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Abstract. Malignant melanomas within the eye present 
different types of metabolic and metastatic behavior. Uveal 
melanoma (UM) affects a quarter of a million individuals 
in the USA; however, the molecular pathogenesis is not 
well understood. Although UV radiation is a risk factor in 
cutaneous melanomas, it is not crucial for UM progression. 
Apart from chromosomal abnormalities, numerous major 
tumorigenic signaling pathways, including the PI3K/Akt, 
MAPK/ERK, Ras‑association domain family 1 isoform A 
and Yes‑associated protein/transcriptional co‑activator with 
PDZ‑binding motif signaling pathways, are associated with 
intraocular tumors. The present review describes the current 
insights regarding these signaling pathways that regulate the 
cell cycle and apoptosis, and could be used as potential targets 
for the treatment of UMs.
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1. Introduction

Uveal melanoma (UM) is the most common primary malig‑
nant tumor of the eye in adults (1). Uveal, as well as cutaneous, 
melanomas have origins from the same precursor cell, the 
melanocyte, which migrates from the neural crest during 
embryonic development (2). UM represents 3‑5% of all mela‑
nomas and it arises from proliferating atypical melanocytes 
situated in the choroid (85‑90%), the ciliary body (5‑8%) and 
the iris (5‑8%) (1). Primary tumor location has an effect on UM 
progression: Melanoma originating from melanocytes in the 
iris is usually associated with good prognosis, while choroidal 
and ciliary ones have a poor prognosis, and in ≤50% of all 
cases lead to metastatic disease (3), which most commonly 
occurs in the liver (60.5%), lung (24.4%), skin (11%) and 
bone (8.4%) (1,4).

UM has a median diagnostic age of 62 years, with a peak 
between 70 and 79 years (5,6). It has been recorded to have 
30% higher incidence in males; however, to the best of our 
knowledge, there is no known reason for this (7). Based on 
the Surveillance, Epidemiology, and End Results database 
(1973‑2009), cases of UMs affect 5.1 in every million indi‑
viduals (5). In Europe, the incidence varies between 2 and 
8 individuals per million based on latitude according to the 
European Cancer Registry (1983‑1994) (8). Additionally, UMs 
are less prevalent in Asian and black populations (9).

Similarly to other melanomas, the most common risk 
factors of UM are fair skin, light eyes, ocular melanocytosis, 
dysplastic nevus syndrome and multiple mutations (10‑12). 
Exposure to UV radiation is a major risk factor for the develop‑
ment of cutaneous melanoma; however, there is little evidence 
regarding its role in UM progression (13). Since UVA is mainly 
filtered by the cornea and lens, while UVB and UVC do not 
reach the choroid, ‘it is unlikely’ that UV radiation exposure is 
responsible for choroidal melanoma (14,15).

The primary tumor is often difficult to diagnose as a 
third of the cases are asymptomatic (6). In most cases, UM 
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is manifested through blurred vision and a variety of other 
symptoms, such as elevated intraocular pressure, which causes 
glaucoma (16). UM is frequently misdiagnosed as glaucoma, 
since the latter is one of the potential side effects of the 
tumor (16). The median life expectancy after metastatic growth 
is 13.4 months with an 8% survival rate after 2 years (4).

Gene expression profiling is currently used to classify UMs 
into two distinct types depending on their ability to metastasize. 
Class 1 are tumors with a 1% chance of spreading, while class 2 
are tumors that have a 25.9% chance of forming secondary 
tumors (17). Little is known regarding its molecular pathogen‑
esis, and it has been considered that a variety of epigenetic 
alterations occur in the melanocyte to UM pathway (18). p53 
and the retinoblastoma (Rb) signaling pathway are commonly 
inhibited, whereas the PI3K/Akt signaling pathway in mostly 
activated (18). The present review discusses these signaling 
pathways that regulate cell death and the cell cycle in UM. 
Increased understanding of these pathways may lead to the 
identification of the genetic profile of UM, enable the design of 
a personalized targeted therapy for the patient and, finally, an 
improved prognosis of patients with UM.

2. Chromosomal origin of UM

UM is often characterized by multiple chromosomal aberra‑
tions. Abnormalities on chromosomes 1, 3, 6 and 8 have been 
observed in 17‑61% of UM cases (18). Additionally, these have 
been demonstrated to affect the prognosis and development of 
the tumor (19). The most common chromosomal aberrations 
result in loss of chromosome 3 and 6q, or in the gain of 6p and 
8q (19). Monosomy 3 is observed in 50% of all tumors, 65% of 
UMs and in >70% of metastasizing UMs (20). Chromosome 3 
loss results in a >50% reduction in the 5‑year survival rate of 
patients (19). By contrast, patients with an intact pair of chromo‑
some 3 have a 5‑year survival rate of 90%, which is reduced to 
37% by the loss of one sister chromatid (20). BRCA1 associated 
protein 1 (BAP1) is one of the genes that is mutated in 47% of all 
Ums, and, due to its location on chromosome 3, it is important 
for the understanding of the disease development (21). This also 
explains why monosomy 3 is associated with a poor prognosis. 
Furthermore, BAP1 is a single copy gene, which often results 
in inactivating mutations (21). In UM, this results in an earlier 
onset at the age of 30 to 59 years (22). Additionally, mutations 
in BAP1 have been associated with an 11% higher risk of 
secondary malignancies (22). Other genes located on chromo‑
some 3 encode PI3K and Ras‑association domain family 1 
isoform A  (RASSF1A), both of which are associated with 
essential molecular pathways that are mutated in cancer (23,24).

Other aberrations, including gain of chromosome 8, loss 
of chromosome 1 or polysomy 8q, have been associated with a 
reduced survival due to various factors, such as exposure to sun 
light, oculodermal melanocytosis and dysplastic nevi (25,26). 
Some of the genes located on chromosome 1 are associated 
with essential molecular pathways by encoding PI3K and 
Akt, or tumor suppressor genes (TSGs), such as centromere 
protein S (27). On the other hand, gain of chromosome 6p has 
been associated with good prognosis, despite the abundance of 
oncogenes (28).

One of the most common chromosomal abnormalities 
in UM is rearrangement of chromosome 8q. Copy number 

variations have been observed in 79% of UM cases (26). In 
patients with a normal 8q number the 5‑year survival rate is 
93%; however, with the increase of copy numbers, this rate is 
reduced to 67 and then 29% (20).

It has been noted that there are two distinct developmental 
pathways in UM. Class one exhibits disomy 3 with gain of chro‑
mosome 6p, while class 2 typically exhibits monosomy 3 and 
a high metastatic propensity (29,30). These chromosomal aber‑
rations are present at early stages, while increased aneuploidy 
and changes in chromosome 8 are considered to be associated 
with later stages (31). While this two‑class model is relatively 
simplistic, it provides a good basic understanding of the main 
chromosomal aberrations and their consequential effects.

3. Cell death regulation

One of the hallmarks of cancer is the ability of cells to evade 
death signals and proliferate indefinitely (32). Therefore, the 
regulation of the cell cycle and the induction of self‑mediated 
cell death, also known as apoptosis, is vital.

The extrinsic apoptotic signaling pathway is activated when 
a death ligand binds to a death receptor on the cell membrane. 
These receptors have an intracellular death domain that recruits 
adapter proteins, which results in the formation of a binding 
site known as death‑inducing signaling complex (DISC) (33). 
DISC assembles and activates pro‑caspase‑8, which initiates 
apoptosis by cleaving other caspases  (34). Once activated, 
caspase 3 cleaves the caspase‑activated deoxyribonuclease, 
which begins the process of DNA degradation (35). Finally, 
downstream caspases induce cleavage of protein kinases and 
proteins, and break down the cytoskeleton disturbing signaling 
pathways, which results in the typical morphological altera‑
tions of apoptosis (36).

The mitochondrial intrinsic pathway is initiated within 
the cell due to internal stimuli, such as genetic damage, 
hypoxia and oxidative stress (37). This results in the release 
of pro‑apoptotic molecules, apoptosis inducing factor mito‑
chondria associated  1, second mitochondria‑derived activator 
of caspase, diablo IAP‑binding mitochondrial protein, HtrA 
serine peptidase 2 and cytochrome c, which initiate apop‑
tosis (38). Subsequently, cytochrome c and Apaf‑1 assemble 
the apoptosome which activates caspase‑9  (38). Alongside 
caspase‑9 activation, caspase‑3 is activated, leading to the 
same steps as the aforementioned extrinsic pathway  (39). 
The Bcl‑2 family proteins, which are directly controlled by 
p53, determine the cell fate through the balance of pro‑ and 
anti‑apoptotic molecules (38).

The molecular and genetic makeup of UMs is considered 
to be more complicated than the aforementioned mutations. 
Therefore, the present review will explore the potential role 
of multiple molecular pathways and their role in UM develop‑
ment and pathogenesis.

4. G protein subunit αq and G protein subunit α11

Despite the chromosome abnormalities, most UMs are consid‑
ered to be caused by point mutations in G protein α subunits, 
specifically in G protein subunit αq (GNAQ) and G protein 
subunit α11 (GNA11), regardless of tumor stage or chromo‑
somal constellation (40). These mutations have similar effects 
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as mutations in RAS, which are common in a number of other 
tumors (41). The G‑α subunit is important due to its involve‑
ment in multiple essential cellular pathways, such as the 
MAPK (cell proliferation and apoptosis), PI3K‑Akt (growth 
and homeostasis) and Hippo signaling pathways (42). GNAQ 
and GNA11 activate phospholipase C, which triggers a cascade 
of events resulting in the activation of protein kinase C (PKC). 
PKC then initiates a phosphorylation cascade, which activates 
Raf, MEK1/2 and ERK  (43). This process results in the 
regulation of cell proliferation and survival (44). It has been 
hypothesized that these mutations are early events in the patho‑
genesis of UM and are necessary for tumor malignancy (45). 
On the other hand, mutant GNAQ and GNA11 are considered 
to be weak oncogenes and, therefore, cannot cause damage to 
melanocytes unless they are already deficient in the p53 and 
p16/CDK4/RB signaling pathways (46). Due to the importance 
of GNAQ and GNA11 in UM malignancy, the 5‑oxo‑ETE acid 
G‑protein‑coupled receptor 1 (GPCR) signaling pathway is 
a potential viable therapeutic target (42). The development 
of inhibitors for specific molecules, such as Gq/11 inhibitor 
YM‑254890 and Arf6‑inhibitor NAV‑2729, is one of the main 
strategies that is currently being investigated (47,48). One such 
example is the inhibition of CysLT2R‑L129Q, which is respon‑
sible for the constitutive activation of the Gq/11 signaling 
pathway in UM (47,49).

5. RAS interactions

The Ras superfamily consists of small GTPases that act as 
switches and modulate a vast array of cell functions by influ‑
encing signaling pathways. They are separated into six different 
groups of proteins, and are present in all cell types (50). One of 
the subfamilies, also referred to as RAS, consists of proteins 

that regulate cell proliferation. They have downstream effects 
on signaling pathways crucial to UM, such as the MAPK/ERK 
and PI3K/AKT/PTEN signaling pathways (51). In cancer, RAS 
is often mutated which affects a number of these pathways and 
makes them less sensitive to apoptosis triggers, thus increasing 
proliferation levels (Fig. 1) (52).

All three common RAS proteins in humans are highly 
conserved in the active regions and often undergo mutations in 
codons 12, 13 and 61 (53). The resulting point mutations lead 
to preferential binding to GTP over GDP, which in‑turn leads 
to activation of proliferation pathways (54). Interestingly, RAS 
mutations are not usually associated with UM (55,56).

In general, RAS serve as activating proteins that remove 
GDP and allow GTP to bind its target (57). Ras‑bound GTP 
goes on to activate Raf, which initiates the MAPK/ERK 
signaling pathway (58). In the case of PI3K, active Ras directly 
activates it without an intermediary protein (59).

6. PI3K/Akt/PTEN signaling pathway

The PI3K/Akt/PTEN is one of the main molecular pathways 
involved in cell proliferation. It is mutated in multiple types 
of cancer and is constitutively activated in most UMs (24). 
RAS directly activates PI3K, which then goes on to phos‑
phorylate phosphatidylinositol 4,5‑bisphosphate to produce 
phosphatidylinositol (3,4,5)‑trisphosphate (PIP3) (60). PIP3 
is dephosphorylated by PTEN to regulate PIP3 levels, which, 
when elevated, activates Akt. Subsequently, Akt goes on 
to phosphorylate a number of signaling pathways, such as 
the mTORC1, MDM2 proto‑oncogene (MDM2), BAD and 
GTPase‑activating protein signaling pathways (Fig. 1) (61).

Akt is an anti‑apoptotic protein which serves an important 
role in cell survival and tumorigenesis (62). It is activated via 

Figure 1. Outline of the key molecular signaling pathways affected in UM discussed in the present review article. The present review explored the typical 
UM abnormalities starting from the cytoplasm and moving to the nucleus. Firstly, RAS regulates the PI3K/Akt and Raf/MEK/ERK signaling pathways (left). 
Subsequently, the present review explored apoptosis involving p53/MDM2, and the regulation within the nucleus, including cyclins and cyclin‑dependent 
kinases. MDM2, MDM2 proto‑oncogene; UM, uveal melanoma.
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phosphorylation, becoming phospho‑Akt which inactivates 
several proteins, including members of the Bcl‑2 family 
(BAD protein) and caspase‑9 (63). Phospho‑Akt is involved 
in the protection from apoptosis, but also in other cancer 
development processes, such as blockage of anti‑proliferative 
signaling, facilitation of cell replication and angiogenesis (63). 
Using immunohistochemical testing, it has been demonstrated 
that phosphorylation of Akt is associated with a poor prog‑
nosis (62).

PTEN downregulation has also been associated with 
various types of cancer, including breast cancer, thyroid 
cancer, kidney cancer, endometrial cancer, colorectal cancer 
and melanoma  (64,65). In UMs, loss of heterozygosity of 
PTEN has been observed in 76% of tumors, with 11% being 
within the PTEN coding region (66). Loss of cytoplasmic 
PTEN in primary UM tumors was associated with shortened 
disease‑free survival (67). Its decreased expression can also 
result in increased aneuploidy and reduced survival (45).

Overall, these findings suggest that the PI3K/Akt/PTEN 
signaling pathway serves a vital role in UM progression; 
however, more research needs to be performed to fully under‑
stand its role.

7. MAPK/ERK signaling pathway

The MAPK/ERK pathway is crucial for mediating cell‑cycle 
progression. In multiple cancer types, it is constitutively acti‑
vated, resulting in proliferation of neoplastic cells (68,69). It 
has also been identified to serve an important role in melano‑
cytic neoplasia (70).

MAPK signaling, similar to the PI3K/Akt signaling 
pathway, begins with the activation of RAS, which then recruits 
RAF (68). RAFs are a group of kinases that transduce signals 
along the MAPK signaling pathway  (68). There are three 
isoforms that are expressed in humans: A‑Raf proto‑oncogene 
serine/threonine kinase, BRAF and Raf‑1 proto‑oncogene 
serine/threonine kinase (cRAF) (71). cRAF was the first to be 
discovered and BRAF has been the most extensively studied 
due to its high mutation rate in various types of cancer (72,73).

Activation of BRAF by RAS results in the phosphoryla‑
tion of kinases, such as MEK1/2 and ERK1/2, which induces 
a multitude of proliferative and survival processes (74) via the 
consequent activation of transcription factors, such as ETS 
transcription factor ELK1. In cutaneous melanomas, RAS and 
BRAF often undergo activating mutations (75). These also 
appear in benign melanocytic naevi and, alongside activa‑
tion of the MAPK signaling pathway, constitute early events 
of melanogenesis  (51,76,77). In UM, the MAPK signaling 
pathway is upregulated, which advocates for the presence of 
upstream mutations (78). It is also known that mutations in 
RAS and BRAF are uncommon in UM (79‑81). Therefore, the 
constitutive activation is considered to be caused by mutations 
in the GNAQ family, which results in the upregulation of the 
pathways (82,83).

8. Yes‑associated protein/transcriptional co‑activator with 
PDZ‑binding motif signaling pathway and its potential for 
treatment

Yes‑associated protein (YAP) and transcriptional co‑acti‑
vator with PDZ‑binding motif (TAZ) modulate regulation of 

cell proliferation, migration and survival (84). They are, in 
turn, negatively regulated by the Hippo signaling pathway (85), 
which acts as a tumor suppressor to limit cell proliferation and 
organ size regulation (86). As previously mentioned, muta‑
tions in GNAQ and GNA11 are present in >80% of UM cases. 
This is essential as GPCRs activate F‑actin, which targets 
YAP/TAZ and, therefore, could result in the upregulation of 
the pathway (87). When this happens, YAP is activated inde‑
pendently of the Hippo signaling pathway, resulting in greater 
resistance to contact inhibition of growth (88‑90).

In contrast to MAPK‑targeted therapy, which has no impact 
on the prognosis of patients with UM, YAP‑targeted therapy 
is strongly associated with cancer metastasis (91) and shows 
promise as an ideal target (91‑93). For example, focal adhesion 
kinase‑targeted therapy reduces YAP levels and counteracts 
the effects of the GNAQ/GNA11 mutation (43). This may be 
effective in treating UMs that exhibit such mutations (94).

9. p53

p53 is one of the key apoptotic regulators, which induces 
cell cycle arrest and consequently apoptosis. A study by 
Liu and Zhou (95) explored the role of p53 in the development 
of UM. They observed that p53 expression and prognosis were 
negatively associated. The mortality rate increased with p53 
expression. Additionally, inhibition of p53 has been associ‑
ated with inhibited invasion in UM (95). Other studies have 
mentioned that mutations in the p53 gene are rare and, in fact, 
most causes of disruption in the pathways are due to upstream 
or downstream mutations (2,96,97). One such cause could be 
MDM2 upregulation, which is common in UMs (98). MDM2 
regulates p53 and reduces its expression (98).

Protection from apoptosis is a major factor in the meta‑
static cascade of most types of cancer, including UM. p53 does 
not appear to have a significant impact on UM (99). However, 
a previous study demonstrated that multiplication of chro‑
mosome 8 and c‑myc expression are associated, suggesting 
that c‑myc could be used as a prognostic factor (11). C‑myc 
alone is involved in the regulation of cell proliferation and 
with p53‑dependent mechanisms promotes apoptosis (100). 
On the other hand, Bcl‑2, which is vital for the intrinsic 
apoptotic pathway, has been reported to be upregulated in 
most UMs  (2,101). A strong inverse relationship has been 
observed between c‑myc (nuclear and cytoplasmic) and Bcl‑2, 
suggesting that the latter co‑operates with c‑myc to immor‑
talize UM cells (79,101).

Brantley and Harbour  (2) immunohistochemically 
analyzed the p53 and retinoblastoma protein (pRb) pathways 
and found that, in UM cases, most alterations are due to muta‑
tions in other proteins.

10. CDK and cyclin kinase inhibitors

A fine balance between cyclin kinase inhibitors  (CDKs) 
and CKIs is required for a normal cell cycle (102). If toxic 
chemicals, oxidative stress (reactive oxygen species), ionizing 
radiation and other factors induce DNA damage, the cell must 
repair it and reenter the cell cycle (102). When the cell fails 
to repair the damage, it becomes senescent and the cell cycle 
is arrested in G1 phase (diploid DNA) or G2 phase (tetraploid 
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DNA content). Deregulation of the cell cycle, especially at the 
G2/M phase, leads the cell to a more cancerous fate (103).

Cell cycle regulation is achieved through a family of 
serine/threonine kinase holoenzyme complexes consisting of 
regulatory cyclins that bind to and activate catalytic CDKs. 
The cyclins D1, D2, D3 and E are important for the G1‑S cell 
cycle transition (104). Cyclin A is involved in DNA synthesis, 
S‑phase completion and preparation for mitosis, while cyclins 
B1 and B2 control the onset, sequence of events and completion 
of mitosis (105). For example, the cyclin B1/CDK1 complex is 
a mitotic regulator that is responsible for the progression of the 
cell cycle (105).

On the other hand, cyclin‑dependent kinase inhibi‑
tors (CDKIs) negatively regulate the kinase activity of the 
cyclin‑CDK complexes (106). There are two known families 
of CDKIs: The cyclin dependent kinase inhibitor 2A (INK4) 
family, which includes p16/INK4A, p15/INK4B, p18/INK4C 
and p19 (p14)/INK4D, and the cardiac ISL1‑interacting 
protein (CIP)/calcium and integrin binding 1 (KIP) family, 
which includes p21/CIP1, p27/KIP1 and p57/KIP2 (107‑109).

Different CKIs have been observed to affect different 
CDKs. For example, p15 and p16 inhibit CDK4 and CDK6 
respectively, while p21 and p27 act on G1 CDK cyclins and 
S‑phase CDK2 complexes (110,111). Both p21 and p27 inhibit 
DNA replication but through different mechanisms. p21 binds 
to and promotes CDK1 and CDK2 with cyclin D activity, 
while, under certain conditions, inhibiting CDK4 and CDK6 
with cyclin E activity (112). p27 promotes CDK2 cyclin E 
complex and CDK4/6 cyclin D complex formation (113,114).

In uveal and choroidal melanoma cell lines, the expres‑
sion levels of p21 and p27 are downregulated resulting in 
suppressed p16‑CDK interaction  (110,115). This results in 
more CDK activity, leading to cyclin D and CDKs phos‑
phorylating pRb, which goes on to release E2F transcription 
factor 1 (E2F1) (116). E2F1 is a transcriptional factor that 
leads to the expression of numerous necessary factors for G1 
to S phase progression (117). pRb is another one of the vital 
molecules in the cell cycle regulation of uveal and choroidal 
cells. It is encoded by the Rb gene and serves an important role 
as a tumor suppressor (118). Deregulation and inactivation of 
p16 and/or overexpression of cyclin D leads to inactivation of 
pRb by cyclin‑dependent phosphorylation (119,120). In most 
UMs, the Rb protein is constitutively hyperphosphorylated 
and functionally inactivated (120). This has been attributed to 
cyclin D1 upregulation in 65% of cases and has also been asso‑
ciated with larger tumor sizes and poor prognosis (63,76,121).

E2F transcription factors are key regulators of cell division 
and, among them, E2F1, E2F2 and E2F3a are potent activa‑
tors of E2F‑responsive genes, but their transcriptional activity 
is inhibited by binding to pRb (122,123). pRb is functionally 
inactivated at the G1‑S transition by cyclin D‑CDK4/CDK6 
and cyclin E‑CDK2‑mediated phosphorylation, thus enabling 
E2F transcription factors to activate their target genes (124).

11. RASSF1A

RASSF1A is a TSG that is required for death receptor‑depen‑
dent apoptosis  (80) and can be found at the 3p21.3 locus. 
RASSF1A inhibits the accumulation of cyclin D1 protein 
without affecting its mRNA levels  (81). This results in 

suppressed proliferation via negative regulation of the cell 
cycle progression at the G1/S phase transition (125). It has been 
reported that the endogenous inactivation of RASSF1A leads 
to a decrease of p27 which is a negative cell cycle regulator 
at the protein level (111,125). The depletion of this gene in 
RASSF1A mouse mutants has been noted as an early event 
in the senescence of uveal melanocytes and is considered 
to contribute to the malignancy of UM (125). RASSF1A is 
frequently hypermethylated in UM, which results in its down‑
regulation (126). Additionally, in 83% of the cases in a study 
by Calipel et al (125), the RASSF1A promoter was methylated 
which suppressed gene expression. Overall, the downregula‑
tion of RASSF1A is most likely explained by the loss of 
heterozygosity typical for UM.

12. Conclusion

UM is the most common intraocular tumor in adults and 
is caused by multiple molecular abnormalities. The most 
frequent mutations in GNAQ and GNA11 are considered to 
be the main driving events in UM. Due to the involvement of 
GPCRs in multiple molecular signaling pathways, the present 
review explored the various downstream effects that such 
mutations could trigger. Additionally, the potential effects 
of chromosomal abnormalities, and how the loss or gain of 
specific regions could improve or worsen prognosis, were 
described. All this information allowed the authors to pinpoint 
potential therapeutic targets which could be used to success‑
fully treat patients with UM. Based on the understanding of 
the aforementioned pathways and DNA expression profiles of 
UM, prediction models can be produced, and this could lead 
to improved prognosis for patients with UM.
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