression and prognosis of UCEC remain unknown.

 BUB1B has been reported to serve an important role in the 
mitotic checkpoint (52). However, it is currently unknown how 

Figure 5. Identification and validation of real hub genes associated with tumor grades. (A) The five common hub genes in both the co‑expression network 
and protein‑protein interaction network were regarded as real hub genes. (B) Expression levels of the five hub genes in 103 samples with different grades. 
(C) Expression levels of the five hub genes in the GSE56026 dataset with different grades. (D) Expression levels of the five hub genes in the GSE115810 dataset 
with different grades. (E) Five genes were expressed at a significantly higher in stage Ia, Ib and Ic compared with those in normal tissues; however, there was 
no significant difference in their expression among the stage Ia, Ib and Ic EC samples. (F) There was no significant difference in gene expression levels between 
endometrioid EC and papillary serous EC. (G) There was no correlation between gene expression levels and age of patients. *P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001. EC, endometrial carcinoma; MCC, maximal clique centrality; MNC, maximum neighborhood component; EPC, edge percolated component; BN, 
bottleneck; BUB1B, BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1, cyclin B1; CDC20, cell‑division cycle protein 20; DLGAP5, DLG‑associated 
protein 5; NCAPG, non‑SMC condensing I complex subunit; ns, not significant; WCGNA, weighted gene co‑expression network analysis.
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its aberrant expression impacts tumorigenesis. Overexpression 
of BUB1B has been demonstrated to be strongly associated 
with advanced tumor stage, poor OS rate and high tumor 
recurrence rate in various tumors, including pancreatic ductal 
adenocarcinoma, gastric cancer, bladder cancer and liver 
cancer (53‑56). An in vitro study on verteporfin‑treated type 
1 EC cell lines (HEC‑1‑B cells) demonstrated that BUB1B 
regulates the progression of the mitotic checkpoint (57). By 
contrast, lower levels of BUB1B have been associated with a 
poor OS rate in colon adenocarcinoma (52).

CDC20, in cooperation with other factors, has been 
reported to be an important modulator of the cell cycle and 
is associated with advanced tumor stages and higher grades 
in multiple cancer types, including pancreatic (58), breast (59) 
and colorectal cancer (60). A previous study suggested that low 
CDC20 expression is associated with an improved OS rate and 
that knockdown of CDC20 expression suppresses proliferation 
of EC cells (61). 

The present study identified several genes, including 
BUB1B and CDC20, that when upregulated, were associated 
with poor OS in UCEC. Functional enrichment analysis results 
demonstrated that these genes are mainly involved in the 
mitotic prometaphase pathway during the M phase of the cell 
cycle. Taken together, these observations point to a potential 
prognostic value for BUB1B and CDC20 in UCEC.

The current study also revealed that CCNB1 could be a 
potential prognostic biomarker for UCEC. The CCNB1 gene 
encodes an important regulator of the cell cycle and is asso-
ciated with cyclin‑dependent kinase 1, and it is also known to 
regulate the G2/M transition during mitosis (62). It has been 
previously reported that CCNB1 expression is associated 
with poorly differentiated EC (7). Integrated bioinformatics 
analysis methods were used to examine TCGA and GEO 
datasets (26). This led to the identification of 11 hub genes 
that are closely associated with EC tumorigenesis, including 
CCNB1 (26). Several reports have indicated that CCNB1 
serves as a tumor antigen in cancer immunotherapy (62,63). 
In hepatocellular carcinoma (HCC), CCNB1 regulates 
tumorigenesis and predicts the prognosis of the disease (63). 
However, the role of CCNB1 in UCEC has not been suffi-
ciently investigated.

NCAPG participates in the condensation and stabilization 
of chromosomes during cell division (64). To the best of our 
knowledge, this gene has also not previously been characterized 
in UCEC. Overexpression of NCAPG has been shown to be 
correlated with that of CCNB1 (65). NCAPG silencing induces 
HCC cell entry into mitosis leading to inhibition of cell growth 
and proliferation both in vitro and in vivo (65). In patients with 
HCC, high expression of NCAPG is associated with poor OS and 
high recurrence rates (65). The present functional enrichment 
analyses revealed that CCNB1 and NCAPG are upregulated in 
UCEC and are involved in cell cycle‑related pathways. Taken 
together, these data suggest that CCNB1 and NCAPG are prom-
ising prognostic and therapeutic targets in UCEC.

In the current analysis, DLGAP5 was identified as a hub 
gene associated with higher tumor grade in UCEC. This 
gene has previously been shown to play a crucial role in the 
G2/M transition in the cell cycle (66). The role of DLGAP5 in 
UCEC has previously been investigated. Using bioinformatics, 
DLGAP5 was reported to be among the 11 EC tumorigenic and 
prognostic genes (25). In this previous study, it was reported 
that DLGAP5 expression in EC tissues predicts a poor OS 
rate, which agrees with the present findings. In addition, aber-
rant expression of DLGAP5 was found to be correlated with 
higher tumor grades in UCEC as revealed by co‑expression 
network and PPI network analysis  (25). The present study 
also identified that DLGAP5 is associated with the NOTCH3 
intracellular domain, which regulates gene transcription (49). 
While, to the best of our knowledge, only a few studies have 
investigated the molecular mechanisms of DLGAP5 in EC, 
DLGAP5 has been studied extensively in other cancer types. 
It has been reported that, as a NOTCH3 target gene, DLGAP5 
silencing inhibits tumorigenicity and proliferation of cancer 
cells by arresting the cell cycle in the G2/M phase in ovarian 
cancer (49). Another study suggested that DLGAP5 is associ-
ated with aggressive colorectal cancer, and its overexpression 
predicted a poor OS rate in the lower crypt‑like subtype of 
colorectal cancer (66). In summary, the present findings and 
previous studies suggest that DLGAP5 may be a potential 
prognostic biomarker of UCEC.

The present study has several innovative aspects. To 
the best of our knowledge, this is the first report that has 

Table II. Reactome pathways of 5 hub genes in uterine corpus endometrial carcinoma.

Pathway	 Description	 Enriched genes	 P‑value	 FDR

R‑HSA‑68877	 Mitotic Prometaphase	 BUB1B, CCNB1, 	 1.62x10‑6	 6.94x10‑5

		  CDC20, NCAPG
R‑HSA‑69278	 Cell Cycle, Mitotic	 BUB1B, CCNB1,	 2.21x10‑6	 6.94x10‑5

		  CDC20, NCAPG
R‑HSA‑1640170	 Cell Cycle	 BUB1B, CCNB1, 	 5.33x10‑6	 6.94x10‑5

		  CDC20, NCAPG
R‑HSA‑9013508	 NOTCH3 Intracellular Domain	 DLGAP5	 1.38x10‑4	 4.14x10‑4

	 Regulates Transcription
R‑HSA‑9012852	 Signaling by NOTCH3	 DLGPA5	 4.20x10‑4	 0.001

FDR, false discovery rate; BUB1B, BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1, cyclin B1; CDC20, cell‑division cycle 
protein 20; DLGAP5, DLG‑associated protein 5; NCAPG, non‑SMC condensing I complex subunit.
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investigated the associations between DEGs and clinical 
features of UCEC cases. Furthermore, three gene expres-
sion microarray datasets from the GEO database and one 
RNA‑seq dataset from TCGA database were combined to 
comprehensively identify DEGs that are relevant to the 
progression and prognosis of UCEC. Indeed, the selection 

of samples was crucial to the present analysis. A small 
sample size and the absence of the normal group could 
have an effect on obtaining reliable DEGs. The GSE17025 
dataset consisted of 91 EC samples and 12 normal endo-
metrium samples. However, the GSE56026 dataset did not 
contain normal endometrium samples, and the GSE115810 

Figure 6. Validation and survival analysis of real hub genes in UCEC based on TCGA database. The mRNA expression levels of (A) BUB1B, (B) CCNB1, 
(C) CDC20, (D) DLGAP5 and (E) NCAPG were significantly higher in UCEC tissues compared with those in normal tissues. Kaplan‑Meier plots showing 
the association of (F) BUB1B, (G) CCNB1, (H) CDC20, (I) DLGAP5 and (J) NCAPG expression levels with the survival of 541 patients with UCEC, with 
the best expression cut‑off point according to the clinical data on TCGA. BUB1B, BUB1 mitotic checkpoint serine/threonine kinase B; CCNB1, cyclin B1; 
CDC20, cell‑division cycle protein 20; DLGAP5, DLG‑associated protein 5; NCAPG, non‑SMC condensing I complex subunit; UCEC, uterine corpus endo-
metrial carcinoma; TCGA, The Cancer Genome Atlas.



BIAN et al:  FIVE DIFFERENTIALLY EXPRESSED GENES IN UCEC 2407

Figure 7. Validation of protein expression levels of CCNB1, CDC20, DLGAP5 and NCAPG. The (A) CCNB1, (B) CDC20, (C) DLGAP5 and (D) NCAPG 
proteins were expressed at higher levels in EC tissues compared with those in normal tissues, as revealed by The Human Protein Atlas database (http://www.
proteinatlas.org). CCNB1, cyclin B1; CDC20, cell‑division cycle protein 20; DLGAP5, DLG‑associated protein 5; NCAPG, non‑SMC condensing I complex 
subunit; EC, endometrial carcinoma.

Table III. Immunohistochemistry staining characteristics of the hub genes from The Human Protein Atlas database.

A, Normal tissue

Gene	 Patient ID	 Sex	 Age, years	 Staining	 Intensity	 Quantity	 Location

CCNB1	 2361	 Female	 33	 Medium	 Strong	 Rare	 Cytoplasmic membranous
CDC20	 2941	 Female	 33	 Medium	 Strong	 <25%	 Nuclear
DLGAP5	 1978	 Female	 72	 Low	 Moderate	 <25%	 Cytoplasmic membranous
NCAPG	 3313	 Female	 39	 Medium	 Moderate	 >75%	 Cytoplasmic membranous

B, Uterine corpus endometrial carcinoma tissue

Gene	 Patient ID	 Sex	 Age, years	 Staining	 Intensity	 Quantity	 Location

CCNB1	 167	 Female	 75	 Medium	 Moderate	 >75%	 Cytoplasmic membranous
CDC20	 1165	 Female	 75	 High	 Strong	 75‑25%	 Cytoplasmic membranous 
nuclear
DLGAP5	 1750	 Female	 83	 Medium	 Strong	 <25%	 Cytoplasmic membranous
NCAPG	 3036	 Female	 32	 High	 Strong	 >75%	 Cytoplasmic membranous

CCNB1, cyclin B1; CDC20, cell‑division cycle protein 20; DLGAP5, DLG‑associated protein 5; NCAPG, non‑SMC condensing I complex 
subunit.
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dataset contained only three normal samples. WGCNA 
requires a sample size of at least 15 for each group. Among 
the 91 EC samples in the GSE17025 dataset, there were 
30 grade I samples, 36 grade II samples and 25 grade III 
samples. In addition, TCGA UCEC data contained more 
complete clinical information on the patients with UCEC, 
such as survival time and survival status, which were of 
great importance for the OS analysis in the study. In addi-
tion, survival data of patients with UCEC were missing 
from the GSE17025 dataset. Therefore, after comprehensive 
consideration, it was considered that the GSE17025 dataset 
was more suitable to be analyzed as a training dataset, 
whereas the other two gene expression microarray datasets 
were more suitable as testing datasets, and TCGA data 
was used for the OS analysis to evaluate the hub genes. 
Furthermore, two functional enrichment analysis databases 
and five methods in Cytoscape's CytoHubba plug‑in were 
co‑utilized to rigorously screen for tumor grade‑related 
hub genes. A limitation of the present approach is that 
the precise molecular mechanism by which these tumor 
grade‑related genes impact the progression and prognosis 
of UCEC could not be determined.

In conclusion, WGCNA revealed five tumor grade‑related 
genes from 1,447 DEGs between UCEC tissues and normal 
endometrial tissues. The tumorigenic role of these hub genes 
was validated at the RNA and protein levels. High expres-
sion of the five hub genes was associated with poor OS rate. 
Furthermore, these genes demonstrated potential to predict 
the prognosis of UCEC and may be therapeutic targets in this 
type of cancer. Further experimental studies are required to 
experimentally validate these findings.
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