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Abstract. The diagnosis of squamous cell carcinoma requires 
the accurate classification of cervical squamous lesions in the 
ThinPrep cytologic test (TCT). It primarily relies on a patholo‑
gist's interpretation under a microscope. Deep convolutional 
neural networks (DCNN) have played an increasingly impor‑
tant role in digital pathology. However, they have not been 
applied to diverse datasets and externally validated. In the 
present study, a DCNN model based on VGG16 and an ensemble 
training strategy (ETS) based on 5‑fold cross‑validation was 
employed to automatically classify normal and abnormal 
cervical squamous cells from a multi‑center dataset. First, 
we collected a dataset comprising 82 TCT samples from four 
hospitals and fine‑tuned our model twice on the dataset with 
and without the ETS. Then, we compared the classifications 
obtained from the models with those provided by two skilled 
pathologists to discriminate the performance of the models in 
terms of classification accuracy and efficiency. Finally, paired 
sample t‑tests were used to validate the consistency between 
the classification provided by the proposed methods and that 
of the pathologists. The results showed that ETS slightly, 
though not significantly, improved the classification accu‑
racy compared with that of the pathologists: P0=0.387>0.05 
(DCNN without ETS vs. DCNN with ETS), P1=0.771>0.05 
(DCNN with ETS vs. pathologist 1), P2=0.489>0.05 (DCNN 
with ETS vs. pathologist 2). The DCNN model was almost 
6‑fold faster than that of the pathologists. The accuracy of our 
automated scheme was similar to that of the pathologists, but 

a higher efficiency in the accurate identification of cervical 
squamous lesions was provided by the scheme. This result 
allows for wider and more efficient screening and may provide 
a replacement for pathologists in the future. Future research 
should address the viability of the practical implementation of 
such DCNN models in the laboratory setting.

Introduction

Cervical cancer is one of the most common malignant tumors 
in women worldwide and in China (1), 80% of which is made 
up of the cervical squamous cell carcinoma (2). In 2018, there 
were 106,430 new cases and 47,739 deaths due to cervical 
cancer in China (3). The average morbidity and mortality are 
on the increase with annual rates of 8.7% and 8.1%, respec‑
tively  (4). However, precursor lesions with regards to the 
diagnosis of cervical cancer could reduce its incidence and 
improve the patient's quality of life.

Effective early screening technology that detects precursor 
lesions includes the Pap smear and the ThinPrep Cytologic 
Test (TCT). Previous reports showed that the TCT has higher 
sensitivity (5), and is one of the most common cervical cancer 
screening methods (6). The diagnosis from TCT samples is 
mainly dependent on a pathologist's interpretation under a 
microscope, according to the Bethesda report system (7). This 
system defines six categories of cervical squamous cells: Nega‑
tive for intraepithelial lesion or malignancy (NILM), atypical 
squamous cells‑unclear meaning (ASC‑US), atypical squamous 
cells‑do not rule out high‑grade squamous intraepithelial lesions 
(ASC‑H), low‑grade squamous intraepithelial lesions (LSIL), 
high‑grade squamous intraepithelial lesions (HSIL), and squa‑
mous cell carcinoma (SCC). The first category, NILM, indicates 
the presence of normal cells, while the remaining five categories 
indicate the presence of abnormal cells. The degree of morpho‑
logical abnormality is the key to defining the lesion grade, 
including the shape, size, and boundary of the nucleus and the 
characteristics of the chromatin. However, accurate diagnosis 
of cervical squamous cells by pathologists is time‑consuming 
and subjective, with the classification of samples influenced by 
cellular complexity and the pathologist's previous experience 
interpreting TCT samples. 
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Advances in artificial intelligence (AI) technology, espe‑
cially the deep convolution neural networks (DCNN), has 
obtained great success in medical research, including skin 
lesion classification  (8) and acute lymphoblastic leukemia 
diagnosis (9). The DCNN often contains several layers with 
convolutional kernels, similar to a mathematical model that 
contains numerous parameters; thus, a large amount of data 
is needed to train kernels. Unlike traditional algorithms (10), 
DCNN is not limited to features that are extracted based on 
the experience of expertise. Instead, it uses the original images 
as input, automatically extracts a large number of hierarchical 
features, and finally generates a diagnosis as an output. Many 
researchers have focused on digital cervical pathology, where 
DCNN is used to provide a diagnosis of cervical cancer (11‑16). 
Abdulkerim et al (11) and Chankong et al (12) segmented the 
cervical cells for diagnosis. Zhang et al  (13) and Wu et al 
(14) classified the cervical lesion grades in single cell images. 
Tian et al (15) and Liu et al (16) simultaneously detected a 
lesion location and classified the lesion degree in whole patho‑
logical images without prior cell segmentation or cropping.

Although previous studies have advanced the use of 
DCNN in cervical cancer screening, the studies face three 
major limitations. First, those studies usually focused on 
PAP‑smear images (11‑14). This early‑screening method has 
been largely replaced by TCT‑staining, but researchers have 
not yet examined the use of DCNN to diagnose cervical 
cancer from TCT images. Second, to improve and evaluate 
the comprehensiveness and robustness of DCNN models, 
multi‑center datasets, which includes data from different 
levels of hospitals, are needed. However, previous studies have 
only included data from one center (14‑15). Third, in order to 
analyze the results of the AI diagnoses, researchers should 
compare the results with those from the manual interpretation 
completed by pathologists. However, few studies have gener‑
ated such comparisons (17).

The aim of the present study was to address the limita‑
tions of previous studies that have examined the utility of 
AI in cervical cancer detection by building a TCT dataset 
from samples collected from different hospitals and creating 
an automated pipeline for the normal and abnormal cervical 
squamous cell classification using VGG16, which is a popular 
DCNN model. The results were compared with the classifica‑
tions provided by two different pathologists.

Materials and methods

TCT image collection. TCT specimens were obtained from 
a total of 82 patients in four hospitals located in the city of 
Chongqing, China (Table I).

The inclusion criteria in this study were: i) Patients aged 
≥18  years, ii)  satisfactory TCT specimens that contained 
≥2,000 squamous epithelial cells with clear morphologies, 
and iii)  the diagnostic results of the TCT had to be one 
of the precursor lesions subtypes or cervical cancer. This 
study was approved by the Ethics Committee of the Army 
Military Medical University (approval no. KY201774) and 
was conducted in accordance with the Helsinki Declaration. 
The study was explained to all the patients, and oral informed 
consent was obtained from them for their sample to be used 
for scientific research by phone when images were collected. 

Written patient consent was not required, according to the 
guidance of the ethics committee.

A total of 1736 abnormal cells and 1554 normal cell 
samples were obtained, which were randomly divided into 
training (n=2669) and test (n=621) datasets at a ratio of 4:1. All 
images were in the BMP file format.

Data preprocessing. TCT specimens were digitized to images 
using a microscope with a 40x objective lens (model: VS120, 
Brand: Olympus) and cut into 2048x2048 pixels for labeling 
(Fig. 1). Two clinical pathologists independently labelled the 
squamous epithelial cells with bounding boxes as NILM, 
ASC‑US, LSIL, ASC‑H, HSIL, and SCC using LabelImg soft‑
ware, which is a graphical image annotation tool (https://github.
com/tzutalin/labelImg), according to the Bethesda reporting 
system. After labeling, all data were split into single‑cell images 
according to the labeled coordinates of bounding boxes and 
rescaled to 224x224 pixels according to the shortest side (Fig. 1). 
To reduce the inter‑ and intra‑observer variability, an annotated 
review was conducted of the original pixel images of the single 
cells one month following the initial labeling. 

In order to prevent the problem of over‑fitting, where 
the model may not accurately predict additional data, data 
augmentation on the training set using image flipping was 
performed. Data normalization was completed to ease the 
redundant image differences caused by the different environ‑
ments and staining workflow of multiple hospitals (18).

Development of the DCNN model. The development of the 
DCNN model followed a protocol of training and then testing 
(Fig. 2). The results of the model were compared with that 
independently obtained by two experienced pathologists. An 
Intel Core I7‑7800X 3.50GHz * 12 with four Titan X GPUs 
using Python 3.5 (https://www.python.org) and the TensorFlow 
(https://www.tensorflow.org) library for all experiments were 
used. The number of training iterations was set to 2,000, and 
the initial learning rate was set to 0.01. The optimizer was 
selected via the Batch Gradient Descent.

Through previous literature and preliminary experiments, 
the VGG16 model demonstrated a balance in framework, accu‑
racy, computational efficiency and proven performance in the 
medical field, and was chosen for our experiments (19‑21). The 
model comprises 16 layers, including 13 convolutional layers 
with 3x3 convolution kernels and 3 fully connected layers. 
At the same time, there are also five max‑pooling layers for 
feature dimensionality reduction and two drop‑out layers to 
prevent over‑fitting. First, the original single‑cell images were 
input into the network and represented by a matrix. Then, the 
convolutional layer and the max‑pooling layer extracted the 
deep features and mapped them onto a hidden layer. The fully 
connected layers distributed the features onto the sample tag 
space. Finally, the last fully connected layer with a softmax 
classifier was used to predict the classification probability 
(Fig.  3). In our experiment, the activation functions were 
measured as Rectified Linear Units (ReLU).

An ensemble training strategy (ETS) was proposed based 
on 5‑fold cross‑validation and was employed in our training 
stage. In our strategy, the training set was randomly divided 
into five equal parts, 4/5 for training and the remaining 1/5 
for validation. This division was repeated five times, and the 
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previous model was used as a pre‑training model for the next 
iteration each time. The last repeated model parameter indi‑
cated the final result.

Transfer learning was used to improve the generalizability 
of the model (22). The dataset was used to fine‑tune the DCNN 
model that was trained on the ImageNet dataset (23). To reduce 
computational complexity, the first seven layers of the DCNN 
network were frozen, and the remaining nine layers were train‑
able in the training stage.

We further improved the model generalizability and 
prevented over‑fitting with early‑stopping (24,25). The clas‑
sical stochastic gradient descent optimizer was selected, and 
the learning rate changed adaptively with the introduction of a 
variable factor G, defined as:

	 	
where, Li

t indicates the loss value at the ith iteration in the 
training stage, and Li

v stands for the loss value in the ith itera‑
tion in the validation stage. When G is greater than a threshold 
(set to 5 in our experiment), the learning rate is adjusted to 0.1 
times the current learning rate.

Evaluation. The performance of the proposed DCNN model 
was evaluated by measuring its accuracy, precision, sensitivity, 
F1 values, and speed. Accuracy was defined as the proportion 
of the correct classified samples of the total samples, and preci‑
sion was defined as the ratio of the positive sample that was 
correctly classified. Sensitivity was expressed as the ratio of 
negative samples, which were correctly classified as the total 
negative samples. F1 reflected the performance of the model 
and is a composite index that reflects both sensitivity and 
specificity. Speed was defined as the average time that one cell 
was identified, and it was calculated to evaluate the efficiency 
of the DCNN model. In addition, the independent compo‑
nent analysis (ICA), which is a popular method to represent 
multivariate data (26), was used to visualize the features of 
cells in the test dataset before and after classification by the 
DCNN model (27). 

Figure 1. TCT image preprocessing procedures. (A) Large‑scale digital pathological image. (B) Labeling the cells in the 2048x2048 images cropped from (A). 
(C) Single cells split from the 2048x2048 images. (D) Rescaled single‑cell images (224x224).

Table I. Characteristics of the TCT specimens used to form the dataset. 

	 Daping Hospitala	 Armed Police General	 Hi‑Tech People's	 Du Deling
Variables	 (n=38)	 Hospital (n=10)	 Hospital (n=16)	 Clinic (n=18)

Age (years)	 43 (20‑66)	 48 (36‑62)	 42 (25‑57)	 54 (34‑56)
Cells	 1,184	 776	 1,115	 215
Training	 977	 625	 889	 178
Testing	 207	 151	 226	 37

aThird Affiliated Hospital of Army Military Medical University. TCT, ThinPrep cytologic test.

Figure 2. Workflow of this study. DCNN, deep convolutional neural network; 
ETS, ensemble training strategy.
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Two experienced pathologists (pathologist 1 and 2, 12‑years 
and 3‑years working experience, respectively) were invited to 
classify the squamous epithelial cells independently, and their 
performance was compared with that of the DCNN models. 

Statistical analysis. The comparison of the classification 
accuracy between the DCNN models and the pathologists was 
conducted by the paired sample t‑tests. The statistical analyses 
were performed using SPSS software (version 16.0). P<0.05 
was considered to indicate a statistically significant difference.

Results

DCNN models and classification accuracy. The accuracy, preci‑
sion, sensitivity, and F1 of the DCNN model with ETS achieved 
slightly better performance in identifying lesion cells in the test 
dataset than those of the model without ETS and the pathologists 
(Table II). The training strategy improved the accuracy by 1.29%, 
the precision by 1.22%, the sensitivity by 1.12%, and the F1 value by 
1.32%. Compared with Pathologist 1, the DCNN model with ETS 
had 0.80% lower accuracy, 1.13% lower precision, 0.80% lower 
sensitivity, and 0.86% lower F1 value. Compared with Pathologist 
2, the DCNN model with ETS had 0.33% higher accuracy, 
0.85% higher precision, 1.47% higher F1 value, but 0.5% lower 
sensitivity. When the accuracy was examined by lesion subtype, 
the differences between the accuracy of the models and that of 
each pathologist were not significant (Table II; DCNN without 
ETS vs. DCNN with ETS: P0=0.387>0.05, DCNN with ETS vs. 
Pathologist 1: P1=0.771>0.05, DCNN with ETS vs. Pathologist 
2: P2=0.489>0.05). The accuracy rate of the DCNN model with 
ETS varied by lesion subtype, with ASC‑H and HSIL having the 
highest accuracies (100%) and ASC‑US having the lowest (75%; 
Table III). 

DCNN models and classification efficiency. In the classifica‑
tion efficiency, the results showed that the DCNN model with 
ETS achieved the fastest speed (0.0732 sec; Table II), and it was 
0.0036 sec faster compared with that without ETS, 0.3906 sec faster 
compared with Pathologist 1, and 0.4260 sec faster compared with 
Pathologist 2 (Table II). The classification speed of the DCNN 
models was almost six times faster than that of the pathologists. 

We visualized the loss and accuracy values during the 
training stage of the DCNN models. The final loss values were 
both <0.1, and the accuracy values were >0.9 after several 
iterations (Fig. 4). However, the values for the DCNN with 

ETS were always lower and smoother than that without ETS, 
indicating that the DCNN model with the ETS had a more 
stable performance (Fig. 4).

DCNN model and ICA. Visualization of the test dataset using 
ICA revealed that the normal and abnormal cells were separated 
into two distinct classes after identification with the DCNN model 
with ETS (Fig. 5). Simultaneously, we randomly showed some 
cells which were classified correctly and put into 2048x2048 
images (Fig. 6). It indicated that the DCNN model could classify 
the cells which had unclear nuclei, even in the cell cluster.

Discussion
In the present study, we developed a DCNN model based 

on VGG16 for the automated classification of cervical squa‑
mous cells that accurately differentiated between normal cells 
and lesion cells in a multi‑center TCT dataset. Compared to 
classifications independently provided by two experienced 
pathologists, the AI system achieved similar classification accu‑
racy with improved efficiency. Our datasets were composed of 
many TCT images that originated from four different hospitals 
that differed in their trauma levels and TCT machines. These 
sources of variation provided diversity within the dataset that 
was used to train and optimize the DCNN algorithm, thereby 
improving the generalizability of this model. 

Relative to the large‑scale dataset, like the millions of 
ImageNet datasets (23), required for the development of most 
DCNN models in the training stage, our dataset is small. 
Therefore, we employed ETS based on 5‑fold cross‑validation, 
which improved the accuracy and speed compared with the 
traditional DCNN model. At the same time, in terms of model 
performance, the loss value obtained by the DCNN model with 
ETS could be fitted better and faster than the model without ETS. 
Even though the inclusion of ETS did not significantly improve 
the accuracy, the incremental increase in accuracy may still be 
clinically important. Future investigations will continue to verify 
the classification effect of this method for future studies.

The classification accuracy of the DCNN model with ETS 
was 98.07% for our multi‑center dataset. The ICA analysis 
found that the characteristics of normal squamous epithelial 
cells before classification were more concentrated, and the 
characteristics of abnormal cells were scattered and polymor‑
phic. This observation may be mainly due to the presence of 
many subtypes in our test dataset, including ASC‑US, LSIL, 
ASC‑H, HSIL, and SCC. The characteristics of some abnormal 

Figure 3. Structure of the DCNN model. The DCNN model includes 13 convolutional layers with 3x3 kernel (the black squares), and three fully connected 
layers (the black rectangles). ReLU, rectified linear units; conv, convolutional layer; Fc, fully connected layer.
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cells are very similar to each other. Meanwhile, the features of 
normal and abnormal cervical squamous epithelial cells clas‑
sified by the DCNN model were clearly distinguished, which 
indicates that the DCNN could accurately classify cervical 
squamous epithelial cells with fine‑grained characteristics. 

The DCNN model with ETS differed in classification accuracy 
among lesion subtypes. SCC is the most direct evidence for the 
diagnosis of cervical cancer (7). Compared with other precancerous 
cells, SCC contains significant nuclear atypia, yet classifications 
with our model only achieved 85.71% accuracy. This lower accuracy 

may be due to the significantly smaller number of SCC cells than 
the number of other classes in our training dataset (n=39), which is 
called class‑imbalance problem. The low classification accuracy for 
ASC‑US, 75%, may be due to the high similarity of features between 
ASC‑US, NSIL, and LSIL. In fact, even experienced pathologists 
can experience difficulty distinguishing among these subtypes. 
Observation of the cells which were correctly classified demonstrated 
that even though the cells were isolated from cell clusters, were small, 
had difficulty in distinguishing deep nuclear staining, or had unclear 
nuclei, the model could still accurately classify these samples. 

Table II. Performance of the DCNN models and the pathologists on the test dataset. 

Variables	 DCNN without ETS	 DCNN with ETS	 Pathologist 1	 Pathologist 2

Accuracy (%)	 96.78	 98.07	 98.87	 97.74
Precision (%)	 96.69	 97.91	 99.10	 97.06
Sensitivity (%)	 96.89	 98.01	 98.81	 98.51
F1 (%)	 96.77	 98.09	 98.95	 96.62
Speed (sec)	 0.0768	 0.0732	 0.4638	 0.4992

DCNN, deep convolutional neural networks. ETS, ensemble training strategy.

Table III. Accuracy of the model with ETS for different lesion subtype classifications.

	 Normal	 Abnormal
	 ‑‑‑‑‑‑‑--‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑------------------------------------------------------------------------------‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variables	 NILM	 ASC‑US	 ASC‑H	 LSIL	 HSIL	 SCC

Test dataset	 285	 24	 2	 92	 211	 7
Correct‑classified	 282	 18	 2	 90	 211	 6
Misclassification	 3	 6	 0	 2	 0	 1
Accuracy (%)	 98.95	 75	 100	 97.83	 100	 85.71

ETS, ensemble training strategy; NILM, negative for intraepithelial lesion or malignancy; ASC‑US, atypical squamous cells‑unclear meaning; 
ASC‑H, atypical squamous cells‑do not rule out high‑grade squamous intraepithelial lesions; LSIL, low‑grade squamous intraepithelial lesions; 
HSIL, high‑grade squamous intraepithelial lesion; SCC , squamous cell carcinoma.

Figure 4. Visualization of (A) loss and (B) accuracy values during the training stage. The red line shows the data for the DCNN model with ETS.The blue line 
showsthe data for the DCNN model without ETS.
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The DCNN model developed here provides a similar 
classification performance to that of the pathologists, but 
with a highly improved classification efficiency. This result 
indicates that our model could assist pathologists with the 
interpretation of TCT specimens and reduce their workload. 
In the future, this highly efficient automated method may be 
widely used in clinical settings to overcome the subjective and 
time‑consuming nature of the manual diagnosis. 

Researchers have previously proposed DCNN models 
to classify samples of cervical cells. Zhang et al  (13), used 
a DCNN to classify normal and abnormal cervical cells 
and found accuracies of 98.3 and 98.6% for the two public 
datasets, Herlev dataset and HEMLBC dataset, respectively. 
However, the testing time for one cervical cell averaged 3.5 sec. 
Wu et al (14), used a DCNN to classify keratinizing squamous, 
non‑keratinizing squamous, and basaloid squamous cells in 
a single‑center dataset, and achieved an accuracy of 93.33% 
(speed was not reported). While the accuracies reported in these 

two studies were high, the authors did not externally validate 
the results by comparing classification with those provided by 
pathologists. Furthermore, the diagnosis efficiency reported by 
Zhang et al (13) did not satisfy the need of the clinic. 

In summary, our study focused on developing an accurate 
and efficient automated method that could be used in clinics 
to assist pathologists in interpreting TCT early‑screenings. 
There are four main limitations of the method employed 
in the present study: i) We used images of single cells that 
were extracted from whole slide images in advance. Future 
studies should focus on detecting the cervical squamous lesion 
cells in whole slide images without any prior segmentation 
or splits. ii) Our study only included a binary classification 
of cervical squamous cells. Future studies should focus on a 
multi‑classification model for cervical squamous cells. iii) The 
small size of our dataset and the class‑imbalance problem 
have a negative effect on the results, thus more data should 
be collected from clinics, especially on ASC‑US, ASC‑H, and 

Figure 6. Cells correctly classified by the DCNN model with ETS in the test dataset. (A‑C) Corrected‑classified cells in the 2048x2048 images, the second 
line shows the details of the cells above.

Figure 5. Visualization of the (A) origin data and (B) the extracted features by the DCNN model with ETS in the test dataset. The blue dots are the normal 
cells, and the green dots the abnormal cells. 
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SCC cells in the future. iv) Our data was collected from the 
southwestern region of China, and this geographically limited 
dataset may limit the generalizability of the resulting model. 
Future studies should focus on collecting data globally. 
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