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Abstract. Ovarian cancer is a fatal gynaecological malig‑
nancy in women worldwide, and serous ovarian cancer (SOC) 
is considered the most common histological subtype of 
this malignancy. Thus, the present study aimed to identify 
the core genes for SOC via bioinformatics analysis. The 
GSE18520 and GSE14407 datasets were downloaded from 
the Gene Expression Omnibus  (GEO) database to screen 
for differentially expressed genes (DEGs) and perform gene 
set enrichment analysis (GSEA). A protein‑protein interac‑
tion (PPI) network was constructed to identify the core genes, 
while The Cancer Genome Atlas (TCGA) database was used 
to screen for prognosis‑associated DEGs. Furthermore, clin‑
ical samples were collected for further validation of kinesin 
family member 11 (KIF11) gene. In the GEO analysis, a total 
of 198 DEGs were identified, including 81 upregulated and 
117 downregulated genes compared SOC to normal tissue. 
GSEA across the two datasets demonstrated that 16 gene sets, 
including those involved in the cell cycle and DNA replica‑
tion, were notably associated with SOC. A PPI network of 
the DEGs was constructed with 130 nodes and 387 edges. 
Subsequently, 20 core genes involved in the same top‑ranked 
module were filtered out by submodule analysis. Survival 
analysis identified three predictive genes for SOC prognosis, 
including KIF11, CLDN3 and FGF13. KIF11 was identified 
as a core and predictive gene and thus was further validated 
using clinical samples. The results demonstrated that KIF11 
was upregulated in tumour tissues compared with adjacent 
normal tissues and was associated with aggressive factors, 
including tumour grade, TNM stage and lymph node invasion. 

In conclusions, the present study identified the core genes and 
gene sets for SOC, thus extending the understanding of SOC 
occurrence and progression. Furthermore, KIF11 was identi‑
fied as a promising tumour‑promoting gene and a potential 
target for the diagnosis and treatment of SOC.

Introduction

Ovarian cancer is one of the most common types of cancer 
among women worldwide, and it is the leading cause of 
mortality among gynaecological malignancies in USA, with 
22,240 new cases and 14,030 mortalities in 2013 (1). Despite 
recent advances in therapeutic strategies against ovarian 
cancer, its overall mortality remains unchanged, approxi‑
mately 6.8 per 100,000 females of age‑adjusted annual cancer 
death rate in USA in the past decade (2). This is primarily 
due to late‑stage diagnosis and lack of well‑established early 
detection biomarkers. For instance, CA125 is extensively 
used as a biomarker for ovarian cancer, its low sensitivity and 
specificity decrease its efficiency as a diagnostic tool (3). A 
novel biomarker human epididymis protein 4 exhibits greater 
specificity and lower sensitivity compared with CA125, which 
causes it is unsuitable for general population screening (4). 
Thus, identifying novel biomarkers and understanding their 
underlying molecular mechanisms on ovarian cancer remains 
an urgent challenge.

Ovarian cancer comprises heterogeneous histological 
subtypes, including serous, endometrioid, clear cell and 
mucinous (5). The serous subtype is the most common and 
accounts for ~70% of all cases (6). As different histological 
subtypes display distinct clinical behaviours, an improved 
understanding of the underlying molecular mechanisms may 
be obtained by focusing on a certain subtype. Thus, the present 
study focused on serous ovarian cancer (SOC), which is char‑
acterized by tumours situated at the fallopian tube or ovarian 
surface epithelial‑like cells (7).

In the past decade, high‑throughput transcriptomics tech‑
niques such as microarray sequencing and RNA‑seq have 
been extensively used for discovery and functional studies 
of several diseases, such as multiple sclerosis, schizophrenia 
and different types of cancer (8). Several online databases, 
including the Gene Expression Omnibus  (GEO) and The 
Cancer Genome Atlas (TCGA) are readily available for use of 
these techniques. Thus, the present study aimed to identify the 
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core genes that may act as potential biomarkers or treatment 
targets for SOC. To achieve this aim, various bioinformatics 
approaches, accompanied with online datasets were used, and 
clinical validation of patient samples were assessed.

Materials and methods

Data collection and identification of differentially expressed 
genes (DEGs). The gene expression profiles of the GSE18520 (9) 
and GSE14407 (10) datasets were downloaded from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo) to identify the 
DEGs. Both datasets were based on the GPL570 Affymetrix 
Human Genome U133A  2.0 Array platform (Affymetrix; 
Thermo Fisher Scientific, Inc.). The GSE18520 dataset 
included 53 SOC samples and 10 normal samples (9), and the 
GSE14407 dataset included 12 SOC samples and 12 normal 
samples (10), and all those normal samples were derived from 
non‑ovarian disease subjects. In addition, GSE12470 dataset, 
including 43 SOC and 10 normal tissue samples, was down‑
loaded from the GEO database to validate gene expression 
derived from the aforementioned datasets (11).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses. The 
EGSEA package (version 3.5.0), which integrates multiple 
gene set enrichment analyses (GSEA) into a single ensemble 
framework (12), was used to perform GO and KEGG pathway 
enrichment analyses. P<0.05 was considered to indicate statis‑
tically significant difference.

Protein‑protein interaction (PPI) network construction. The 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (https://string‑db.org/) was used to 
acquire the information on the PPIs between the DEGs, and 
Cytoscape software 3.6.1 (https://cytoscape.org/) was used to 
construct the PPI network. DEGs with at least 10 interactions 
were considered as initial candidate core genes. Subsequently, 
the MCODE (version 1.4.2) plugin in Cytoscape was used 
to identify the modules that contained the core genes within 
the PPI network (degree cut‑off ≥2; node score cut‑off ≥0.2; 
K‑core ≥2; max depth, 100).

Identification of genes associated with overall survival. The 
TCGA‑OV RNA‑seq datasets (https://cancergenome.nih.gov) 
were accessed and downloaded using the TCGAbiolinks package 
(version 2.14.1) with the function of ‘GDCquery’ (project = 
‘TCGA‑OV’, data.type = ‘Gene expression quantification’ 
and platform = ‘Illumina HiSeq’) and ‘GDCdownload’ (13). 
Individuals with histological subtypes other than serous 
adenoma or with incomplete data on tumour stage, sex, age at 
diagnosis, cancer site and survival outcomes were excluded. 
Following exclusion, a total of 300 serous ovarian adenocarci‑
noma samples were included in the present study to perform 
survival analysis. Cox regression analysis was performed to 
identify the DEGs with potential prognostic values.

Patient enrolment. Given that some SOC samples did not 
have the adjacent tissues in the selected tissue repository, 40 
tumour tissues and 10 adjacent normal tissues were collected 
from patients with SOC between July 2015 and July 2018. All 

patients underwent surgery at the Department of Gynecology, 
The First Affiliated Hospital of Wenzhou Medical University 
(Wenzhou, China). Samples were taken within 10 min after 
excision, and immediately stored in liquid nitrogen until further 
experimentation. All diagnoses were histologically confirmed 
and tumour grades were re‑evaluated by two independent 
pathologists who were blinded to the result. The tumours were 
graded according to the Silverberg grading system (14). The 
original clinical data were obtained from hospital medical 
records and included patient age, tumour size, Federation of 
Gynaecology and Obstetrics stage (15), histological grade, 
serum CA125 level and lymph node metastasis status. None of 
the patients had received radiotherapy, chemotherapy or immu‑
notherapy prior to surgery. The present study was approved 
by the Research Ethics Committee of The First Affiliated 
Hospital of Wenzhou Medical University (Wenzhou, China), 
and written informed consent was provided by all participants 
prior to the study.

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
was extracted from SOC and adjacent normal tissues using the 
ReliaPrep RNA Cell Miniprep system (Promega Corporation). 
RNA was eluted in 60  µl RNase‑free water, and RNA 
concentration was measured using a NanoDrop  ND‑1000 
spectrophotometer (Thermo Fisher Scientific, Inc.). Total RNA 
was reverse transcribed into cDNA using the iScript Reverse 
Transcription kit, and qPCR was subsequently performed 
using the SYBR®‑Green Supermix on a Bio‑Rad CFX 96 PCR 
instrument (all from Bio‑Rad Laboratories, Inc.). All 
processes were performed according to the manufac‑
turer's protocols. The primer sequences used for qPCR were 
designed using Primer‑BLAST (https://www.ncbi.nlm.nih.
gov/tools/primer‑blast/index.cgi?LINK_LOC=BlastHome) and 
purchased from Sigma‑Aldrich; Merck KGaA (Table I). The 
following thermocycling conditions were used for qPCR: Initial 
denaturation 1 min at 95˚C; 33 of cycles of denaturation at 95˚C 
for 30 sec, annealing at 60˚C for 20 sec and elongation at 72˚C 
for 30 sec; and final extension at 72˚C for 5 min. Relative expres‑
sion levels were calculated using the 2‑ΔΔCq method (16) and 
normalized to the internal reference gene GAPDH. All experi‑
ments were performed in triplicate. Then, the SOC samples 
were divided into two groups based on mean kinesin family 
member 11 (KIF11) expression, namely high (≥ mean expres‑
sion) and low (< mean expression) groups.

Statistical analysis. R software 3.6.1 (https://www.r‑project.
org)  (17) and Bioconductor packages (http://www.biocon‑
ductor.org) were used to analyze the GEO and TCGA datasets 
and produce all figures (18). Unpaired Student's t‑test was used 
to compare continuous variables, whereas χ2  test was used 
to compare categorical variables. Univariate Cox regression 
analysis was performed to determine genes with potential 
prognostic value in patients with SOC, which were further 
subjected to multivariate Cox regression analysis.

The Bioconductor edgeR package (version 3.28.1) (https://
www.bioconductor.org/packages/release/bioc/html/edgeR.html) 
was used to assess gene expression levels, which was consistent 
with the method used to analyse the GEO datasets. The limma 
package (version 3.42.2) (https://www.bioconductor.org/pack‑
ages/release/bioc/html/limma.html) in R software was used 
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to screen DEGs between tumour and normal tissue samples, 
with adjusted P<0.05 and |log2 fold‑change (FC)| >1 set as the 
cut‑off criteria. Overall survival analysis was performed using 
the survminer package (version 0.4.6) (https://cran.r‑project.
org/web/packages/survminer/index.html) and log‑rank test. For 
survival analysis with log‑rank method, we first determined 
the optimal cut‑off value for continuous gene expression by the 
maximally selected rank statistics from the maxstat package 
(version 0.7‑25) (https://cran.r‑project.org/package=maxstat). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Identification of DEGs between tumour and normal tissue 
samples. The limma package in R  software was used to 
screen DEGs between tumour and normal tissue samples, 
with adjusted P<0.05 and |log2FC|  >1 set as the cut‑off 
criteria. A total of 410 and 804 DEGs were screened from 
the GSE18520 and GSE14407 datasets, respectively. After 
filtering overlapping DEGs with consistent differential 
expression direction, 198 DEGs were identified across the 
two datasets, including 81 upregulated and 117 downregu‑
lated DEGs (Table SI).

GO and KEGG pathway enrichment analyses. GO and 
KEGG pathway enrichment analyses were performed using 
the EGSEA package in R software to identify the molecular 
mechanisms of SOC. The results demonstrated that ‘systemic 
lupus erythematosus’, ‘alcoholism’, ‘fanconi anemia pathway’, 
‘cell cycle’, ‘DNA replication’, ‘biosynthesis of amino acid’ 
and ‘glycine, serine and threonine metabolism’ were among 
the top 20 significantly enriched pathways across the two 
GEO datasets (Fig. 1A). In addition, GO enrichment analysis 
indicated that the genes significantly enriched in ‘spindle 

organisation’, ‘mitotic sister chromatid segregation’, ‘mitotic 
chromosome condensation’, ‘phase of mitotic cell cycle’, 
‘mitotic spindle’, ‘regulation of phosphorylation’, ‘mitotic 
cell cycle M phase’, ‘nucleosome assembly’ and ‘regulation 
of transcription involved in the G1/S phase of the mitotic cell 
cycle’ were among the top 20 significant gene sets in the two 
GEO datasets (Fig. 1B).

Identification of core genes using PPI and modular analyses. 
Cytoscape software and the STRING database were used to 
identify the core genes. The 198 DEGs were uploaded onto 
Cytoscape to construct the PPI network, which comprised 
130 nodes and 387 edges. Of the 198 DEGs, 68 were extracted 
from the PPI network, of which 24 critical node genes were 
identified with the criterion filtering degree ≥10 (each core gene 
had at least 10 interactions; Fig. 2). Then, the MCODE plugin 
was used to detect significant modules, and the module with 
the highest degree contained 20 nodes and 189 edges (Fig. 3). 
Those 20  genes were considered as core SOC genes, 
included thyroid hormone receptor interactor 13 (TRIP13), 
RAD51 associated protein 1 (RAD51AP1), DLG associated 
protein 5  (DLGAP5), kinesin family member 11  (KIF11), 
kinesin family member 20A (KIF20A), family with sequence 
similarity 83 member D (FAM83D), protein regulator of cyto‑
kinesis 1 (PRC1), cell division cycle associated 5 (CDCA5), 
BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), 
CDC28 protein kinase regulatory subunit 2 (CKS2), kinesin 
family member 4A  (KIF4A), maternal embryonic leucine 
zipper kinase (MELK), kinesin family member 15 (KIF15), 
cell division cycle 20 (CDC20), forkhead box M1 (FOXM1), 
centrosomal protein 55 (CEP55), TTK protein kinase (TTK), 
ubiquitin conjugating enzyme E2 C (UBE2C), centromere 
protein F (CENPF) and kinesin family member 14 (KIF14), 
all of which were significantly associated with the 'cell cycle' 
(P=0.001), ‘ATP‑dependent microtubule motor activity, 

Figure 1. Gene set enrichment analysis based on entire gene expression, including DEGs or non‑DEGs. (A) KEGG pathway enrichment analysis. (B) GO gene 
set enrichment analysis. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; avg, average.
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plus‑end‑directed’ (P=0.001), ‘microtubule binding’ (P<0.001), 
‘microtubule motor activity’ (P<0.001), ‘tubulin binding’ 
(P<0.001), ‘motor activity’ (P<0.001), ‘ATPase activity’ 
(P<0.001), ‘kinesin binding’ (P=0.003), ‘ATP‑dependent 
microtubule motor activity’ (P=0.003) and ‘Ubiquitin medi‑
ated proteolysis’ (P=0.016) (Table SII).

Identification of genes predicting overall survival. Univariate 
Cox regression analysis was performed to determine the poten‑
tial prognostic genes for SOC based on TCGA data. A total of 10 
significant genes were identified, including butyrylcholinesterase 
(BCHE) (P=0.032), proteoglycan 4 (PRG4) (P=0.011), cwcv and 
kazal like domains proteoglycan 1 (SPOCK1) (P=0.038), aqua‑
porin 9 (AQP9) (P=0.036), fibroblast growth factor 13 (FGF13) 
(P=0.024), calbindin 2 (CALB2) (P=0.033), nucleosome assembly 
protein  1 like  2  (NAP1L2) (P=0.002), claudin  3  (CLDN3) 
(P=0.011), grainyhead like transcription factor  2  (GRHL2) 
(P=0.029) and KIF11 (P=0.017), which were subsequently 
subjected to multivariate Cox regression analysis with adjust‑
ment for age and TNM stage (19) (Table II). Multivariate analysis 
demonstrated that high expression of CLDN3 independently 
showed a favourable prognosis (P=0.028), whereas high expres‑
sion of FGF13 (P=0.021) and KIF11 (P=0.015) independently 
predicted an inferior overall survival (Table II).

The maximally selected rank statistics method was used 
to determine the optimal cut‑off value for each gene. The 
samples were divided into high and low expression groups for 
each gene as follows: 64 high and 236 low CLDN3 expres‑
sion samples, 265 high and 35 low FGF13 expression samples, 
and 214  high and 86 low KIF11 expression samples. The 
Kaplan‑Meier plots demonstrated that high KIF11 (P=0.023) 
and FGF13 (P=0.0068) expression levels were significantly 
associated with a shorter overall survival time, whereas high 
CLDN3 (P=0.039) expression was significantly associated 
with a longer overall survival time (Fig. 4).

Association between KIF11 expression and clinicopatho‑
logical characteristics of patients with SOC. Due to time 
constraints, only one of the core genes was validated in 

Figure 3. A significant module selected from the protein‑protein interaction 
network. Red nodes represent upregulated genes. Node size indicates the 
number of interactions. Lines represent interactions between the nodes. The 
width of the line indicates the combined score from the Search Tool for the 
Retrieval of Interacting Genes/Proteins database.

Figure 2. Protein‑protein interaction network of differentially expressed genes. Red nodes represent upregulated genes; green nodes represent downregulated 
genes. Node size indicates the number of interactions. Lines represent interactions between the nodes. The width of the line indicates the combined score from 
the Search Tool for the Retrieval of Interacting Genes/Proteins database.
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clinical samples. The representative gene was required to 
meet the following criteria: i) One of the core genes for SOC 
based on online datasets; ii) its expression was associated with 
prognosis; and iii) its high expression was positively associ‑
ated with tumorigenesis and poor prognosis, which is essential 
to perform gene knockout experiments to further investigate 
functions in vitro and in vivo. KIF11 was the only core gene to 
meet these requirements and thus was selected for RT‑qPCR 
analysis in 40 SOC and 10 adjacent normal tissue samples.

RT‑qPCR analysis demonstrated that KIF11 expres‑
sion was significantly upregulated in tumour tissues by 
~3‑fold compared with that in adjacent normal tissues 
(P<0.001)  (Fig.  5A). Analysis of the GSE12470 dataset 
confirmed these results (P<0.01)  (Fig.  5B). Patients were 
subsequently divided into two groups based on mean KIF11 
expression, namely high (≥ mean expression) and low (< mean 
expression) expression groups. The association between KIF11 
expression and clinicopathological characteristics of patients 
with SOC are presented in Table  III. High KIF11 expres‑
sion was significantly associated with a high tumour grade 
(P=0.042), TNM stage (P=0.024) and positive lymph node 
metastasis (P=0.026).

Discussion

The pathogenesis of SOC is a complex process that is driven 
by specific genetic and epigenetic alterations. For example, 

elevated ST6GAL1 expression and hypermethylation of 
RASSF1A have been demonstrated to play critical roles in 
ovarian cancer (20,21). The present study aimed to identify the 
core genes and significant gene sets for SOC to improve the 
understanding of the potential molecular mechanisms, which 
may help develop novel biomarkers or therapeutic targets for 
this disease. The present study also aimed to identify predic‑
tive genes for SOC prognosis.

Several core genes serve crucial roles in the tumorigenesis 
and progression of different types of cancer. For example, 
KIF11 is a member of the kinesin‑like protein family and 
acts as a critical spindle motor protein during the establish‑
ment of a bipolar mitotic spindle (22). The inhibition of KIF11 
blocks cell cycle progression, causes abnormal chromosome 
segregation and leads to cell death in head and neck squa‑
mous carcinoma (23). Similar results have been observed for 
glioblastoma, indicating that KIF11 is a potential anticancer 
target (24). Furthermore, KIF11 can promote the tumorigenesis 

Figure 4. Overall survival analysis of the three core genes CLDN3, FGF13 and KIF11 in 300 serous ovarian cancer samples from The Cancer Genome Atlas 
database.

Figure 5. KIF expression between SOC and normal tissues. (A) Relative 
KIF11 expression between 40 SOC and 10 adjacent normal tissues from the 
clinical samples. (B) KIF11 expression between 43 SOC and 10 normal tissue 
samples from the GSE12470 dataset.

Table I. Forward and reverse primer sequences used for quan‑
titative PCR.

Gene	 Sequences (5'→3')

KIF11	 F:	GGTGGTGAGATGCAGGTAGG
	 R:	CAGAACGCGGAGAACCAAGA
GAPDH	 F:	CTGGGCTACACTGAGCACC 
	 R:	AAGTGGTCGTTGAGGGCAATG

F, forward; R, reverse. KIF11, kinesin family member 11.
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of oesophageal squamous cell carcinoma and colorectal 
cancer cell lines (25). Inhibiting KIF11 expression signifi‑
cantly suppresses the proliferation of oral cancer cells (26). 
CEP55 encodes a protein involved in microtubule bundling, 

which is required for cytokinesis (27). CEP55 knockdown can 
suppress breast cancer proliferation (28). In addition, upregu‑
lation of CEP55 is positively associated with the aggressive 
features and unfavourable prognosis of ovarian cancer (29). 
TRIP13 can promote invasion in colon cancer (30), whereas 
RAD51AP1 is upregulated in ovarian cancer and is associated 
with cell proliferation (31). Taken together, these core genes 
are considered promising suppression/driver genes for SOC 
and are worth further investigation.

The present study identified SOC‑associated gene sets in 
addition to the core genes. KEGG‑annotated cell cycle and 
DNA replication were significantly elevated in SOC. The gene 
sets annotated by GO analysis to be associated with processes 
involved in the cell cycle, such as mitotic sister chromatid 
segregation, were also upregulated in SOC. Abnormal 
cell cycle progression is a critical trigger of tumorigenesis, 
and the occurrence of SOC is associated with cell cycle 
alteration (32). In addition, the results of the present study 
demonstrated that cell cycle and microtubule‑associated gene 
sets were enriched in the top‑ranked module comprising all 
core genes. Microtubules are a crucial component of the cell 
cytoskeleton, which is involved in a number of functions and 
processes in cancer, such as the cell cycle (33). Thus, it was 
hypothesized that microtubules serve crucial roles in SOC, 
which may facilitate the progression of SOC with more 
specific mechanisms.

A total of three independent DEGs associated with overall 
survival, namely FGF13, CLND3 and KIF11, were identi‑
fied in the present study. FGF13 encodes fibroblast growth 
factor (FGF)13, which is a member of the FGF family (34). 
The members of this family are involved in various mitogenic 
and cell survival activities, including morphogenesis, tumour 
growth and invasion (34). Elevated FGF13 expression medi‑
ates resistance to platinum‑based drugs in cervical cancer 
cells (35). In addition, a significant association exists between 
high cytoplasmic FGF13 staining and biochemical recurrence 
risk, and the mRNA and protein expression levels of FGF13 
in prostate cancer cell lines are higher compared with those 

Table II. Univariate and multivariate analyses of genes with overall survival in TCGA SOC cohort.

	 Univariate analysis	 Multivariate analysisb

	--------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------- 
Gene	 HR	 95% CI lower	 95% CI upper	 P-value	 HR	 95% CI lower	 95% CI upper	 P-value

BCHE	 0.828	 0.696	 0.984	 0.032a	 1.120	 0.724	 1.740	 0.605
PRG4	 0.911	 0.847	 0.979	 0.011a	 1.140	 0.734	 1.770	 0.563
SPOCK1	 1.080	 1.000	 1.170	 0.038a	 1.140	 0.734	 1.770	 0.562
AQP9	 1.080	 1.010	 1.160	 0.036a	 1.120	 0.722	 1.740	 0.613
FGF13	 1.090	 1.010	 1.170	 0.024a	 1.160	 1.042	 1.800	 0.021a

CALB2	 1.070	 1.010	 1.140	 0.033a	 1.120	 0.724	 1.740	 0.606
CLDN3	 0.883	 0.806	 0.968	 0.008a	 0.920	 0.729	 0.980	 0.028a

KIF11	 1.130	 1.020	 1.260	 0.017a	 1.110	 1.015	 1.720	 0.015a

NAP1L2	 1.210	 1.070	 1.360	 0.002a	 1.130	 0.729	 1.750	 0.584
GRHL2	 1.070	 1.010	 1.130	 0.029a	 1.130	 0.727	 1.750	 0.590

We listed the 10 significant genes for univariate analysis. aP<0.05; bMultivariate analysis was performed with adjustment of age and TNM 
stage. HR, hazard ratio; CI, confidence interval; TNM, tumor-node-metastasis.

Table III. Association between KIF11 expression and clini‑
copathological characteristics of patients with serous ovarian 
cancer (n=40).

	 KIF11 expression
	----------------------------------------------
Characteristic	 High, n (%)	Low, n (%)	 P-value

Age, years			   >0.999
  ≥60	 11 (55)	 10 (50)
  <60	 9 (45)	 10 (50)
Tumour diameter, cm			   >0.999
  ≥5	 13 (65)	 12 (60)
  <5	 7 (35)	 8 (40)
Tumour grade			   0.042a

  1	 3 (15)	 9 (45)
  2	 6 (30)	 7 (35)
  3	 11 (55)	 4 (20)
TNM stage			   0.026a

  I-II	 5 (25)	 13 (65)
  III-IV	 15 (75)	 7 (35)
Serum CA-125 level, U/ml			   0.751
  ≥35	 10 (50)	 8 (40)
  <35	 10 (50)	 12 (60)
Lymph node metastasis			   0.024a

  Positive	 12 (60)	 4 (20)
  Negative	 8 (40)	 16 (80)

aP<0.05. TNM, tumor-node-metastasis.
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in prostate epithelial cell lines (36). FGF13 can promote the 
capability of lung cancer cells to resist the stressful effects 
of cancer‑associated deregulation  (37). CLND3 encodes 
Claudin 3, which is associated with the tight junction repre‑
senting cell‑to‑cell adhesion (38). The association between 
CLND3 and cancer remains controversial; upregulation of 
CLND3 has been reported to act as a biomarker and a predictor 
of poor prognosis in different types of cancer, including 
triple‑negative breast, oesophageal and gastric cancer (39,40). 
By contrast, downregulation of CLDN3 has been demonstrated 
to be associated with the progression and metastasis of lung 
squamous cell carcinoma (41). Another study has confirmed 
that the loss of CLND3 induces Wnt/β‑catenin activation, 
which is exacerbated through STAT‑3 activation, leading to 
a poor prognosis in patients with colon cancer (42). Notably, 
KIF11 was identified as a core gene and an overall survival 
predictive gene in the present study. Consistent with the results 
of the present study, KIF11 is associated with poor overall 
survival in non‑small cell lung cancer (43).

Previous studies have also used online transcriptomics data 
to investigate the molecular mechanisms of ovarian cancer. 
For example, Xu et al (44) used three online GEO datasets and 
identified key genes and pathways specific to ovarian cancer. 
Of note, KIF11 was also identified as one of the critical gene in 
the above study, which may be explained by the high proportion 
of serous subtypes among all ovarian cancer. In addition, their 
study failed to provide any in vitro or in vivo evidence. Similar 
to the present study, Guo et al (45) used transcriptomics, long 
non‑coding RNA (lncRNA) and transcription factor datasets 
to develop a lncRNA‑based risk score model to predict SOC 
prognosis. However, utilising multiple datasets may lead to 
misleading results when neglecting the batch effect  (46). 
The batch effect is defined as a variability among different 
batches caused by several reasons, such as reagents and equip‑
ment made in batches, thus having systematic effects on the 
measurements; removal of the batch effect prior to merging 
different batches is essential (47). The present study used three 
different datasets; however, they were analysed separately. The 
dataset‑dependent result was obtained, and then the overlap‑
ping data were identified. Thus, the batch effect should not 
have influenced the results of the present study.

Considering the promising bioinformatics results for 
KIF11 and the lack of previous studies confirming the asso‑
ciation between KIF11 and SOC in vivo or in vitro, the role 
of KIF11 in SOC was further validated in clinical samples 
in the present study. KIF11 expression was significantly 
upregulated in tumour tissues compared with that in normal 
tissues. Furthermore, KIF11 expression was associated with 
a high histological grade, a high TNM stage and positive 
lymph node metastasis in univariate analysis, all of which 
are generally associated with unfavourable prognosis. GO 
annotation of gene sets demonstrated that KIF11 was involved 
in microtubule‑associated pathways, such as microtubule 
motor activity. As microtubules serve a crucial role in SOC 
derived from the present study, it was speculated that elevated 
KIF11 may induce and promote SOC progression through its 
regulatory effect on microtubules. However, further studies 
are required to validate this assumption. Taken together, the 
results of the present study suggested that KIFF11 may be a 
tumour‑promoting gene in SOC.

To the best of our knowledge, the present study was the first 
to screen core genes for SOC via bioinformatics analysis and 
to investigate the association between KIF11 expression and 
the clinicopathological characteristics of patients with SOC. 
However, the present study was not without limitations. First, 
only two online databases with small sample sizes were used to 
investigate the core genes for SOC. Second, although clinical 
samples were assessed to determine the association between 
KIF11 expression and aggressive SOC behaviour, the present 
study lacked both in vitro and in vivo validation. Furthermore, 
follow‑up data were not collected for the assessed samples, 
which may weaken the conclusions. Thus, prospective studies 
will aim to validate the role of KIF11 in SOC via in vitro and 
in vivo experiments. In addition, a study with a large sample 
size and complete follow‑up data is required to further validate 
the results of the present study.

In conclusion, the present study identified potential core 
genes for SOC. Furthermore, KIF11 was validated as the 
representative core gene, and the results indicated that it may 
be a tumour‑promoting gene. Thus, the results of the present 
study provided a potential biomarker and therapeutic target for 
SOC.
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