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Abstract. Ovarian cancer is a common malignancy and the 
second leading cause of mortality among females with genital 
tract cancer. At present, postoperative platinum drugs and 
paclitaxel‑based chemotherapy is the gold standard treat‑
ment for ovarian cancer. However, patients who receive this 
chemotherapy often develop cumulative toxic effects and are 
prone to chemotherapy resistance. Therefore, it is necessary 
to determine more effective treatment options that would be 
better tolerated by patients. Recent studies have reported the 

therapeutic effects of numerous natural products in patients 
with ovarian cancer. Notably, these natural ingredients do not 
induce adverse effects in healthy cells and tissues, suggesting 
that natural products may serve as a safe alternative treat‑
ment for ovarian cancer. The antitumor effects of natural 
products are attributed to suppression of cell proliferation and 
metastasis, stimulation of autophagy, improved chemotherapy 
sensitivity, and induction of apoptosis. The present review 
focused on the antitumor effects of several natural products, 
including curcumin, resveratrol, ginsenosides, (‑)‑epigallocat‑
echin‑3‑gallate and quercetin, which are increasingly being 
investigated as therapeutic options in ovarian cancer, and 
discussed the molecular mechanisms involved in cell prolif‑
eration, apoptosis, autophagy, metastasis and sensitization.
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1. Introduction

Ovarian cancer ranks third after cervical and uterine corpus 
cancer among gynecologic cancers and is the second leading 
cause of mortality worldwide among females with reproduc‑
tive tract malignancies (1). Histopathologically, the majority of 
ovarian cancers are classified as epithelial ovarian cancer and 
include serous, mucinous, endometrioid, transitional and clear 
cell carcinomas (2). Epithelial ovarian cancer may metastasize 
through intracavitary implantation and/or the hematogenous 
and lymphatic routes. Intraperitoneal metastasis is the most 
common route of dissemination (3,4). Patients are usually 
asymptomatic in the early stages of the disease and ~70% of 
patients with ovarian cancer are diagnosed at an advanced 
stage (5). At present, surgery followed by platinum drugs and 
paclitaxel‑based chemotherapy is the gold standard treatment 
to inhibit disease progression. However, patients who receive 
this chemotherapy often develop cumulative toxic effects 
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(including nephrotoxicity) and are prone to chemotherapy 
resistance (6,7). To date, ovarian cancer is associated with a 
poor prognosis (8); the 5‑year survival rate of patients with 
this malignancy remains significantly low to be satisfactory 
in clinic. Therefore, newer drugs and novel treatment strate‑
gies are warranted to improve the prognosis of patients with 
ovarian cancer.

Owing to the high toxicity associated with conventional 
antitumor drugs, plant‑derived natural products are being 
investigated as alternative or adjuvant treatments for a variety 
of cancer types (9). Conventionally, natural products are 
considered nutritional products and auxiliary medicine. Recent 
studies have proven the antitumor effects of natural products 
and demonstrated that they may reduce chemotherapy‑induced 
toxicity. These phytochemicals primarily include curcumin, 
resveratrol, ginsenoside, quercetin, berberine and (‑)‑epigal‑
locatechin‑3‑gallate (EGCG) (10). This review discusses 
the antitumor effects of several natural products and the 
molecular mechanisms of action of these agents in patients 
with ovarian cancer, with regards to their roles in prolifera‑
tion, apoptosis, autophagy, metastasis and sensitization. The 
antitumor effects of several natural products and the molecular 
mechanism in ovarian cancer are reviewed, which includes the 
aspects of proliferation, apoptosis, autophagy, metastasis and 
sensitization.

2. Curcumin

Turmeric, the root of the Curcuma longa plant, is widely 
used in Indian curries and South Asian dishes, and has been 
used as a traditional medicine for thousands of years in India 
and China (11). Curcumin and its two related curcuminoids 
(demethoxycurcumin and bisdemethoxycurcumin) constitute 
the main active ingredients of turmeric. Reportedly, curcumin 
and curcuminoids possess strong antitumor, antioxidant, and 
anti‑inflammatory properties owing to their interactions with 
multiple molecular targets (12). The antitumor effect and 
mechanisms of action of curcumin in ovarian cancer are listed 
in Table I.

Anti‑proliferative and pro‑apoptotic activity. Excessive 
proliferation and inadequate apoptosis are the two signifi‑
cant characteristics of tumors, including ovarian cancer. The 
phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) 
signaling pathway participates in multiple cellular process, 
and activation of this pathway increases cell proliferation, 
invasion, migration, survival and chemotherapy resistance in 
ovarian cancer (13). The B‑cell lymphoma‑2 (Bcl‑2) family 
controls the release of cytochrome C from mitochondria 
into the cytosol, where it binds to apoptotic protease acti‑
vating factor‑1, promoting the activation of caspase‑9 then 
caspase‑3, which leads to the intrinsic apoptosis. The Bcl‑2 
family includes the pro‑apoptotic proteins (including Bad 
and Bax) and anti‑apoptotic proteins (including Bcl‑2, and 
Bcl‑xl) (14). Curcumin downregulated the expression of the 
Bcl‑2, while upregulating the expression of Bax and caspase‑3 
by repressing the PI3K/AKT pathway, leading to cell cycle 
arrest in G2/M phase and increased apoptosis of ovarian 
cancer cells (15). Concordantly, Watson et al (16) reported that 
curcumin downregulated AKT phosphorylation, Bcl‑2 and 

survivin, so that curcumin activated the extrinsic and intrinsic 
apoptotic pathways via activation of caspase‑8, caspase‑9 and 
caspase‑3 (16). Signal transducer and activator of transcrip‑
tion‑3 (STAT‑3), is a transcription factor and signal transducer, 
and the phosphorylated STAT‑3 promotes tumorigenesis by 
stimulating cell proliferation and preventing apoptosis (17). 
Saydmohammed et al (18), reported that curcumin inhibited 
STAT‑3 phosphorylation, which suppressed ovarian cancer 
cell growth (18). Treatment with curcumin suppressed 
ovarian cell motility by inhibiting STAT‑3 phosphorylation 
by increasing interleukin (IL)‑6 and IL‑8 secretion (19). In 
addition, Ca2+ homeostasis is necessary for cell survival, and 
sarcoplasmic/endoplasmic reticulum Ca2+ transporting ATPase 
(SERCA) regulates cellular Ca2+ flux from the cytosol to the 
endoplasmic reticulum (ER) for storage (20). Seo et al (21), 
reported that curcumin inhibited SERCA activity and 
then disrupted Ca2+ homeostasis in ovarian cancer 
cells. Subsequently, a high concentration of Ca2+ in the cyto‑
plasm promoted cell apoptosis (21). 

MiRNAs (miRs), a class of short non‑coding RNAs, 
regulating gene expression post‑transcriptionally via 
binding to the 3'‑untranslated regions of target mRNAs, are 
essential in malignant phenotype and treatment response in 
ovarian cancer (22). Du et al (23), reported that treatment 
with dimethoxy‑curcumin promoted the apoptosis and 
inhibited the proliferation of ovarian cancer cells through 
upregulating the levels of miR‑551a. A luciferase assay 
confirmed that miR‑551a targeted insulin receptor substrate 
2 (23), which had been validated to serve an anti‑apoptotic 
role (24). In addition, it was demonstrated that the combina‑
tion of dihydroartemisinin and curcumin arrested the cell 
cycle and promoted the apoptosis of ovarian cancer cells by 
upregulation of miR‑124 and downregulation of its target 
midkine (25), which is significantly overexpressed in various 
cancer types to promote tumorigenesis and progression (26). 
Furthermore, curcumin promoted the apoptosis and inhib‑
ited the proliferation of ovarian cancer cells by inducing the 
expression of miR‑9 (27). 

Induction of autophagy. In ovarian cancer, autophagy serves 
a dual role that it may serve as an adaptation to stress to 
avoid cell death in cancer progression, while excessive 
autophagy may lead to cell death. Increased autophagy 
is also associated with resistance to chemotherapy (28). 
Autophagy is a highly conserved process that involves the 
formation of autophagosomes that engulf cellular proteins 
and organelles, and delivers them to the lysosomes. The 
mammalian target of the rapamycin (mTOR) signaling 
pathway regulates cell proliferation, survival and autophagy. 
The p70 ribosomal S6 protein kinase (p70S6K) is a major 
effector of mTOR phosphorylation (29). Liu et al (30), 
reported that curcumin inhibited the AKT/mTOR/p70S6K 
pathway to induce apoptosis and protective autophagy in 
ovarian cancer SKOV3 and A2780 cells, and treatment 
with autophagy‑specific inhibitors markedly enhanced 
curcumin‑induced apoptosis (30). Qu et al (31), reported that 
B19, a novel monocarbonyl analogue of curcumin, induced 
autophagy and ER stress‑mediated apoptosis in ovarian 
cancer cells, and inhibition of autophagy with 3‑methylad‑
enine increased ER stress‑mediated apoptosis (31). ER stress 
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is referred to as the accumulation of unfolded or misfolded 
proteins in the ER lumen due to physiological and patho‑
logical conditions, which interfered with ER homeostasis 
and proper protein folding (32).

Anti‑metastatic activity. Ovarian cancer metastasizes to 
adjacent organs via direct extension or through the dissemi‑
nation of cancer cells that detach from the primary tumor (3). 
A family of proteolytic enzymes, called matrix metal‑
loproteinases (MMPs), promote the metastasis of ovarian 
cancer by remodeling the tumor extracellular matrix (33). 
Two recent studies reported that curcumin markedly down‑
regulated CD44 (the cell surface receptor of hyaluronic acid), 
MMP‑9 and Rab coupling protein‑induced phosphorylation 
of focal adhesion kinase (FAK; associated with the stabi‑
lization of actin and microtubule filaments, and regulating 
cancer cell motility), and eventually inhibited the invasion 
of SKOV3 cells (34,35). In addition, one study revealed that 
bisdemethoxycurcumin inactivated the nuclear transcription 
factor‑kappa B (NF‑κB) pathway by inhibiting oxidative 
stress, thereby reducing the expression of metastasis‑asso‑
ciated proteins, including MMP‑2, MMP‑9 and vascular cell 
adhesion molecule‑1 (VCAM‑1) in SKOV3 cells (36). The 
VCAM‑1‑integrin interaction was clarified to be involved in 
the regulation of ovarian cancer cell invasion and metastatic 
progression (37).

Sensitization. Resistance to chemotherapeutic agents is a 
major barrier to the effective treatment of advanced ovarian 
cancer. The molecular mechanisms associated with resis‑
tance to chemotherapy in ovarian cancer include increased 
activity of the drug efflux pump mediated by the multidrug 
resistance protein 1 (MDR‑1, also known as P‑gp), increased 
repair capacity of DNA damage, decreased drug intake, 
and decreased apoptosis, as well as drug‑induced cell cycle 
arrest (38). Curcumin may increase the sensitivity of ovarian 
cancer cells to therapeutic drugs. Yallapu et al (39), reported 
that curcumin induced sensitization of cisplatin‑resistant 
ovarian cancer cells (A2780CP) to cisplatin by increasing 
apoptosis. Curcumin treatment downregulated the expres‑
sion of Mcl‑1 and Bcl‑xl, two anti‑apoptotic proteins of 
the Bcl‑2 family, and suppressed the activity of β‑catenin, 
a transcription factor that promoted the expression of cell 
survival genes by interacting with the TCF transcription 
factor (39). Zhao et al (40), reported that co‑administration 
of curcumin and paclitaxel exerted a good antitumor effect 
in multi‑drug resistant ovarian cancer cells (SKOV3‑TR30) 
and in ovarian tumor‑bearing nude mice, since curcumin 
reversed the resistance to paclitaxel by inhibiting the drug 
efflux mediated by MDR‑1 (40). Zhang et al (41) reported 
that curcumin may resume LncRNA MEG3 levels in extra‑
cellular vesicles from cisplatin‑resistant ovarian cancer cells. 
Upregulation of MEG3 reduced the expression of miR‑214 
in cells and in extracellular vesicles, thereby reducing cispl‑
atin resistance (41). MiR‑214 was a well‑known miRNA in 
drug resistance, which enhanced cell survival and induced 
cisplatin resistance in ovarian cancer cells by directly down‑
regulating the expression of phosphatase and tensin homolog 
(PTEN), a negative regulatory molecule of the PI3K/AKT 
pathway (42).
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3. Resveratrol

Resveratrol is a natural polyphenolic compound derived 
from plants, including grapes, peanuts and Polygonum cuspi‑
datum (43). Resveratrol possesses anti‑inflammatory and 
antitumor properties, and protects the heart, nerves and 
kidneys (44). The antitumor effect and mechanisms of action 
of resveratrol in ovarian cancer are listed in Table II.

Anti‑proliferative and pro‑apoptotic activity. The Warburg 
effect describes that, under the condition of sufficient oxygen, 
tumor cells are active in aerobic glycolysis (45). Through 
aerobic glycolysis, a large number of metabolites may be 
generated and plentiful biosynthesis may occur, which may 
satisfy the rapid and unlimited growth of tumor cells (46). 
Suppression of the Warburg effect is an effective way to treat 
cancer (47). In the mouse model, resveratrol significantly 
reduced glucose uptake by tumor cells (48). In ovarian cancer 
cells, resveratrol inhibited the biosynthesis of hexosamine, and 
interrupted protein glycosylation through activating glycogen 
synthase kinase‑3β (GSK3β), and eventually triggered ER 
stress‑mediated apoptosis (49). GSK3β is a kinase that 
phosphorylated and inactivated glycogen synthase, the final 
enzyme in biosynthesis of glycogen, which is the main form of 
glucose storage (50). Tino et al (51) proved that the combina‑
tion of resveratrol and acetyl resveratrol inhibited the growth 
and metabolism of ovarian cancer cells more efficiently, and 
this growth restriction was due to decreased NF‑κB protein 
and nuclear localization, which was responsible for vascular 
endothelial growth factor (VEGF) secretion (51). Furthermore, 
resveratrol downregulated the phosphorylation of AKT and 
GSK3β in a dose‑dependent manner in ovarian cancer cells, as 
well as decreasing the activity of extracellular signal‑regulating 
kinase (ERK), which subsequently suppressed the expression 
of cyclin D1, which facilitated cyclin‑dependent kinases CDK4 
or CDK6 in promoting cell cycle progression (52). 

Induction of autophagy. In ovarian cancer, a recent study 
reported that resveratrol promoted autophagy and subsequent 
apoptosis in ovarian cancer cells by triggering the production 
of reactive oxygen species (53). Furthermore, it also revealed 
that resveratrol induced autophagy through enhancing the 
expression of Atg5, a key molecule for the elongation of the 
autophagosome membrane, and promoting cleavage from 
microtubule‑associated protein 1 light chain 3 (LC3)‑I to 
LC3‑II (53). LC3‑II, located on the membrane of autophago‑
somes, is a specific marker protein for autophagic activity (54). 
Beclin‑1 mediates the localization of autophagy‑related 
proteins and regulates the formation and maturation of 
autophagosomes by interacting with various proteins. Beclin‑1 
may also interact with the anti‑apoptotic proteins of the 
Bcl‑2 family, exerting a crosstalk between apoptosis and 
autophagy (55). Zhong et al (56) demonstrated that resveratrol 
enhanced autophagy by promoting the expression of beclin‑1 
and LC3‑II through inactivation of STAT‑3, and significantly 
induced growth arrest and death of ovarian cancer cells (56). 
In addition, resveratrol promoted the expression of the 
tumor suppressor gene, aplasia Ras homologue member I 
(ARHI) (57), and inactivated the STAT‑3 signal pathway in 
ovarian cancer cells. Subsequently, resveratrol induced cell 

apoptosis, increased autophagy activity, and induced growth 
arrest (58). Concordantly, Ferraresi et al (59) reported that 
resveratrol increased autophagy via upregulation of beclin‑1 
and LC3 through induced ARHI and inactivated STAT‑3, 
thereby attenuating the metastasis induced by IL‑6 in ovarian 
cancer cells (59). They also demonstrated that resveratrol 
inhibited mTOR complex 1 by repressing AKT and activating 
AMP‑activated protein kinase (AMPK), which inhibited 
protein synthesis and cell growth, and induced autophagy. 
When the mTOR pathway was inhibited by resveratrol, 
induced autophagy favored the survival of cells in the context 
of insufficient nutrition, likely leading to a dormant state (60). 

Anti‑metastatic activity. Ovarian cancer is known to directly 
metastasize to the peritoneal surface of adjacent organs (3). 
A previous study demonstrated that resveratrol decreased 
the level of cellular α5β1 integrin and enhanced hyaluronic 
acid secretion to the extracellular matrix, which inhibited 
the adhesion of ovarian cancer cells to the intestinal wall 
and decreased metastasis (61). Under hypoxic conditions, 
resveratrol may decrease the binding between ovarian cancer 
cells and mesothelial cells by downregulating the expression 
of VEGF, thereby preventing the migration of ovarian cancer 
cells induced by lysophosphatidic acid (62). The high expres‑
sion of VEGF was associated with metastasis in advanced 
ovarian cancer (63).

Sensitization. A previous study has reported that resveratrol 
induces autophagy and promotes apoptosis in ovarian cancer 
cells (64). Therefore, resveratrol may improve chemosensitivity 
and prevent tumorigenesis under conditions of autophagy 
inhibitors (64). Aberrant activation of NF‑κB may protect 
cancer cells against the apoptosis induced by pharmacological 
drugs, contributing toward drug resistance. Nessa et al (65) 
suggested that resveratrol sensitized ovarian cancer cells to 
the apoptosis induced by platinum drugs via downregulating 
NF‑κB (65). In addition, Engelke et al (66) reported that 
resveratrol reversed the resistance of ovarian cancer cells to 
cisplatin by modulating molecular targets, including the EGFR 
or VEGFR family of receptor tyrosine kinases (66).

4. Ginsenosides

Ginsenosides constitute the major pharmacologically active 
ingredient in ginseng, and possess antitumor and antioxidant 
properties. In addition to enhancing immunity (67). Several 
ginsenoside compounds, including Rb1, Rg1, RG1, Rh1 and 
Rd, have been identified, and the majority of these, particu‑
larly ginsenoside Rg3 and Rb1 exhibit significant antitumor 
activity (68). The effect and mechanisms of action of ginsen‑
osides in ovarian cancer are list in Table III.

Anti‑proliferative and pro‑apoptotic activity. The Warburg 
effect is essential for tumor growth and metabolism. 
Li et al (69) reported that ginsenoside 20(S)‑Rg3 down‑
regulated phospho‑STAT‑3 and two metabolic enzymes, 
hexokinase and pyruvate kinase, which inhibited the glycol‑
ysis of ovarian cancer cells, thereby inhibiting the Warburg 
effect and preventing tumor growth and metabolism (69). 
A previous study reported that 20(S)‑Rg3 may block the 
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inhibition of miR‑324‑5p by H19. Increased miR‑324‑5p by 
20(S)‑Rg3 treatment inhibited the activity of pyruvate kinase 
isozyme type M2, thereby inhibiting the Warburg effect (70). 
Furthermore, Lu et al (71) reported that ginsenoside 20(S)‑Rg3 
upregulated the expression of miR‑603 in ovarian cancer cells 
by downregulating the DNA methylation mediated by DNA 
methyltransferase 3 alpha. Increased miR‑603 directly targeted 
hexokinase‑2 mRNA and decreased hexokinase‑2 expression. 
Therefore, ginsenoside 20(S)‑Rg3 inhibited the Warburg 
effect, which was primarily manifested as a decreased lactate 
production, glucose consumption and in vitro proliferation, 
and weakened cell invasion and migration (71).

Autophagy induction. The effect of ginsenosides on autophagy 
is controversial. Reportedly, ginsenoside 20(S)‑Rg3 inhibited 
autophagic flux by suppression of late‑stage autophagosome 
maturation or degradation, and eventually induced apoptosis 
in cervical cancer cells (72). However, in ovarian cancer, 
ginsenoside 20(S)‑Rg3 enhanced autophagy by upregulating 
autophagy‑related molecules, including LC3‑II, Atg5 and 
Atg7, thereby inhibiting the invasion and metastasis of ovarian 
cancer cells (73).

Anti‑metastatic activity. Hypoxia‑inducible factor‑1 (HIF‑1), 
ubiquitous in human and mammalian cells, is stable only 
under hypoxic conditions, and the stabilization of HIF‑1α 
mediates tumor cell invasion and metastasis (74). The 
epithelial‑to‑mesenchymal transition (EMT) usually occurs 
prior to ovarian cancer metastasis, which decreases cell‑cell 
adhesion. Liu et al (75) reported that ginsenoside 20(S)‑Rg3 
decreased the expression of HIF‑1α by stimulating the 
ubiquitin‑proteasome pathway, and inhibited EMT process, 
which was essential for metastasis (75). They also revealed 
that ginsenoside 20(S)‑Rg3 upregulated prolyl hydroxylase 
domain protein 1 to cause degradation of HIF‑1α under the 
conditions of normal oxygen (76). Furthermore, ginsenoside 
Rb1 inhibited hypoxia‑induced EMT by downregulating 
miR‑25 in ovarian cancer cells, which abrogated the suppres‑
sion of miR‑25 on the expression of EP300 (a transcriptional 
activator of E‑cadherin) and E‑cadherin (an essential mole‑
cule for adhesion between epithelial cells), thereby leading 
to an anti‑metastatic effect (77). E‑cadherin is involved 
in anchoring epithelial cells to each other by binding to 
the actin microfilaments through α‑ and β‑catenin in the 
cytoplasm (78). 

Sensitization. Drug resistance is a major clinical challenge 
that interferes with successful cancer therapy. The membrane 
transporter MDR‑1 is located on the lipid rafts of the plasma 
membrane, and increased MDR‑1 activity is an important 
contributor to multidrug resistance. Yun et al (79) reported 
that ginsenoside Rp1 repressed MDR‑1 activity by redis‑
tributing lipid rafts, which reversed resistance to antitumor 
drugs, including doxorubicin (79). EMT is involved in drug 
resistance, as well as in metastasis. Deng et al (80) reported 
that the metabolite compound k of ginsenoside Rb1 specifi‑
cally inhibited cell growth by inhibiting the Wnt/β‑catenin 
signaling pathway and EMT process, and decreased the 
resistance of ovarian cancer stem cells to cisplatin and 
paclitaxel (80). 

5. Quercetin

Quercetin is a natural polyphenolic compound abundantly 
present in fruits and vegetables; notably, red onions contain 
the highest levels of quercetin (81). Quercetin has a variety of 
pharmacological actions, including antitumor, antioxidant and 
anti‑inflammatory activity, in addition to lowering blood pres‑
sure and blood lipid levels. Quercetin‑induced cytotoxicity is 
rarely observed in healthy cells (82). The antitumor effects and 
mechanisms of action of quercetin in ovarian cancer are listed 
in Table IV.

Anti‑proliferative, pro‑apoptotic and anti‑metastatic activity. 
Quercetin exerts antitumor effects in vitro and in vivo (83). It 
was reported that quercetin inhibited the expression of survivin 
protein, and maintained the cell cycle at the G0/G1 stage, thereby 
inhibiting the proliferation and promoting the apoptosis of 
ovarian cancer cells (84). In addition, quercetin upregulated the 
expression of miR‑145, and then activated caspase‑8, caspase‑9 
and caspase‑3, which induced the apoptosis of ovarian cancer 
cells (85). In line with this, Teekaraman et al (86) reported 
that quercetin induced the intrinsic apoptosis in ovarian 
cancer cells. This study revealed that quercetin decreased 
the expression of anti‑apoptotic proteins, Bcl‑2 and Bcl‑xl, 
while increasing the expression of the pro‑apoptotic proteins, 
Bax and Bad, leading to the activation of caspase‑9 and 
caspase‑3 (86). In addition, Liu et al (87) reported that quer‑
cetin induced apoptosis and protective autophagy through ER 
stress, and the phospho‑STAT‑3/Bcl‑2 signaling pathway was 
involved in this pharmacologic action (87). With regards to 
the role of quercetin in anti‑metastasis, one study revealed 
that 3,4',7‑O‑trimethylquercetin inhibited the invasion and 
metastasis of ovarian cancer cells by decreasing the expression 
of MMP‑2 and urokinase plasminogen activator (uPA) (88). 
MMP‑2 was reported as an early regulator of metastasis, and 
uPA was reported to promote metastasis in ovarian cancer 
cells (88). However, the role of quercetin in autophagy in 
ovarian cancer remains unknown.

Sensitization. Several studies have investigated the combined 
treatment of quercetin and chemotherapy or radiotherapy in 
ovarian cancer, due to the sensitization function of quercetin. 
Wang et al (89), reported that quercetin aglycone induced 
caspase‑3 activation and poly‑ADP‑ribose polymerase (PARP; 
a DNA repair enzyme) deactivation, which caused cell apop‑
tosis and promoted the sensitivity of ovarian cancer cells to 
cisplatin. Furthermore, quercetin inactivated the pro‑survival 
mitogen‑activated protein kinase (MAPK)‑ERK signal 
pathway, downregulated cyclin D1 expression, and upregulated 
p21 expression, thereby arresting cell cycle progression (89). 
Yang et al (90) reported that quercetin increased the sensi‑
tivity of ovarian cancer cells to cisplatin by inducing ER stress. 
Furthermore, this study reported that quercetin significantly 
inhibited STAT‑3 phosphorylation, and then downregulated 
Bcl‑2 expression, attenuating the anti‑apoptotic effect of 
Bcl‑2 (90). In line with this, Gong et al (91) reported that 
quercetin enhanced the sensitivity to radiotherapy by the 
aggravation of DNA damage and ER stress through acti‑
vating p53, which led to increased p21 and Bax expression, 
and decreased Bcl‑2 expression (91). In addition, Yi et al (92) 
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verified that quercetin increased the sensitivity of SKOV3 cells 
to tumor necrosis factor‑related apoptosis inducing ligand 
(TRAIL)‑mediated apoptosis by upregulating the transcrip‑
tion of death receptor 5 (DR5), the receptor of TRAIL (92). A 
high expression of DR5 was associated with a poor prognosis 
in patients with ovarian cancer (93). 

6. Berberine

Berberine, an isoquinoline alkaloid, is the main bioactive 
ingredient of Coptis chinensis. Its pharmacological activity 
includes anti‑inflammatory, antioxidant and antitumor 
effects (94). The antitumor effects and mechanisms of action 
of berberine in ovarian cancer are listed in Table V.

Anti‑proliferative and pro‑apoptotic activity. A previous 
study revealed that berberine inhibited the proliferation of 
tumor cells, and induced apoptosis and cell cycle arrest (95). 
Berberine alone or combined with cisplatin may induce 
ovarian cancer cells to arrest at the G0/G1 phase and enhance 
the activity of cell death‑associated proteins, including 
caspase‑8 and caspase‑3, thereby promoting apoptosis and 
necrosis (96). Prostaglandin E2 (PGE2) is a bioactive lipid 
that promotes cell proliferation and tumor growth (97). The 
chemotherapy drug VP16 promoted the synthesis of PGE2 by 
increasing the free arachidonic acid in ovarian cancer, which 
led to the proliferation of surrounding non‑apoptotic cells 
and tumor repopulation. However, berberine inhibited the 
two key enzymes (calcium‑independent phospholipase A2 
and cyclooxygenase‑2) of PEG2 synthesis in the tumor micro‑
environment, which resulted in decreased synthesis of PEG2 
and inhibited the phosphorylation of FAK, which inhibited 
the chemotherapy‑induced repopulation (98). Furthermore, 
berberine served an antitumor role in ovarian cancer by 
inhibiting the expression of the human ether a‑go‑go‑related 
potassium channel (hERG1). The hERG1 protein was 
considered to be a key factor in tumorigenesis, and its high 
expression level in ovarian cancer cells may be downregulated 
by berberine treatment (99). 

Autophagy induction and anti‑metastatic activity. To date, 
the role of berberine in autophagy induction and the inhibition 
of ovarian cancer metastasis remains unclear. However, with 
regards to other cancer types, berberine was reported to induce 
autophagy and exhibited anti‑metastatic action. Berberine was 
demonstrated to inhibit the MAPK/mTOR/p70S6K and Akt 
pathways in gastric cancer cells, thereby inducing cytostatic 
autophagy and cancer cell cycle arrest (100). Berberine may 
inhibit cell migration by downregulating matrix metal‑
loproteinase‑3 (MMP‑3) in gastric carcinoma cells, thereby 
exhibiting anti‑metastatic activity (101). In addition, berberine 
inhibited the metastasis of endometrial cells by downregu‑
lating the expression of cyclooxygenase‑2 (102).

Sensitization. Marverti et al (103) reported the effect of 
berberine on sensitization in ovarian cancer. Berberine 
inhibited the growth of cisplatin‑resistant ovarian cancer 
cells through suppressing the expression of dihydrofolate 
reductase and thymidylate synthase, two enzymes that are 
essential for DNA biosynthesis and thus important targets for 
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chemotherapy (103). In another study, berberine increased the 
expression of programmed cell death‑4 (PDCD4) by inhib‑
iting the expression of miR‑21, a known molecule associated 
with ovarian cancer cisplatin resistance, thereby increasing 
apoptosis and enhancing cisplatin sensitivity (104). PDCD4, 
an important tumor suppressor, was revealed to be associated 
with the malignant phenotype of ovarian cancer (105). In 
addition, overexpression of miR‑93 was involved in cisplatin 
resistance in ovarian cancer. Berberine increased the sensi‑
tivity of ovarian cancer cells to cisplatin through inhibiting the 
expression of miR‑93, thereby upregulating the expression of 
its target gene, PTEN (106). Hou et al (107), demonstrated that 
berberine induced apoptosis through increased DNA damage 
and suppressed homologous recombination, thereby increasing 
the sensitivity of ovarian cancer cells to PARP inhibitors (107). 

7. (‑)‑Epigallocatechin‑3‑gallate 

EGCG, a major component of green tea polyphenols, exhibited 
marked anti‑angiogenic, antioxidant, anti‑inflammatory and 
antitumor effects, among other beneficial pharmacological 
actions. Bioinformatic analysis has demonstrated that EGCG 
may affect a variety of signaling proteins in the cell cycle, 
including Jun, NF‑κB, Bcl‑2 and MMPs, and also inhibits 
DNA replication (108). The antitumor effect and mechanisms 
of action of EGCG in ovarian cancer are listed in Table VI.

Effects on proliferation, apoptosis and autophagy. EGCG 
promoted the apoptosis of ovarian cancer cells by upregu‑
lating the levels of tumor suppressor gene, p53, and cell cycle 
inhibitor, p21WAF1. As a result, EGCG arrested ovarian 
cancer cells in the G1/S phase (109). Furthermore, EGCG 
induced the expression of p21 in cells, thereby promoting 
apoptosis and arresting these cells in the G2/M phase (110). 
EGCG downregulated the expression of aquaporin 5 and then 
downregulated NF‑κB, which subsequently induced apoptosis, 
and inhibited the proliferation and metastasis of SKOV3 
cells (111). However, the role of berberine in autophagy in 
ovarian cancer remains unclear. In hepatocellular carcinoma, 
EGCG directly interacted with LC3‑I protein and promoted 
the synthesis of LC3‑II through a series of reactions, thereby 
increasing the autophagy activity of HepG2 cells (112).

Anti‑metastatic activity. Overexpression of c‑Myb in ovarian 
cancer tissues often leads to a poor prognosis, since c‑Myb 
activates NF‑κB and the STAT‑3 signaling pathway, which 
promotes tumor growth, invasion and chemotherapy resis‑
tance. Tian et al (113) evaluated numerous natural products 
and reported that EGCG significantly inhibited migration by 
downregulating the expression of c‑Myb in ovarian cancer 
cells (113). Furthermore, EGCC inhibited the metastasis of 
ovarian cancer cells by inhibiting the phosphorylation of c‑Jun 
and NF‑κB, resulting in the decreased expression of VEGF 
and the secretion of MMP‑2 and MMP‑9. Consequently, the 
adhesion of cancer cells to extracellular matrix proteins was 
weakened, and the supply of nutrients required for cell prolif‑
eration was reduced (108). 

Sensitization. Previous studies have revealed the effects of 
EGCG combined with conventional chemotherapeutic drugs 

in ovarian cancer. Chan et al (114) reported that EGCG 
increased the cytotoxicity of cisplatin and enhanced its effi‑
cacy by 3‑6 fold. Specifically, EGCG increased the oxidative 
stress of cisplatin‑induced ovarian cancer cells through the 
generation of more reactive oxygen species to induce cell apop‑
tosis (114). Copper transporter 1 (CTR1) of tumor cells may 
increase the uptake of cisplatin. However, cisplatin treatment 
rapidly promotes CTR1 degradation, and decreased CTR1 
is associated with cisplatin resistance. Wang et al (115,116) 
reported that EGCG maintained the concentration of CTR1 
in ovarian cancer cells, thereby increasing the cisplatin 
sensitivity (115,116). Furthermore, in paclitaxel‑resistant 
ovarian cancer cells, the combination of EGCG and sulfora‑
phane treatment induced apoptosis and cell cycle arrest by 
damaging DNA and decreasing the expression of Bcl‑2 and 
human telomerase reverse transcriptase (hTERT), the major 
catalytic subunit of telomerase, which was involved in cancer 
cell survival. The study suggested that EGCG may overcome 
paclitaxel resistance (117).

8. Conclusions and perspectives

Although conventional chemotherapy is known to produce 
positive initial effects in the majority of patients with ovarian 
cancer, cumulative toxicities and drug resistance often lead 
to the failure of conventional chemotherapy. Previous studies 
have revealed that numerous natural products are less toxic 
to healthy cells and inhibit tumor growth and progression to 
prevent malignant tumors. The present review summarizes 
the antitumor effects of natural products, primarily their role 
in the stimulation of autophagy, induction of apoptosis and 
cell cycle arrest, and the inhibition of cell proliferation and 
metastasis. Therefore, the administration of natural products 
(alone or in combination with other drugs) may be considered 
a useful treatment strategy in patients with ovarian cancer. 

However, the mechanisms of action of natural prod‑
ucts as therapeutic agents for ovarian cancer are relatively 
complex. The majority of previous studies have focused only 
on activity at the cellular level, and only few animal models 
have been developed. Further research is warranted to inves‑
tigate the potential therapeutic efficacy of natural products in 
experimental animal models and randomized clinical trials. 
Accurate knowledge of the pharmacokinetic profile of each 
natural product is essential to evaluate the in vivo effects of 
the natural product. 

The following issues require greater attention in future 
studies: i) The exact mechanisms that contribute toward the 
activity of natural products in ovarian cancer require further 
detailed investigation; ii) experimental animal model studies 
and randomized clinical trials should be performed to evaluate 
the therapeutic efficacy of natural products in ovarian cancer; 
iii) the effects of natural products combined with conventional 
chemotherapy, target therapy or immunotherapy need to be 
determined; and iv) novel methods should be developed to 
isolate and identify bioactive compounds from a variety of 
plants deemed suitable as anticancer agents. 
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