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Abstract. Shank-associated RH domain interactor (SHARPIN) 
is a component of the linear ubiquitin chain activation complex, 
which is essential for p53 signaling and inflammation. 
Previous studies have demonstrated that SHARPIN functions 
in tumor cell survival, growth, invasion and tumorigenesis. 
These functions include the regulation of p53 proteins via 
poly-ubiquitination, interaction with a type II protein arginine 
methyltransferase 5 in melanoma cells, modulating ras-associ-
ated protein-1 through p38 and c-Jun N-terminal kinases/c-Jun 
signaling, and mediating phosphoinositide 3-kinase/AKT 
signaling via phosphatase and tensin homologue deleted on 
chromosome 10. Hence, SHARPIN not only participates in 
the inflammatory response but also serves a critical role in 
tumor cells. The present review summarizes the biological 
functions of the absence or presence of SHARPIN with regard 
to activating the canonical NF-κB signaling pathway and the 
effects on p53 and other signaling pathways for the modulation 
of tumorigenesis. Therefore, this review provides insight into 
the underlying role and mechanisms of SHARPIN in tumori-
genesis, as well as its potential application in cancer therapy.
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1. Introduction

Cancer is a major global public health burden, with 
~21.6 million new cancer cases predicted for 2030 (1). In 
general, tumorigenesis is the process that promotes the trans-
formation of normal cells into invasive cells, overcoming the 
constraints that usually limit proliferation and survival. These 
alterations can give rise to a number of potentially deleterious 
circumstances or vulnerabilities that can be lethal to patients 
if left unchecked (2). Despite extensive research investigating 
tumorigenesis, the precise underlying molecular mechanisms 
remain unclear. 

Shank-associated RH domain interactor (SHARPIN) is 
an ~40‑kDa multifunctional adaptor protein that is amplified 
and overexpressed in a number of human cancer types. Studies 
have shown that the SHARPIN promotes cancer cell prolif-
eration, tumor formation and metastasis (3-6). SHARPIN 
was first identified in C57BL/KaLawRij mice, functioning as 
a shank binding protein at the postsynaptic density of excit-
atory synapses in the central nervous system (7). In addition, 
SHARPIN has important physiological functions in several 
organisms (7) and is ubiquitously expressed in various types 
of cells and tissues (8). SHARPIN is an autosomal gene that is 
conserved among a number of mammalian species, including 
humans, chimpanzees, dogs, rats and mice (8). SHARPIN is 
located on cell membranes and in the nuclei, and primarily 
functions in immune and inflammatory responses (8). A 
previous study has reported that mutations in this gene 
contribute to chronic proliferative dermatitis, which is 
accompanied by immune system malfunction and multi-organ 
inflammation (7). Moreover, SHARPIN deficiency results in 
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an autoinflammatory phenotype in an inflammatory mouse 
model (7). There is evidence demonstrating that SHARPIN is 
a component of the linear ubiquitin chain assembly complex 
(LUBAC), which participants in a range of complex biological 
functions (9,10) (Fig. 1). Moreover, the LUBAC is also 
involved in various molecular and cellular processes, such as 
embryogenesis (11) and apoptosis (12). SHARPIN has been 
well characterized as a crucial regulator of canonical NF-κB 
signaling during the inflammatory response (10,13) and T‑cell 
differentiation (14,15). A recent study reported that SHARPIN 
serves an important role in promoting breast cancer progres-
sion (16). A previous study also showed that SHARPIN regulates 
p53 protein levels in tumor cell lines through the mouse 
double minute 2 homolog (MDM2)‑dependent pathway (17). 
Additionally, it has been reported that SHARPIN interaction 
with protein arginine methyltransferase 5 (PRMT5) mediates 
tumor cell growth (3). Notably, Zhou et al (18) demonstrated 
that SHARPIN upregulates ras-associated protein-1 (Rap1), 
which promotes melanoma development through p38 and 
c-Jun N-terminal kinases (JNK)/c-Jun signaling pathways. 
A previous study also revealed that SHARPIN mediates the 
phosphatase and tensin homologue deleted on chromosome 
10 (PTEN) signaling pathway, which promotes tumorigenesis 
by phosphoinositide 3-kinase (PI3K)/AKT signaling (19). 
Therefore, research investigating SHARPIN has improved 
our understanding of its functions in humans; however, a 
comprehensive summary of mechanisms by which SHARPIN 
regulates tumorigenesis has not been available until now. 
Hence, the following sections summarize the current data 
on the possible functions of the aforementioned proteins and 
SHARPIN in tumorigenesis.

2. SHARPIN is a key member of the LUBAC family 
of proteins

Numerous studies have demonstrated that LUBAC consists 
of three structurally related proteins: Heme-oxidized IRP2 
ligase 1L (HOIL-1L), HOIL-1 interacting protein (HOIP) and 
SHARPIN, with molecular weights of 120, 58 and 40 kD, 
respectively (20). LUBAC is involved in post-translational 
modifications that regulate a multitude of cellular processes, 
including cell death, development, carcinogenesis and autoim-
mune diseases (21,22). The HOIL-1L subunit is an accessory 
molecule that is involved in the stabilization of LUBAC. For 
example, cells lacking HOIL‑1L have significantly decreased 
linear ubiquitylation (23), and the primary function of 
SHARPIN is to maintain the linear ubiquitylation activity in 
LUBAC. HOIP is a catalytic subunit that is associated with 
regulatory proteins, such as HOIL-1L and SHARPIN (24). A 
recent study demonstrated that the aforementioned subunits 
interact with each other in the trimeric core of LUBAC, 
contributing to the overall stabilization of the complex (25).

A recent study demonstrated that deficiency in SHARPIN 
or HOIP in mice causes severe inflammation in adulthood 
or embryonic lethality, respectively. By contrast, HOIL-1 
deficiency contributes no overt phenotype (11). Previously, 
the LUBAC was shown to serve a pivotal role in complete 
activation of the canonical NF-κB signaling pathway, whereas 
the absence of one subunit resulted in attenuated activation of 
this pathway, particularly when SHARPIN was absent (26). 

These data suggest that HOIP, HOIL-1L and SHARPIN are 
all necessary for efficient activation of the NF‑κB signaling 
pathway. Notably, Rodgers et al (27) suggested that linear 
ubiquitination is required for activation of the NACHT, LRR 
and PYD domains‑containing protein 3 inflammasome, and 
this finding further expands the role of LUBAC as an innate 
immune regulator.

3. SHARPIN regulates the canonical NF‑κB signaling 
pathway

In brief, the canonical NF-κB signaling pathway can be 
triggered by different stimulators, such as tumor necrosis 
factor (TNF)-α, interleukin (IL)-1 and pathogen-associated 
molecular patterns (28,29). When stimulators combine with 
the TNF receptor (TNFR), TNFR type 1-associated death 
domain protein, FAS-associated death domain protein and 
TNFR-associated factor 2 proteins and protein kinases are 
recruited in the cytoplasm as a result of phosphorylation and 
activation of the inhibition of the κB kinase (IKK) complex (30). 
The classical IKK complex consists of two catalytic subunits 
and a regulatory subunit, IKKα, IKKβ and the NF-κB essential 
modulator (NEMO), respectively. Furthermore, the activated 
IKK complex facilitates the phosphorylation of IκB, which 
releases NF-κB dimers that freely translocate into the nucleus 
and bind with DNA, promoting the transcription of relevant 
target genes (30,31). Recent studies have demonstrated that the 
LUBAC mediates linear ubiquitylation, which is involved in 
the canonical NF-κB signaling pathway (Fig. 2A).

Numerous studies have suggested that NEMO possesses 
a specific ubiquitin‑binding region that interacts with the 
LUBAC (23,32-34). The NF-κB activated state is influ-
enced by the process of NEMO conjugating with a linear 
poly‑ubiquitin chain (35). Furthermore, NEMO deficiency 
leads to decreased interaction with LUBAC, preventing 
SHARPIN-mediated linear ubiquitination and NF-κB activa-
tion (14,36). Consistent with this, SHAPRIN deficiency leads 
to inhibition of LUBAC-mediated linear poly-ubiquitination 
of endogenous NEMO and attenuates the activation of the 
NF-κB signaling pathway (37). Therefore, p65/p50 cannot 
translocate into the nucleus to induce target gene expression 
due to decreased phosphorylation and degradation of NF-κB 
inhibitor α (IKBα) (28) (Fig. 2B). These findings suggest that 
the NEMO‑SHARPIN interaction is essential to mediate 
canonical NF-κB signaling. Hence, these results suggest 
that SHARPIN is important in regulating canonical NF-κB 
signaling and that this disruption may impact downstream 
physiological functions.

4. SHARPIN is a mediator of p53

It is well known that p53 is a vital tumor suppressor and its 
presence was initially reported in response to various types of 
stress >40 years ago (38). The p53 protein acts as a transcription 
factor in cells and is functionally inactivated in the majority of 
cancer types (39). Several studies have demonstrated that acti-
vated p53 is associated with numerous downstream responses 
and is involved in important physiological and pathological 
processes, including cell cycle arrest, DNA repair, apoptosis, 
metabolism, invasion, metastasis and tumorigenesis (40-42). 
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p53 is maintained at very low cellular levels in normal cells 
due to binding with E3 ubiquitin ligase mouse double minute 

2 homolog (MDM2), which contributes to p53 ubiquitination 
and rapid degradation by the proteasome (43). SHARPIN may 

Figure 2. Difference between SHARPIN presence and absence in regulating the NF-κB signaling pathway. (A) Presence of SHARPIN promotes canonical 
NF-κB signaling activation. Once stimulators bind with the receptors, associated molecules are recruited to activate the IKK complex. The complete LUBAC is 
involved in this process that serves a role in ubiquitination and fully activates the IKK complex. Subsequently, the phosphorylation and ubiquitination of IKBα 
contributes to the degradation of IKBα, which generates dimers. The dimers translocate into the nucleus and mediate target gene transcription. (B) Absence 
of SHARPIN attenuates canonical NF-κB signaling activation. When SHARPIN is absent, the LUBAC attenuates the phosphorylation and ubiquitination of 
IKBα, resulting in reduced IKBα degradation and inhibiting dimer translocation into the nucleus. Therefore, transcription of the target genes is inhibited. 
SHARPIN, shank‑associated RH domain interactor; IKK, inhibition of κB kinase; LUBAC, linear ubiquitin chain assembly complex; TNF, tumor necrosis 
factor; TNFR1, TNF receptor 1; TRADD, TNFR type 1‑associated DEATH domain protein; TRAF2, TNFR‑associated factor 2; RIP1, receptor‑interacting 
serine/threonine protein kinase 1; cIAP1/2, cellular inhibitor of apoptosis protein‑1/2; FADD, FAS‑associated death domain protein; HOIL‑1L, heme‑oxidized 
IRP2 ligase 1L; HOIP, HOIL‑1 interacting protein; NEMO, NF‑κB essential modulator; p, phosphorylated; Ub, ubiquitinated. 

Figure 1. Historical process of resolving SHARPIN function. SHARPIN was originally identified in the PSD of mice, functioning in the nervous system. 
SHARPIN is reported to participate in inflammatory‑associated diseases and tumors. Researchers gradually realized that SHARPIN is a novel component of 
the LUBAC and mediates the NF-κB signaling pathway. Subsequently, SHARPIN‑mediated regulation of p53, PRMT5, Rap1 and PTEN signaling in tumors 
has been reported. SHARPIN, shank‑associated RH domain interactor; PSD, postsynaptic density; LUBAC, linear ubiquitin chain assembly complex; PRMT5, 
protein arginine methyltransferase 5; PTEN, phosphatase and tensin homolog, Rap1, ras‑associated protein‑1.
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be involved in promoting p53 ubiquitination and maintaining 
cellular levels of p53 (44). Mechanistically, MDM2 recognizes 
the N-terminal trans-activation domain of p53 and mediates 
p53 transcription as an inhibitor of p53 transcriptional activa-
tion (45). Nevertheless, in response to cellular stress signals, 
p53 is rapidly activated by phosphorylation, which releases 
MDM2 and promotes p53 stabilization (46). MDM2 regulates 
p53 through direct binding, mono-ubiquitylation, polyubiq-
uitylation (44) or negative feedback regulation (47), which 
maintains appropriate cellular levels of p53.

 A recent study demonstrated that SHARPIN may be 
upstream of p53 signaling in breast cancer cells, as depleted 
SHARPIN resulted in decreased cell proliferation and 
increased expression of p53 (17). Furthermore, the study 
reported that SHARPIN modulates p53 protein levels through 
poly‑ubiquitination and degradation in a MDM2‑dependent 
manner, which determines the fate of p53 in tumor cells 
(Fig. 3). Therefore, p53 protein levels in cells are indirectly 
regulated by SHARPIN. Nevertheless, whether other 
accessory molecules or signaling pathways are involved in 

SHARPIN‑mediated regulation of the p53/MDM2 complex 
needs further clarification.

SHARPIN interacts with PRMT5. PRMT5 is a member of the 
PRMT family of proteins and can catalyze symmetric meth-
ylation of histone and non‑histone proteins. PRMT5 catalyzes 
the transfer of a methyl group from S-adenosylmethionine 
to the guanidino nitrogen atoms of arginine (48). PRMT5 is 
commonly activated in cancer, which is mediated in part by 
the PRMT5 co‑factor methylosome protein 50 (also known 
as p44) (49). Researchers have demonstrated that PRMT5 
serves an essential role in lung cancer, leukemia (49), tumori-
genesis (50), cell survival and human embryonic stem cell 
proliferation (51). Stopa et al (52) provides an overall litera-
ture review of PRMT5 overexpression, which appears to be 
an important factor in the tumorigenicity of a large number 
of cancer types, such as gastric (53) and breast cancer (54). 
In addition, PRMT5 mediates the methylation of Arg1175 of 
epidermal growth factor receptor, which controls extracel-
lular signal-regulated kinase activation (55). Similarly, E2F-1 

Figure 3. SHARPIN regulates multiple signaling pathways in tumorigenesis. A: SHARPIN mediates p53 ubiquitination and rapid degradation by the protea-
some, which promotes tumorigenesis. B: SHARPIN interacts with PRMT5 and activates SOX10, PAX3 and MITF, which promotes tumorigenesis. PRMT5 
also regulates PAX3 and MITF and inhibits p53 in tumorigenesis. C: SHARPIN upregulates Rap, which promotes melanoma development through p38 
and JNK/c-Jun signaling. D: SHARPIN can bind with PTEN, which mediates tumorigenesis through the PI3K/AKT signaling pathway. SOX10, SRY-box 
transcription factor 10; MITF, melanocyte inducing transcription factor; PAX3, paired box 3; PRMT5, protein arginine methyltransferase 5; SHARPIN, 
shank‑associated RH domain interactor; Rap1, ras‑associated protein 1; JNK, c‑Jun N‑terminal kinases; MDM2, mouse double minute 2 homolog; PTEN, 
phosphatase and tensin homologue deleted on chromosome 10; PIP3, phosphatidylinositol (3,4,5)‑trisphosphate; PIP2, phosphatidylinositol (4,5)‑bisphosphate; 
PI3K, phosphoinositide 3‑kinases; p, phosphorylated; Ub, ubiquitinated.
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may be directly methylated by PRMT5, which influences the 
stability of E2F‑1. Depleting PRMT5 using small interfering 
RNA resulted in decreased arginine methylation of E2F-1 but 
increased E2F-1 levels in one study (56). 

Recent reports have shown that the interaction of SHARPIN 
with PRMT5 contributes to regulating the transcription of 
cancer-associated genes (3,56). For example, Fu et al (57) 
reported that SHARPIN activates PRMT5 to specifically target 
histone H3R2 for mono-methylation, which is responsible for 
the subsequent activation of cancer-associated genes and medi-
ates metastasis in invasive lung cancer cells. Tamiya et al (3) 
also demonstrated that PRMT5 activity is increased after 
SHARPIN binding. This study observed that SHARPIN 
activates PRMT5 by regulating SRY‑box transcription factor 
10, paired box gene 3 (PAX3) and microphthalmia-associated 
(MITF) transcription factors in melanoma development 
(Fig. 3). These results demonstrate that both SHARPIN and 
PRMT5 are involved in tumorigenesis.

PRMT5 regulates p53 signaling. Scoumanne et al (42) 
reported that PRMT5‑knockdown prevented p53 stabilization 
and reduced p53 expression in response to DNA damage and 
cell cycle arrest. Subsequently, expression of both the MDM2 
and p21 target genes was inhibited. The study also demon-
strated that PRMT5 is required for p53 protein synthesis and 
suggested that PRMT5‑mediated regulation of p53 serves a 
critical role in colon carcinoma cell survival. Furthermore, 
another study revealed that PRMT5 influences the methylation 
of p53 in response to DNA damage (58). Similarly, PRMT5 
functions in a negative regulatory mechanism that underlies 
p53-dependent apoptosis in Caenorhabditis elegans (59). 
PRMT5 regulates Mdm4 (p53 regulator) expression, which 
influences p53‑induced cell cycle arrest (60,61). PRMT5 is 
also important for regulating the p53-dependent mechanism 
of apoptosis (13). Furthermore, PRMT5 modulates p53 func-
tion in cell proliferation (42) and tumorigenesis (62), and p53 
signaling has important functions in tumorigenesis (63,64). 
Overall, these results demonstrate that PRMT5 is directly 
involved in regulating p53 function in cell apoptosis, the cell 
cycle, survival and proliferation. 

SHARPIN regulates PRMT5 activity, which induces the 
transcriptional activity of PAX3 and MITF in melanoma 
growth; in turn, PAX3 and MITF can inhibit p53 activation (3). 
Consistent with these findings, a recent study demonstrated 
that PAX3 specifically binds to the promoter of p53 leading 
to repressed p53 expression in glioblastoma (65). In addition, 
MITF binds p53 to regulate cyclin‑dependent kinase inhibitor 
1A in melanoma cells (66). Overall, these data suggest that 
PRMT5 is capable of regulating p53 indirectly, and SHARPIN 
mediates p53 through PRMT5‑dependent signaling with 
PAX3 and MITF. 

5. SHARPIN interacts with Rap1 in tumorigenesis

A study by Lilja et al (67) demonstrated that SHARPIN is 
indispensable for regulating integrin inactivation by Shanks 
interaction with Rap1 in cells. This finding suggests that 
SHARPIN and Rap1 functions may be closely associated. 
Furthermore, a recent study also supported this viewpoint, 
demonstrating that SHARPIN promotes melanoma progression 

through Rap1 via the p38 and JNK/Jun signaling pathways (18) 
(Fig. 3). However, the specific mechanism by which SHARPIN 
mediates Rap1 remains unclear, and whether this interaction is 
direct or indirect needs to be further explored.

6. SHARPIN functions in the PTEN signaling pathway 

Studies have shown that PTEN is a pivotal tumor suppressor 
gene, and that it is frequently deleted in late-stage human 
cancer types and has important functions in crosstalk with the 
PI3K/ATK signaling pathway, mediating several fundamental 
cellular processes under different circumstances via multiple 
downstream targets (68-70). For example, a study has suggested 
that PI3K/AKT signaling is attenuated in the brains of patients 
with Alzheimer's disease (71). Moreover, PI3K/AKT/PTEN 
is mediated by intracellular ROS production (72). The main 
function of PTEN is to catalyze the conversion of phosphati-
dylinositol (3,4,5)-trisphosphate (PIP3) to phosphatidylinositol 
(4,5)-bisphosphate (73). PTEN is an antagonist of PI3K and, when 
dephosphorylated, serves as a negative regulator of PI3K/AKT 
signaling in normal cells, while loss or inactivation of PTEN 
contributes to hyperactivation of PI3K/AKT in primary 
T-cell leukemia (74) and adult B-cell acute lymphoblastic 
leukemia (75). Once activated, the PI3K/AKT pathway 
promotes cell survival by blocking the function of pro-apoptotic 
proteins and promoting protein synthesis and cell proliferation. 
Consequently, these results indicate that inactivation of PTEN is 
a critical step during tumorigenesis. 

There has been much interest in the transcriptional and 
post-translational modulation of PTEN expression, protein 
stability and activity mediated by miRNA (76), phosphoryla-
tion (77), acetylation (78) and ubiquitination (79). A recent 
study reports that PTEN knockdown could significantly 
promote mouse neuronal cell proliferation and differentiation 
in vitro (80). Moreover, a previous study demonstrated that 
SHARPIN is a negative regulator of PTEN in human tumor 
cell lines and human primary cervical cancer cells both 
in vitro and in vivo (81). Furthermore, it has been reported 
that SHARPIN interacts with PTEN through its ubiquitin-like 
domain (81). It is well known that the major function of PTEN 
is inhibition of the PI3K signaling pathway, while loss of 
PTEN activates the PI3K/AKT pathway (82). Additionally, 
attenuation of PTEN function activates PI3K/AKT signaling 
and elicits tumorigenesis (82). Hence, reducing PTEN-induced 
PIP3 phosphatase activity and enhancing the activity of the 
PI3K/AKT signaling pathway promotes tumorigenesis (83). 
In accordance with this, De Melo et al (84) suggested that 
SHARPIN facilitated PTEN poly-ubiquitination via lysine63 
and formation of the SHARPIN/PTEN complex, which did not 
lead to PTEN degradation. These biochemical processes alter 
the affinity of the SHARPIN/PTEN complex and reduce the 
phosphatase activity of PTEN (Fig. 3). The study proposed that 
SHARPIN promotes poly-ubiquitination of PTEN in a manner 
that does not alter PTEN stability, and that SHARPIN/PTEN 
binding is enhanced by poly-ubiquitination of PTEN.

7. Conclusion

Overall, there has been a marked increase in the understanding 
of the function of SHARPIN in recent years. The present review 
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summarizes our understanding of how SHARPIN mediates 
canonical NF-κB signaling and crosstalk with various mecha-
nisms, regulating tumorigenesis. Furthermore, the function 
of SHARPIN in the NF-κB, p53, PRMT5, Rap1 and PTEN 
signaling pathways was explored. The aforementioned results 
shed light on possible functions of these proteins in tumor 
cells, and may provide novel targets for cancer treatment in the 
future. However, the detailed molecular function of associated 
co-activators or co-repressors contributing to these pathways 
needs further investigation. 
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