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Abstract. Breast cancer (BC) is the most common type 
of cancer in women worldwide, and despite advances in 
treatments, its incidence and mortality are increasing. 
Therefore, it is necessary to develop new, non‑invasive 
tests that provide more accurate diagnosis and prognosis 
in a timely manner. A promising approach is measuring the 
presence of biomarkers to detect tumors at various stages 
and determine their specific characteristics, thus allowing 
for more personalized treatment. MicroRNAs (miRNAs) 
serve a role in gene expression, primarily by interacting 
with messenger RNAs, and may be potential biomarkers 
for detecting cancer. They are detectable in tissues and 
blood, including plasma and/or serum, are stable and often 
tumor specific. Also, different miRNAs are associated 
with specific BC molecular subtypes. Triple‑negative BC 
(TNBC) is a type of BC in which the primary targets for 
hormonal therapy are absent. It is an aggressive phenotype, 
which frequently metastasizes and is associated with an 
unfavorable prognosis. The present review focuses on circu‑
lating miRNAs in patients with TNBC, with an emphasis 
on their interaction with the immune response checkpoint 
genes PD‑1, PD‑L1 and CTLA4. Modulation and response 
of the immune system are of interest in cancer treatment due 
to the success of immunotherapy in the treatment of various 
neoplasms. Based on the findings of this literature review 
and the in silico analysis performed as part of this review, it 
is concluded that circulating hsa‑miR‑195 and hsa‑miR‑155 
in TNBC interact with checkpoint genes involved in the 

immune response. Further analysis of the expression of these 
circulating miRNAs and their association with prognosis 
in patients with TNBC treated with immunotherapy should 
be assessed to evaluate their possible use as non‑invasive 
predictive biomarkers. In addition, functional studies to 
analyze biologically relevant targets in the development and 
prognosis of TNBC, which could be therapeutic targets, are 
also recommended.
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1. Introduction

Breast cancer (BC). BC is a heterogeneous malignant tumor 
that develops in the mammary gland. It has the highest inci‑
dence and mortality rates of all types of cancer in women 
worldwide, with >2,088,849 cases and 626,679 deaths reported 
in 2018, making it a primary global public health issue. The 
incidence of BC varies greatly with geographic region, but 
the death rates are less variable. For example, New Zealand 
and Australia reported an estimated age‑standardized rate 
(ASR per 100,000) for incidence of 92.6 and 94.5, respectively, 
and a death rate (ASR) of 14.2 and 12.3, respectively, whereas 
for Southern and Central Asia the incidence and death ASRs 
were 25.9 and 13.6, respectively (1). Nearly 75% of all cases 
and 60% of deaths occur in high‑ and upper‑middle‑income 
countries. However, mortality rates among women <50 years 
old are higher in countries with low and lower‑middle income 
compared with countries with high or upper‑middle income (2). 
Regarding 5‑year survival rates, there are significant differ‑
ences between regions; in the United States and Australia 
the 5‑year survival rate is estimated to be 90%, whereas in 
South Africa it is 40% (3). Not only are there epidemiological 
differences in BC, there are also differences in tumor biology 
that affect the prognosis and response to treatment.
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Classification of BC. BC is a highly heterogeneous disease that 
has been classified according to a variety of characteristics, such 
as histology, anatomical features (Tumor‑Node‑Metastasis 
staging system) (4), tumor grade and molecular traits. BC is 
classified histologically as non‑invasive (in situ) or invasive 
by location. At present, 21 histological subtypes have been 
described, the most frequently occurring of which are ductal 
carcinoma (40‑75% of cases) and lobular carcinoma (5‑15% of 
cases) (5). BC is not only classified according to its clinical 
and histopathological characteristics, but also according to its 
prognosis and molecular traits (4).

In 2000, Perou et al (6) proposed the first molecular clas‑
sification of BC based on global expression profiles. They 
described the subtypes estrogen receptor (ER)+/luminal‑like, 
human epidermal growth factor receptor 2 (HER2) enriched, 
basal‑like and normal‑like (Table  I). Subsequent studies 
confirmed the molecular subgroups, and new prognostic tests 
based on messenger RNA (mRNA) expression profiles in 
tumor tissue, such as MammaPrint®, Oncotype Dx®, PAM50®, 
Endopredict® and 2‑gene Breast Cancer Index, became avail‑
able. These tests, however, are used for specific cases; for 
example, MammaPrint® is used for women in stage I and II 
ER+ to predict recurrence at 10 years (7). However, the use 
of expression profile tests has not been applied on a larger 
scale due to technical and financial limitations. As a conse‑
quence, immunohistochemical  (IHC) biomarkers are used 
as an alternative method for classification (8). Ad hoc inter‑
national agreements have developed and ratified guidelines 
for BC evaluation and classification according to the expres‑
sion levels of the following biomarkers: Estrogen receptor, 
progesterone receptor, HER2 and Ki‑67 proliferation factor 
(Table I) (9). IHC biomarkers are essential for classification, 
prognosis and therapeutic decision‑making in BC. Tumors that 
are positive for hormonal receptors as well as those that express 
high levels of HER2 are susceptible to specific therapies and 
represent ~85% of all cases of BC. However, ~15% of BC cases 
are classified as triple‑negative BC (TNBC) as they do not 
express hormonal receptors or have high expression levels of 
HER2; thus endocrine therapy and trastuzumab are inefficient 
treatments for this subgroup (10). In recent years, TNBC has 
been the subject of numerous clinical and biological studies 
with the aim of improving understanding of these tumors and 
improving patient outcomes.

Clinical and molecular characteristics of TNBC. TNBC is 
a subgroup of heterogeneous tumors that primarily affects 
younger patients of African and Hispanic ethnicity, although it 
has also been reported in patients of Asian origin (11). These 
tumors are generally larger than non‑TNBC types, and patients 
who present with affected lymph nodes at diagnosis have a high 
risk of metastasis and mortality. The histological traits of these 
tumors include high grade and a high mitotic index, although 
low grade triple‑negative neoplasms have been reported (12). 
Several studies have shown lower 5‑year survival rates in 
patients with TNBC compared with patients with other molec‑
ular subtypes of BC (75 vs. 93%). Hispanic patients with TNBC 
have lower survival rates compared with those with other BC 
subtypes (62 vs. 80%) (13). It has been reported that 28‑36% of 
patients with TNBC benefit from neoadjuvant chemotherapy 
based on a combination of anthracyclines, alkylating agents 

and microtubule inhibitors  (14). Gass  et  al  (15) observed 
higher rates of complete pathological response  (cPR) to 
taxane‑platinum combinations  (50%), compared with 
anthracycline‑taxane combinations (41.8%) in patients with 
TNBC. The cPR rate in BRCA1/2‑negative patients with 
TNBC to neoadjuvant therapy based on carboplatin is higher 
than that in HER2‑positive patients with BC (16). Recurrence 
occurs, on average, after 1.6 years, with a recurrence rate 
of 25% in patients with TNBC, 74% of which is systemic 
recurrence  (17). Among recurrent cases, 51% have distant 
metastases in multiple sites, most frequently in the lung (56%), 
bone (44%), liver (30%) and brain (22%) (17). This highlights 
the importance of identifying biomarkers to predict recurrence 
and metastasis as this may improve treatments and prognoses, 
thus increasing survival rates and times. There is a need for 
molecular analysis that recognizes alterations that may impact 
prognosis and prediction, and enables improvements and/or 
modifications in therapy to be made in a timely manner.

The first biological characteristic described for TNBC 
was its association with mutations in the BRCA genes, partic‑
ularly BRCA1 (15). Subsequently, various clinical studies 
assessed the benefits of immunotherapy, particularly the use 
of programmed cell death 1 ligand 1 (PD‑L1)/programmed 
cell death 1 (PD‑1) inhibitors, in patients with TNBC (18). 
Although the rate of response to treatment in patients 
selected for PD‑L1/PD‑1 expression was greater (20‑30%) 
than that for non‑selected patients (10%), the cPR results for 
monotherapy were improved when immunotherapy was used 
in combination with other therapeutic agents (18). Improved 
clinical, pathological and molecular characterization of 
TNBC is essential to identify the cases in which specific 
systemic and/or targeted treatments may potentially benefit 
the patient.

To determine the molecular characteristics of TNBC, 
Lehmann et al  (19) analyzed the gene expression profiles 
of 3,247  cases of TNBC. They identified six  subgroups, 
which comprised two basal‑like subgroups, in addition to 
immunomodulatory (IM), mesenchymal (M), mesenchymal 
stem‑like and luminal androgen receptor (LAR) subgroups. 
In further analyses of inflammatory infiltrate and stromal 
cells, TNBC tumors were stratified into four categories: 
Basal 1, basal 2, M and LAR (Table II) (20). These molec‑
ular subgroups exhibit differences in cPR to neoadjuvant 
anthracycline‑taxane chemotherapy. In particular, significant 
differences were identified in the cPR for basal type 1 tumors 
compared with the other subgroups (41 vs. 31%; Table II). 
Similarly, Burstein  et  al  (21) identified four molecular 
subtypes according to expression profiles and copy‑number 
variations, which they termed LAR, M, basal‑like immuno‑
suppressor (BLIS) and basal‑like immunoactivator (BLIA). 
Additionally, they found that the BLIA subtype was asso‑
ciated with improved overall survival compared with the 
other subtypes, whereas BLIS was associated with the worst 
overall survival. Furthermore, they identified potential thera‑
peutic targets, which included androgen receptor, mucin 1, 
platelet‑derived growth factor receptor and PD‑1. The 
clinical, pathological and molecular heterogeneity of TNBC 
requires comprehensive analysis to achieve a consensus 
regarding its classification in order to determine suitable 
therapies and improve its prognosis.
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Another factor that has been the subject of various 
studies of BC is non‑coding RNA, particularly microRNAs 
(miRNAs). However, non‑coding RNAs are not considered in 
current molecular classification systems of TNBC despite their 
regulatory importance; nevertheless, numerous studies have 
identified miRNA signatures that may differentiate molecular 
subtypes (22‑24).

2. miRNAs as biomarkers in BC

miRNAs dysregulation has been shown in the majority of 
different types of cancer, including BC (25). Some miRNAs 
are upregulated, whereas others are downregulated in BC 
tissues compared with healthy tissues, which highlights their 
potential as biomarkers.

PubMed (https://ncbi.nlm.nih.gov/pubmed/; accessed 
January 10, 2020) includes 5,351 reports regarding miRNAs 
in BC (search term, ‘microRNA AND breast cancer’); 
537  reports for ‘microRNA AND triple negative breast 
cancer’; 207 reports for ‘circulating microRNA AND breast 
cancer’; and 21 reports for ‘circulating microRNA AND triple 
negative breast cancer’. The present review highlights the find‑
ings of various studies on miRNAs and BC, with a focus on 
circulating miRNAs and TNBC.

miRNAs. miRNAs are small RNAs that are primarily consid‑
ered to function as regulators of mRNAs. miRNAs interact with 
complementary sequences in the 3' or 5' untranslated regions 
(UTRs) of mRNAs, thus blocking translation or promoting 
the breakdown of that mRNA (26). A single miRNA can 
interact with and regulate a wide range of mRNAs (27). Other 
noncanonical functions of miRNAs include increasing the 
translation of target mRNAs by recruiting protein complexes 
and increasing ribosome biogenesis (28). Since the discovery 
of miRNAs (29), our understanding of the regulation of gene 
expression and its role in a wide variety of biological functions 
has improved greatly.

The first miRNA repository (version 1.0) was published 
in December 2002 and included 218 precursor and mature 
miRNAs from five different species (http://www.mirbase.
org/). The most recent database (version  22) contains 

271 organisms with 48,860 mature miRNAs. For humans, 
1,917 precursor sequences and 2,654 mature sequences have 
been reported (30).

Structural and functional characterization of miRNAs has 
prompted investigation of their roles in the development and 
progression of various types of cancer. Several studies have 
identified expression profiles of miRNAs in cancer and healthy 
tissues that suggest they function as oncogenes (onco‑miRNAs) 
or tumor suppressor genes (25,31). It is estimated that >50% of 
miRNAs are contained within fragile areas or genomic regions 
associated with cancer (32), and ~60% of coding mRNAs are 
regulated by miRNAs (33).

miRNAs in TNBC. Interest in the molecular characterization 
of TNBC has more recently included miRNAs. The first report 
to indirectly include profiles of miRNA expression in BC, 
including TNBC, was published in 2008 (34). hsa‑miR‑210 
was determined to be associated with a poor prognosis (34). 
A search of PubMed (accessed February 24, 2019; search 
term ‘breast AND cancer AND triple negative AND miRNA) 
found 548 reports on this topic. The most notable of these 
are included in Tables III (23,35‑62) and IV (36,37,46,63‑65), 
where there is a brief description of some of the most 
representative meta‑analyses.

Li et al (36) analyzed 1,299 BC tumours from the METABRIC 
database (https://www.cbioportal.org/study/summary?id=brca_
metabric) and compared TNBC (n=204) with non‑TNBC 
(n=1,095) samples to identify miRNAs associated with 
survival. They identified 376 differentially expressed miRNAs, 
of which only 10 showed a statistically significant association 
with poor survival in patients with TNBC: hsa‑miR‑301b, 
hsa‑miR‑181a‑2‑3p, hsa‑miR‑105‑5p and hsa‑miR‑93‑3p 
were upregulated; whereas hsa‑miR‑7‑1‑3p, hsa‑miR‑135a, 
hsa‑miR‑628‑5p, hsa‑miR‑638, hsa‑miR‑3173 and hsa‑miR‑4245 
were downregulated in TNBC. The authors suggested the use of 
these miRNAs as survival biomarkers exclusive to TNBC, as no 
association was found for these miRNAs in non‑TNBC samples. 
To validate this hypothesis, an analysis was conducted using a 
different dataset (Gene Expression Omnibus; ID, GSE40267), 
confirming the upregulation of four miRNAs: hsa‑miR‑301b, 
hsa‑miR‑181a‑2‑3p, hsa‑miR‑105‑5p and hsa‑miR‑93‑3p, but 
the downregulation of only one miRNA, hsa‑miR‑628‑5p. 
Functional analysis confirmed the roles of hsa‑miR‑93‑3p and 
hsa‑miR‑105 in chemoresistance to cisplatin. It was suggested 
that this resistance is caused by activation of the Wnt/β‑catenin 
pathway, via regulation of secreted frizzled‑related protein 1 (36).

Naorem et al (65) identified 255 differentially expressed 
miRNAs between TNBC and non‑TNBC tumors, of which 
125 were upregulated and 130 were downregulated in TNBC 
compared with in non‑TNBC. The miRNAs with the highest 
levels of expression were hsa‑miR‑135b‑5p, hsa‑miR‑18a‑5p, 
hsa‑miR‑9‑5p and hsa‑miR‑522‑3p. By contrast, hsa‑miR‑190b 
and hsa‑miR‑449a were the most significantly downregu‑
lated miRNAs. hsa‑miR‑522‑3p had the highest number of 
predicted target genes with 1,618, and hsa‑miR‑449a had the 
least with 500. In a pathway enrichment analysis, the Wnt and 
RAS/MAPK signaling pathways were the most frequently 
identified pathways. Activation of the Wnt/β‑catenin pathway 
is associated with poor prognosis in BC and this activation 
may be independent of CTNNB1 mutations (66). Activation 

Table I. Characteristics of molecular subtypes of breast cancer.

	 Immunohistochemical
Molecular subtype 	 classification

Luminal A	 ER+ and/or PR+, HER2‑, Ki67<14%
Luminal B	 HER2‑, ER+ and/or PR+, Ki67≥14%; or
	 HER2+, ER+ and/or PR+, any Ki67+

HER2 	 ER‑, PR‑, HER2+

Triple‑negative	 ER‑, PR‑, HER2‑

Basal‑like	 ER‑, PR‑, HER2‑

ER, estrogen receptor; PR, progesterone receptor; HER2, human 
epidermal growth factor receptor  2. Taken and modified from 
St. Gallen Consensus 2011 (9).
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of the RAS/MAPK pathway has been associated with reduced 
lymphocyte infiltration in TNBC, and also predicts the 
response to immune checkpoint inhibitors (67).

Studies based on information available in public databases 
have focused on the interactions and competition networks of 
various types of RNA. Koduru et al (63) analyzed different 
small non‑coding RNAs and long non‑coding RNA (lncRNAs) 
using next generation sequencing data from TNBC and healthy 
tumor adjacent tissues. They identified 55 differentially 
expressed miRNAs, of which hsa‑miR‑301b, hsa‑miR‑183, 
hsa‑miR‑18a, hsa‑miR‑3074 and hsa‑miR‑96 were upregu‑
lated in TNBC compared with the adjacent non‑tumor tissue. 
By contrast, hsa‑miR‑122, hsa‑miR‑204, hsa‑miR‑135a‑2, 
hsa‑miR‑139 and hsa‑miR‑215 were downregulated in TNBC 
compared with the adjacent non‑tumor tissue. Changes in the 
levels of expression associated with clinical stage were also 
assessed, and six miRNAs (hsa‑miR‑135a‑2, hsa‑miR‑16‑1, 
hsa‑miR‑215, hsa‑miR‑301b, hsa‑miR‑486 and hsa‑miR‑517b) 
were found to be associated with stages I‑III. The number 
of dysregulated miRNAs was greater in the earlier stages of 
cancer, dysregulated small non‑coding RNAs were enriched in 
chromosomes 14, 11 and 1, and the most commonly affected 
pathway was the TGF‑β signaling pathway (63).

Yuan et al (37) also identified RNAs that were differentially 
expressed between TNBC and the healthy adjacent tissue, and 
found that hsa‑miR‑105‑1, hsa‑miR‑519a‑1, hsa‑miR‑105‑2, 
hsa‑miR‑767 and hsa‑miR‑516a‑1 were upregulated, while 
hsa‑miR‑486‑1, hsa‑miR‑486‑2, hsa‑miR‑4732, hsa‑miR‑139 
and hsa‑miR‑451a were downregulated. They later correlated 
five modules with a weighted gene co‑expression network 
analysis, including 22 hub genes, and identified 11 miRNAs 
associated with those hub genes. Of these miRNAs, the 
following were found to form an important part of a competing 
endogenous RNA network: hsa‑miR‑183, hsa‑miR‑9 and 
hsa‑miR‑145. The authors also identified seven upregulated 
RNAs, namely AKAP12, FOS, EMX2OS, MYCNOS, 
RP11‑542B15.1, hsa‑miR‑9 and hsa‑miR‑183 that were associ‑
ated with a poor prognosis, whereas another four upregulated 
mRNAs, namely hsa‑miR‑145, LINC00461, RP11‑576D8.4 
and RP11‑496D24.2, were associated with a favorable prog‑
nosis. It is important to note that clinically relevant miRNAs 
were not among the top unregulated miRNAs.

Yang et al (46) constructed and analyzed an interaction 
network comprising miRNAs, lncRNAs and mRNAs for 

TNBC using RNA‑Seq data for tumors and healthy tissue 
from The Cancer Genome Atlas (https://cancer.gov/tcga). 
They identified 114 differentially expressed miRNAs. The five 
most significantly upregulated miRNAs were hsa‑miR‑105‑2, 
hsa‑miR‑105‑1,  hsa‑miR‑1269a,  hsa‑miR‑767 and 
hsa‑miR‑1269b; whereas hsa‑miR‑133a‑2, hsa‑miR‑133a‑1, 
hsa‑miR‑1‑1, hsa‑miR‑1‑2 and hsa‑miR‑133b were the most 
significantly downregulated genes. In addition, the upregu‑
lation of hsa‑miR‑135b and hsa‑miR‑216a expression was 
positively correlated with overall survival, whereas the 
upregulation of hsa‑miR‑3610 and hsa‑miR‑7706 expression 
was negatively correlated. As part of the competition analysis 
for endogenous RNAs (RNAs‑lncRNAs, mRNA), the authors 
defined a panel of four lncRNAs (LINC00452, ST7‑AS2, 
LINC00461 and LINC00517), three miRNAs (hsa‑miR‑145, 
hsa‑miR‑144 and hsa‑miR‑137), four mRNAs (EZH2, FSCN1, 
SOX11 and KLF4), which were validated by reverse transcrip‑
tion‑quantitative PCR in independent samples. The expression 
of LINC00461 or LINC00517 was found to negatively corre‑
late with the expression of hsa‑miR‑144 or hsa‑miR‑137, 
suggesting regulation by competition and a possible role of 
these transcripts in the development of TNBC.

A recent review of 212 reports by Piasecka et al (68) reported 
that several miRNAs that are dysregulated in TNBC are asso‑
ciated with epithelial‑mesenchymal transition (EMT); some 
of these, hsa‑miR‑10b, hsa‑miR‑21, hsa‑miR‑29, hsa‑miR‑9, 
hsa‑miR‑221/222 and hsa‑miR‑373 are upregulated, whereas 
others, including hsa‑miR‑145, hsa‑miR‑199a‑5p, hsa‑miR‑200 
family, hsa‑miR‑203 and miR‑205 are downregulated in 
TNBC. In addition, Tang et al (64) identified 48 upregulated 
miRNAs and 74 downregulated miRNAs in TNBC, based on 
data from the database of differentially expressed miRNAs in 
human cancers (https://www.picb.ac.cn/dbDEMC/).

Numerous studies have highlighted the importance of 
detecting circulating miRNAs that are unregulated in TNBC 
tissues, as they could be used as non‑invasive biomarkers. 
These studies are presented in the next section.

3. Circulating miRNAs in BC

Diagnostic or follow‑up tests in BC require biopsies to be 
obtained; however, the acquisition of samples may involve over‑
coming certain technical difficulties, particularly regarding 
small lesions, such as the challenge of obtaining a sample that 

Table II. Molecular classification of triple‑negative breast cancer.

Type	 Characteristics	 Distribution (%)	 cPR (%)

Basal 1	 High grade, early stages	 35	 41
Basal 2	 Growth factors, myoepithelial markers, metaplastic carcinomas	 22	 18
Luminal androgen receptor	 Older women, positive lymph nodes, bone metastasis, infiltrating	 16	 29
	 lobular carcinomas
Mesenchymal	 Pulmonary metastasis, metaplastic carcinomas	 25	 38
Unclassified	 NA	 2	 NA

Characteristics are reflective of the molecular type; they are those most commonly presented for the specified type, but not exclusive for it. 
Modified from Lehmann et al (20). NA, not applicable; cPR, complete pathological response in cohort treated with neoadjuvant chemotherapy.
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represents the entire heterogeneity of the tumor, image‑guided 
biopsies, patient discomfort, infrastructure requirements and 
cost. The assessment of non‑invasive biomarkers, such as those 
present in the circulation, would reduce these inconveniences 
to the patient and limitations in obtaining the samples, and 
may even be used preventively before clinical manifestations 
of the disease are observed. Another advantage of circulating 
biomarkers is that it would be relatively easy to obtain multiple 
samples over a certain time period to monitor various param‑
eters of progression or regression of the disease following 
therapeutic intervention. Additionally, as miRNAs can be 
identified in the urine, blood, plasma, serum, saliva and feces, 
they are readily accessible non‑invasive biomarkers for the 
diagnosis and prognosis of cancer and its follow‑up (69).

The first study to describe the expression of circulating 
miRNAs in BC was published in 2008  (34). In that year, 
other studies assessed the presence of circulating miRNAs 
in patients with various types of cancer  (70,71). Several 
mechanisms for the release of circulating miRNAs have been 
proposed, which involve microvesicles, exosomes, circulating 
tumor cells and release from apoptotic bodies (72). Circulating 
miRNAs are stable, which makes them suitable as potential 
biomarkers in biological fluids. Their stability in these fluids 
results from protection against RNase‑induced degradation by 
lipoproteins, argonaute protein 2 and microvesicles. They are 
also resistant to changes in pH and temperature, long storage 
periods and multiple freeze/thaw cycles. Additionally, as 
circulating miRNAs have been shown to be stable post sample 
collection, they can consequently be identified and quantified 
without the time interval between sampling and testing biasing 
the results (73,74). One of the most relevant applications for the 
detection of circulating miRNAs is as an early diagnostic tool, 
as well as a predictive biomarker of recurrence and metastasis.

A search of PubMed found 306 publications on circulating 
miRNAs in PubMed, although only 25 of those were studies 
specific to TNBC (accessed August 5, 2019; search term, 
‘circulating microRNAs AND triple negative breast cancer’).

Circulating miRNAs in TNBC. A summary of circulating 
miRNAs in TNBC is presented in Table III, and a description 
of the most relevant studies is presented hereinafter.

One of the first studies to analyze the expression of a 
circulating miRNA in patients with TNBC was published 
by Sahlberg  et al  (75). The authors first analyzed a small 
group of TNBC samples (10 recurrent and 10 non‑recurrent 
cases) and their association with recurrence using the 
Exiqon platform, and then validated the findings in an inde‑
pendent cohort of 70  cases. A total of nine differentially 
expressed miRNAs were initially identified in the serum of 
patients with recurrent TNBC compared with non‑recurrent 
TNBC (hsa‑miR‑18b‑5p, hsa‑miR‑20a‑5p, hsa‑miR‑30d‑5p, 
hsa‑miR‑32‑5p, hsa‑miR‑101‑3p, hsa‑miR‑103a‑3p, 
hsa‑miR‑107, hsa‑miR‑223‑3p and hsa‑miR‑652‑3p). Of these 
miRNAs, the upregulation of hsa‑miR‑18b, hsa‑miR‑103, 
hsa‑miR‑107 and hsa‑miR‑652 was found to be associated 
with reduced recurrence‑free survival and low overall survival 
rates, and thus these may be specific biomarkers for predicting 
the outcomes of patients with TNBC (75).

Kahraman et al (76) analyzed the expression profiles of 
miRNAs in the blood cells of patients with basal‑like TNBC 
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tumors (cytokeratin 5+) prior to and following neoadjuvant 
chemotherapy with carboplatin and paclitaxel to identify 
miRNAs that may predict cPR. The analysis demonstrated 
that although the expression levels of hsa‑miR‑34a‑5p and 
hsa‑miR‑34b‑5p in patients with TNBC prior to chemotherapy 
were comparable with those in healthy controls, their expression 
increased following neoadjuvant chemotherapy. By contrast, 
the expression of hsa‑miR‑664b‑3p was reduced following 
therapy. Notably, the expression levels of hsa‑miR‑144‑3p, 
hsa‑miR‑144‑5p, hsa‑miR‑126‑5p and hsa‑let‑7d‑5p were 
higher in the patients with TNBC compared with the controls 
prior to chemotherapy, but were similar to those of the controls 
following therapy. Despite the differences observed in the 
expression levels of various miRNAs prior to and following 
chemotherapy, none of the miRNAs were identified to be 
predictive biomarkers of cPR. Nevertheless, an impact of these 
miRNAs on other outcomes, such as metastasis and overall 
survival, was observed.

Braicu et al (77) studied TNBC tumors and BC tumors posi‑
tive for hormonal receptors and HER2 based on data available 
in The Cancer Genome Atlas, and validated their findings in 
plasma samples. The authors identified differentially expressed 
miRNAs between tumors and normal tissues, and analyzed 
the overlap of these differentially expressed miRNAs with 
those in plasma. Their discoveries included the upregulation 
of hsa‑miR‑200b, hsa‑miR‑200c and hsa‑miR‑210 in plasma 
and tumors, as well as the downregulation of hsa‑miR‑29c in 
plasma in patients with TNBC compared with BC positive 
to hormonal receptors. The hsa‑miR‑29c family has a role in 
EMT regulation and is considered an early biomarker for the 
prediction of metastasis (78).

According to the descriptions listed in Tables IV (36,37,46,​
63‑65) and V (36,75‑92), few miRNAs have been identified 
consistently in different studies.

4. Checkpoints and miRNAs in TNBC

Immune response in TNBC. Immune responses in cancer 
have been studied for a number of decades. The first studies 
on this were published in the 1950s (93‑95). Several studies 
in the 1970s described tumor‑infiltrating lymphocytes (TILs) 
and their possible involvement in the development of 
neoplasms (96‑98). The number of publications on cancer and 
immune response significantly has gradually grown over time, 
generating a vast field of knowledge and information on the 
relationship between immunity and cancer.

A seminal report highlighting the role of the immune 
system in cancer is that of Hanahan and Weinberg (99), in 
which they established evasion of immune response as one of 
the hallmarks of cancer.

Currently, modulation of the immune response is a major 
focal point in cancer treatment due to the success of immuno‑
therapy in the treatment of malignancies, such as skin and lung 
cancer, which has led to the use of immunotherapy for other 
neoplasms, including BC (100). Similarly, the Immunoscore, 
which was first developed for colon cancer, has been adopted 
for use in other types of cancer and its inclusion in the tradi‑
tional classification of cancer has been proposed for prognostic 
and predictive purposes (101). The Immunoscore is based on 
quantification of lymphocyte populations (CD3/CD45RO, 

CD3/CD8 or CD8/CD45RO) in the marginal and central 
regions of tumors (92).

Several studies have described the predictive value of 
inflammatory infiltrates in BC, particularly for TNBC and 
HER2 positive BC. Consequently, recommendations have been 
made for the systematic assessment of BC with TILs (102). 
Early studies assessed Immunoscore in BC, in addition to its 
contribution to pro‑ or antitumor activity (103). The evaluation 
of lymphocyte infiltrates using hematoxylin and eosin staining 
has been shown to have predictive and prognostic value in 
TNBC. It has been estimated that tumors with >50% TILs 
may benefit from neoadjuvant chemotherapy, as evaluated by 
cPR, even when tissues from core needle biopsy specimens are 
used for TIL quantification (103‑106). In this regard, the use of 
platinum‑based agents improves cPR (107). The cPR has been 
reported to increase from 37 to 52% when platinum‑based 
agents are used in the treatment of TNBC, with the exclusion 
of TNBC with mutations; however, hematological toxicity is 
increased (108). The impact of TILs has only been observed 
in TNBC and HER2‑positive tumors, whereas in other 
molecular subtypes and low‑grade tumors, the impact is small 
or non‑existent (109).

The aforementioned molecular classification of TNBC 
performed by Lehmann et al (19) includes an IM subgroup, 
characterized by enrichment with genes associated with 
immune processes, including cytotoxic T‑lymphocyte associ‑
ated protein 4 (CTLA4), interleukin (IL)‑12, natural killer 
cell (NK) cell and IL‑7 pathways, antigen processing and 
presentation, NF‑κB and TNF pathways, T‑cell transduction 
and NK‑mediated cytotoxicity. A study notably observed that 
the overlap of genes from this subgroup with the molecular 
signature for medullary cancer is associated with a favorable 
prognosis regardless of advanced histological grade  (110). 
However, in a later molecular classification, the number of 
TNBC subgroups was reduced from six to four, with removal 
of the IM subgroup as it resulted from enrichment with infil‑
trating lymphocytes (20). This posed the question of whether 
this molecular subtype was the expression profile of TILs 
or tumor cells. The authors found that TILs were more abundant 
in the IM subgroup than in the other subgroups, and that there 
was a correlation between the number of lymphocytes and the 
IM component of each tumor. Immune checkpoint regulators, 
such as CTLA4, CD274 and PDCD1, were observed amongst 
the genes identified in the IM subtype, and the IM subtype was 
associated with improved overall survival and recurrence‑free 
survival in comparison with all other TNBC subtypes (20).

These findings have contributed to interest in the develop‑
ment of a mode of immunotherapy for TNBC. The first studies of 
immunotherapy for TNBC showed a response rate to pembroli‑
zumab of 18%, which was very similar to the initial percentage 
of patients classed as possessing the IM subtype (20%) (18,103). 
Clinical trials using immunotherapy for the treatment of 
TNBC have been reviewed by Nathan and Schmid  (111), 
and the US Food and Drug Administration has  approved 
the use of atezolizumab (Tecentriq,Genentech/Roche) plus 
the chemotherapy nab-paclitaxel (Abraxane,Celgene) as first 
line treatment for unresectable, metastatic, PD-L1-positive 
TNBC (112).

Increased immune activation through interferon type  I 
(IFN‑I) signaling has been shown to increase the efficacy of 
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anti‑PD‑1 immunotherapy (113). Thus, the stratification of 
patients with the IM subtype and/or a high rate of TILs may 
help to identify patients for whom checkpoint inhibitors would 
be more effective.

Based on the success of immunotherapy in melanoma and 
lung cancer, the association between miRNAs and the immune 
response in BC is worthy of consideration, particularly with 
regard to the use of checkpoint inhibitors (114).

PD‑1 and circulating miRNAs in TNBC. PD‑1 is a cell surface 
protein coded for by the PDCD1 gene; it belongs to the immu‑
noglobulin superfamily and the CD28 family of proteins. It 
is expressed in antigen‑specific effector T cells and memory 
T cells. When it binds to its ligands (PD‑L1 or PD‑L2), it 
suppresses T‑cell proliferation, the production of cytokines 
such as IFN‑γ and cytotoxic activity, thus resulting in immu‑
nosuppression and immunotolerance. The level of PD‑1 
expression in T cells is regulated by the inflammatory response 
and infection. PD‑L1 is expressed in a variety of cell types and 
tissues such as solid or hematologic neoplasms; when PD‑L1 
is expressed in cancer cells it suppresses immunosurveillance. 
Consequently, various drugs have been developed to counter 
these effects (115).

The molecular mechanisms that direct the regulation of 
PD‑1 expression, including cis‑DNA regulatory elements, 
transcription factors, epigenetic regulation and changes in 
DNA methylation patterns and histone modifications, have 
been described  (116); nevertheless, how miRNA‑mediated 
regulation occurs remains largely unknown. The miRDB 
database (http://mirdb.org) predicts 61 miRNAs that could 
potentially regulate PDCD1. Based on the miRNAs predicted 
to bind to the PDCD1 gene in two databases (miRDB and 
TargetScan version 7.2; http://www.targetscan.org; accessed 
June  25,  2019), we found that the circulating miRNA 
hsa‑miR‑195‑5p, previously detected in TNBC, was a likely 
candidate as a regulator of PDCD1 expression (target score 76, 
context score percentile 86).

The downregulation of hsa‑miR‑195‑5p has previously been 
described in the peripheral blood mononuclear cells of patients 
with TNBC; however, only a limited number of patients was 
included in this analysis (84); by contrast, Qattan et al (89) 
observed the upregulation of hsa‑miR‑195 in patients with 
TNBC in a study with a larger number of samples. However, 
Yang et al (38) found that the higher levels of hsa‑miR‑195 
in BC were associated with improved prognosis. Nonetheless, 
PD‑L1 has been identified as the target of hsa‑miR‑195.

PD‑L1 and circulating miRNAs in TNBC. PD‑L1 is a cell 
membrane protein that binds to PD‑1 on effector T cells and 
transduces immunosuppressor signals. Expression of PD‑L1 
on the surface of tumor cells is critical for these cells to escape 
immunosuppression (117).

Based on the data in Table V and PL‑D1 as the check‑
point gene for immune response, we performed an in silico 
analysis using DIANA‑Tools (http://diana.imis.athena‑inno‑
vation.gr/DianaTools/index.php?r=site/page&view=software) 
and miRTarBase v7.0 (http://mirtarbase.mbc.nctu.edu.
tw/php/index.php). The following results were obtained: PD‑L1 
gene is regulated by several miRNAs and has 20 conserved target 
sites for hsa‑miR‑140‑3p.2, hsa‑miR‑382‑3p*, hsa‑miR‑320c, 

hsa‑miR‑320d, hsa‑miR‑4429, hsa‑miR‑320b, hsa‑miR‑320a, 
hsa‑miR‑377‑3p, hsa‑miR‑20b‑5p, hsa‑miR‑519d‑3p, 
hsa‑miR‑106b‑5p, hsa‑miR‑93‑5p*, hsa‑miR‑526b‑3p, 
hsa‑miR‑17‑5p, hsa‑miR‑106a‑5p*, hsa‑miR‑20a‑5p*, 
hsa‑miR‑142‑5p, hsa‑miR‑5590‑3p, hsa‑miR‑653‑5p and 
hsa‑miR‑155‑5p* (TargetScan version  7.2; http://www.
targetscan.org/vert_72/; accessed on June 25, 2019), as well as 
poorly conserved target sites for >900 hsa‑miRNAs.

A study examining the effect of PD‑L1 expression in 
human dermic lymphatic endothelial cells (HDLECs) has 
been conducted, in which miRNA‑mediated regulation of 
the PD‑L1 gene was observed (118). In that study, the treat‑
ment of HDLECs with IFN‑γ and TNF‑α proinflammatory 
cytokines synergistically upregulated PD‑L1, and altered 
the expression of several miRNAs that are able to reduce 
the expression of PD‑L1. The miRNA found to be the most 
strongly upregulated was hsa‑miR‑155, which serves a key role 
in the immune system and cancer. Furthermore, the 3'‑UTR of 
PD‑L1 was demonstrated to have two functional binding sites 
for hsa‑miR‑155, and endogenous hsa‑miR‑155 was shown to 
control the kinetics and PD‑L1 levels induced by treatment 
with IFN‑γ and TNF‑α. Similar findings in dermal fibroblasts 
confirm that a IFN‑γ and TNF‑α‑induced hsa‑miR‑155/PD‑L1 
pathway is not exclusive to HDLECs. These results show that 
hsa‑miR‑155 contributes to the inflammation‑induced control 
of PD‑L1 expression in primary cells (118).

There are various studies that mention hsa‑miR‑155; 
a search of PubMed (accessed January  10,  2020) found 
191 reports for ‘miR‑155 AND breast cancer’; 22 reports for 
‘miR‑155 AND triple negative breast cancer’; and 3 reports 
for ‘circulating miR‑155 AND triple negative breast cancer’. 
Together, these studies demonstrate the well‑acknowledged 
role of hsa‑miR‑155 in the early detection, tumor initiation, 
and cancer development and progression of BC (81,87,119).

CTLA4 and miRNAs in TNBC. CTLA4 is a transmembrane 
type 1 protein with 223 amino acids (120) coded for by the 
CTLA4 gene. It belongs to the immunoglobulin receptor 
superfamily of proteins, which also includes CD28, ICOS, 
PD‑1, BTLA and TIGIT  (121). CTLA4, PD‑1, BTLA and 
TIGIT are negative regulators that are crucial to T‑cell 
mediated immunity (120,121).

In T cells, CTLA4 and CD28 bind to the same ligands 
(CD80 and CD86) on antigen‑presenting cells, but have 
opposing effects; the interaction of CTLA4 with its ligands 
inhibits the T‑cell response, whereas when CD28 binds to its 
ligands the T‑cell response is activated. CTLA4 has greater 
affinity for CD80/CD86 than does CD28 (122).

The CTLA4 gene is regulated by several miRNAs 
and has highly conserved target sites for hsa‑miR‑155‑5p, 
hsa‑miR‑496.1 and hsa‑miR‑142‑3p.2, in addition to 
>400 poorly conserved target sites (based on DIANA‑miRPath 
and miRTarBase; accessed September 15, 2017). Of those 
highly conserved miRNAs, hsa‑miR‑155 is known to be a 
circulating hsa‑miRNA in TNBC (87).

5. Conclusions

Circulating miRNAs are molecules with significant diag‑
nostic, prognostic and even predictive potential as biomarkers 
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for cancer, due to the relative ease and non‑invasive means 
by which they can obtained. Nevertheless, it is necessary to 
standardize pre‑analytical and analytical details to obtain 
results that have greater reproducibility, specificity and 
sensitivity, and to improve patient selection. hsa‑miR‑195 has 
been detected in the circulation and interacts with immune 
checkpoint molecules, as shown by the predictive analysis 
that identified PDCD1 as a potential target, and its regulation 
of PD‑L1 has been demonstrated. Similarly, hsa‑miR‑155 
also interacts with checkpoint genes involved in the immune 
response and has been reported to be a circulating miRNA 
during the early stages of TNBC. Analyzing the expression of 
these circulating miRNAs in greater detail is thus suggested, 
as well as their association with clinical responses in patients 
with TNBC treated with immunotherapy, to assess their 
potential role as predictive non‑invasive biomarkers. Further 
studies of miRNA‑mRNA‑protein interactions and the 
signaling and/or metabolic pathways in which these miRNAs 
participate are also required.
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