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Abstract. Glioma is the most common type of primary brain 
cancer, and the prognosis of most patients with glioma, and 
particularly that of patients with glioblastoma, is poor. Tumor 
immunity serves an important role in the development of 
glioma. However, immunotherapy for glioma has not been 
completely successful, and thus, comprehensive examination 
of the immune‑related genes (IRGs) of glioma is required. In 
the present study, differentially expressed genes (DEGs) and 
differentially expressed IRGs (DEIRGs) were identified using 
the edgeR package. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis was used for functional enrichment 
analysis of DEIRGs. Survival‑associated IRGs were selected 
via univariate Cox regression analysis. A The Cancer Genome 
Atlas prognostic model and GSE43378 validation model were 
established using lasso‑penalized Cox regression analysis. 
Based on the median risk score value, patients were divided 
into high‑risk and low‑risk groups for clinical analysis. Receiver 
operating characteristic curve and nomogram analyses were 
used to assess the accuracy of the models. Reverse transcrip‑
tion‑quantitative PCR was performed to measure the expression 
levels of relevant genes, such as cyclin‑dependent kinase 4 
(CDK4), interleukin 24 (IL24), NADPH oxidase 4 (NOX4), 
bone morphogenetic protein 2 (BMP2) and baculoviral IAP 

repeat containing 5 (BIRC5). A total of 3,238 DEGs, including 
1,950  upregulated and 1,288  downregulated DEGs, and 
97 DEIRGs, including 60 upregulated and 37 downregulated 
DEIRGs, were identified. ‘Neuroactive ligand‑receptor interac‑
tion’ and ‘Cytokine‑cytokine receptor interaction’ were the most 
significantly enriched pathways according to KEGG pathway 
analysis. A prognostic model and a validation prognostic model 
were created for glioma, including 15 survival‑associated IRGs 
(FCER1G, NOX4, TRIM5, SOCS1, APOBEC3C, BIRC5, VIM, 
TNC, BMP2, CMTM3, IL24, JAG1, CALCRL, HNF4G and 
CDK4). Furthermore, multivariate Cox regression analysis 
results suggested that age, high WHO Grade by histopathology, 
wild type isocitrate dehydrogenase 1 and high risk score were 
independently associated with poor overall survival. The infil‑
tration of B cells, CD8+ T cells, dendritic cells, macrophages 
and neutrophils was positively associated with the prognostic 
risk score. In the present study, several clinically significant 
survival‑associated IRGs were identified, and a prognosis evalu‑
ation model of glioma was established.

Introduction

Glioma is the most common type of primary brain cancer, 
and originates from neuroepithelial cells (1,2). According to 
the World Health Organization (WHO) standard, the histo‑
pathological types of glioma vary from benign ependymoma 
to the most aggressive glioblastoma (GBM) (3,4). In recent 
years, molecular changes and mutations in isocitrate dehydro‑
genase 1/2 (IDH1/2) have become increasingly important in 
the diagnosis and prognosis evaluation of glioma (5). Surgical 
resection is the main treatment of intracranial tumors; however, 
certain patients cannot undergo surgery (6). Furthermore, the 
effect of chemotherapy is limited due to the existence of the 
blood‑brain barrier  (7). Therefore, despite the progress of 
conventional treatment, such as surgery, radiotherapy and 
chemotherapy, the prognosis of most patients with glioma, and 
particularly that of patients with GBM, remains poor (4,8).
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Tumor immunity serves an important role in the occur‑
rence, development and invasion of tumors (9). Immunotherapy 
has been considered as a potential effective cancer therapy. 
Tumor‑promoting immune disorder is considered to be one of 
the enabling features of glioma (10). Meanwhile, some studies 
have demonstrated that immune status is closely related to 
the prognosis of glioma  (11). The immune microenviron‑
ment is composed of glioma associated immune cells, such 
as microglia, macrophages and B cells and immunoregula‑
tory factors, such as IL‑6, IL‑10 and TGF β which regulate 
the progression of glioma (12). However, immunotherapy for 
glioma has not achieved great success (12). Therefore, it is 
important to understand the molecular mechanism of glioma 
in order to evaluate the prognosis and to identify effective 
treatments for patients with glioma. The present study estab‑
lished an immune‑related gene prognostic model (IRGPM) by 
profiling an immune‑related gene (IRG) dataset in The Cancer 
Genome Atlas (TCGA) database. Subsequently, a validation 
model was constructed to evaluate the feasibility of the prog‑
nostic model and based on the prognosis model, the immune 
status and clinical prognosis of patients with glioma were 
further studied. The present study assessed the prognostic 
significance and clinical application value of IRGs in glioma, 
providing evidence for the prognosis evaluation and personal‑
ized treatment of patients with glioma.

Materials and methods

Subjects. A total of 20 pairs of glioma specimens and the 
corresponding adjacent normal specimens were obtained 
from patients with glioma (12 men and 8 women; median age, 
49 years; age range, 15‑75 years), undergoing surgery at the 
Affiliated Suzhou Hospital of Nanjing Medical University 
(Suzhou, China) from September 2015 to February 2019. In 
the non‑functional area, the ‘adjacent’ tissues were 1 cm away 
from the glioma tissues. In the functional area, the tumor 
was usually resected along the edge. The inclusion criteria 
were as follows: i) Histopathology was confirmed as glioma; 
and ii) the age range of the patients was 15‑75 years. Prior 
to surgery, written informed consent was collected from the 
patients/legal guardians. The present study was approved 
by the Medical Ethics Committees of the Affiliated Suzhou 
Hospital of Nanjing Medical University (Suzhou, China).

Data collection and processing. Clinical information and 
transcriptome RNA‑sequencing data of patients with glioma 
were obtained from TCGA data portal (https://portal.gdc.
cancer.gov/) and the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/; GSE43378). 
TCGA  (13) contains data for 1,066  glioma tissues and 
112 adjacent normal tissues; and GSE43378 (14) includes data 
for 117 glioma tissues. The IRGs list was downloaded from 
the Immunology Database and Analysis Portal (https://www.
immport.org/resources) (15).

Identification of differentially expressed genes (DEGs) and 
differentially expressed IRGs (DEIRGs). Using the edgeR 
package (v3.52; http://bioconductor.org/packages/edgeR/), the 
present study identified the DEGs for glioma in the TCGA 
database [|Log2 fold change (FC)|>1.0 and false discovery 

rate  (FDR) adjusted to P<0.05]  (16). Using the gplots and 
heatmap in the R platform, volcano plots and heat maps of 
DEGs were generated. By intersecting the acquired DEGs 
list with the IRG list, DEIRGs were obtained. By comparison 
with the GSE43378 dataset, the DEIRGs expressed in both the 
TCGA dataset and GSE43378 were obtained.

Functional enrichment analysis. In order to improve the 
understanding of the underlying biological mechanism of these 
IRGs, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(https://www.kegg.jp/) pathway analysis was performed using 
the DAVID v.6.8 (https://david.ncifcrf.gov/) online tool (16). 
Additionally, a visualized network was constructed using 
Cytoscape v.3.6.1 (https://cytoscape.org/). KEGG pathway 
analyses were based on the threshold of FDR <0.05.

Development of the IRGPM and validation model. A prog‑
nostic model was developed using univariate Cox regression 
analysis and lasso‑penalized Cox regression analysis. 
Additionally, relevant prognostic variables were adjusted, 
including age, sex, WHO grade and IDH1‑wild type (WT). 
Survival‑associated IRGs were obtained via univariate Cox 
regression analysis using the survival package 3.2‑3 in the R 
platform 3.2.5 (https://www.r‑project.org/). In order to observe 
the relationship between risk score and prognosis, dichotomy 
was used. Based on the median risk score value  (0.2068), 
patients with glioma were classified into high‑risk score and 
low‑risk score groups. In order to evaluate the feasibility of 
the prognostic model, a validation prognostic model was 
constructed in the GSE43378 dataset. Furthermore, patients 
in the GSE43378 dataset were divided into two groups based 
on the median risk score. The survival of the two groups of 
patients was analyzed by Kaplan‑Meier (KM) analysis using 
GraphPad Prism v. 8.3.0 (SPSS Inc.). The risk score calcula‑
tion formula was as follows:

In the formula, k represents the number of mRNA, Ci repre‑
sents the coefficient of mRNA in multivariate Cox regression 
analysis and Vi represents the expression levels of mRNA.

The formula used was as follows: [FCER1G expression x 
(0.00350)] + [NOX4 expression x (0.03959)] + [TRIM5 expression 
x (0.04868)] + [SOCS1 expression x (0.02350)] + [APOBEC3C 
expression x (0.02236)] + [BIRC5 expression x (0.01586)] + [VIM 
expression x (0.00005)] + [TNC expression x (0.00073)] + [BMP2 
expression x (‑0.01722)] + [CMTM3 expression x (0.00992)] + 
[IL24 expression x (0.12305)] + [JAG1 expression x (0.00609)] 
+ [CALCRL expression x (‑0.01003)] + [HNF4G expression x 
(0.05241)] + [CDK4 expression x (0.00008)].

Construction of prognosis‑related nomogram and receiver 
operating characteristic (ROC) curves. Considering that the 
risk score is a continuous variable, the linear predictor was 
used in the verification of the nomogram and ROC curve 
to further verify the accuracy of the prognostic model. 
The nomogram and ROC curve were established using the 
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edgeR package (17). The concordance index (C‑index) was 
used to evaluate the accuracy of the nomogram by bootstrap 
method with 1,000 resamplings.

Association between the IRGPM and immune cell infiltration. 
The abundances of tumor‑infiltrating immune cells were 
analyzed and visualized using the Tumor Immune Estimation 
Resource online database (TIMER2.0; https://cistrome.
shinyapps.io/timer/) (18). The abundance of six subtypes of 
tumor‑infiltrating immune cells (CD4+ T cells, CD8+ T cells, 
B cells, macrophages, dendritic cells and neutrophils) was 
evaluated. Subsequently, the association between the IRGPM 
and immune cell infiltration was analyzed using TIMER by 
downloading immune infiltrate levels of patients with glioma 
from the Immunology Database and Analysis Portal.

Reverse transcription‑quantitative PCR (RT‑qPCR). To 
evaluate the expression levels of key genes in the prognosis 
model, five genes [cyclin‑dependent kinase  4 (CDK4), 
interleukin‑24 (IL‑24), NADPH oxidase  4 (NOX4), bone 
morphogenetic protein 2 (BMP2) and baculoviral IAP repeat 
containing 5 (BIRC5)] were randomly selected for RT‑qPCR 
verification. TRIzol® reagent (Invitrogen; Thermo  Fisher 
Scientific, Inc.) was used to extract total RNA from 20 glioma 
specimen and 20 normal specimens, and then the First Strand 
cDNA synthesis kit (New England BioLabs, Inc.) was used 
for reverse transcription. A SYBR Green PCR kit (Applied 
Biological Materials Inc.) was used for amplification. The 
RNA expression was standardized against GAPDH according 
to the 2‑ΔΔCq method (19). Unpaired t‑test was used to evaluate 
the difference in gene expression between tumor specimen 
and normal specimen. The PCR primers used are shown in 
Table I. The temperature protocol of reverse transcription was 
as follows: Pre denaturation at 37˚C for 15 min; denaturation 
at 85˚C for 5 sec and annealing at 10˚C. The thermocycling 
conditions for qPCR were as follows: Initial denaturation at 

95˚C for 10 min; 40 cycles at 95˚C for 30 sec, 60˚C for 30 sec 
and 72˚C for 30 sec; extension at 75˚C for 7 min. The experi‑
ment was repeated three times.

Statistical analysis. Survival analysis of patients with glioma 
was performed using the ‘survival’ package in  R. The 
Kaplan‑Meier method was used to construct survival curves, 
and the log‑rank test was used to compare differences between 
two groups. The area under the curve of the survival ROC 
curve was calculated using the survival ROC R software 
package 1.12 (https://cran.r‑project.org/web/packages/surviv‑
alROC/). Unpaired t‑test was used to evaluate the difference 
in gene expression between tumor specimen and normal 
specimen. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Identification of DEGs and DEIRGs for glioma in TCGA. 
Significant DEGs were identified in glioma using the ‘edgeR’ 
package in R  software. A total of 3,238 DEGs, including 
1,950  upregulated and 1,288  downregulated DEGs, were 
identified (Fig. 1A and C). Among these DEGs, 97 DEIRGs, 
including 60 upregulated and 37 downregulated DEIRGs, 
were identified as DEGS and included in the immune gene 
list in TCGA (Fig. 1B and D). In addition, co‑expressed IRGs 
were identified using the intersection of TCGA database and 
GSE43378 (data not shown).

Gene functional enrichment analysis of DEIRGs. Following 
enrichment analysis, the top  10 KEGG pathways were 
presented in a scatter plot (Fig. 2A). According to the asso‑
ciations among the top five KEGG pathways and the involved 
IRGs, a visual network was constructed using Cytoscape v3.6.1 
(Fig. 2B). The top five significant KEGG pathways were as 
follows: ‘Neuroactive ligand‑receptor interaction’ (hsa04080), 
‘Cytokine‑cytokine receptor interaction’ (hsa04060), ‘Viral 
protein interaction with cytokine and cytokine receptor’ 
(hsa04061), ‘Intestinal immune network for IgA production’ 
(hsa04672) and ‘cAMP signaling pathway’ (hsa04024).

Construction of the IRGPM and validation model. A total of 
72 survival‑associated IRGs were identified using univariate 
Cox regression analysis (Fig. 3), and these were significantly 
associated with overall survival (OS) in glioma. Lasso‑penalized 
Cox regression analysis was performed to identify the genes in 
the prognostic model (Fig. 4C), and the IRGPM for TCGA was 
constructed (Fig. 4). Furthermore, using GSE43378, a valida‑
tion model that classified patients into high‑ and low‑risk score 
groups was established based on the median risk score (Fig. S1).

Clinical outcome and prognostic model in patients with 
glioma. Patients were classified into two groups (high‑risk 
and low‑risk) based on the median risk score as the cut‑off, 
and KM analysis was performed to analyze patient prognosis. 
In the prognostic model, the high‑risk group had worse OS 
compared with the low‑risk group of patients with glioma 
(P<0.01; Fig. 5A) and patients with GBM (P<0.05; Fig. 5B). In 
the validation model, the high‑risk score group also had worse 
OS compared with the low‑risk score group of patients with 

Table I. Primer sequences used for reverse transcription‑quan‑
titative PCR.

Primer	 Sequence, 5'‑3'

CDK4 forward	 CATGTAGACCAGGACCTAAGG
CDK4 reverse	 AACTGGCGCATCAGATCCTAG
IL24 forward	 ATGAATTTTCAACAGAGAGGGCTG
IL24 reverse	 GCAGAAATTCTACAAGCTCTGA
NOX4 forward	 TCGCCAACGAAGGGGTTAAA
NOX4 reverse	 GCAACGTCAGCAGCATGTAG
BMP2 forward	 CGCAGCTTCCACCATGAAGAA
BMP2 reverse	 GAATCTCCGGGTTGTTTTCCCACT
BIRC5 forward	 CGCATCTCTACATTCAAG
BIRC5 reverse	 ATGTTCCTCTCTCGTGAT
GAPDH forward	 CAACGAATTTGGCTACAGCA
GAPDH reverse	 AGGGGTCTACATGGCAACTG

BIRC5, baculoviral IAP repeat containing 5; BMP2, bone morphoge‑
netic protein 2; NOX4, NADPH oxidase 4.
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glioma (P<0.01; Fig. S2A) and patients with GBM (P<0.01; 
Fig. S2B).

In TCGA group of the prognostic model, univariate analysis 
(Fig. 5C) demonstrated that high age [hazard ratio (HR)=1.073; 
95% CI, 1.016‑1.084; P<0.001], high WHO grade (HR=4.702; 
95%  CI,  3.779‑5.850; P<0.001), IDH1‑WT (HR=1.482; 
95% CI, 1.030‑2.130; P=0.034) and high risk score (HR=3.979; 
95% CI, 3.380‑4.685; P<0.001) were significant prognostic 
factors for poor prognosis. In the multivariate Cox regres‑
sion analysis (Fig. 5D), age (HR=1.046; 95% CI, 1.033‑1.059; 
P<0.001), high WHO grade (HR=1.705; 95% CI, 1.257‑2.314; 
P<0.001), IDH1‑WT (HR=2.946; 95%  CI,  2.000‑4.339; 
P<0.001) and high risk score (HR=2.461; 95% CI, 1.945‑3.113; 
P<0.001) were identified to be independently associated with 
poor OS.

In the GSE43378 validation prognostic model, univariate 
analysis (Fig.  S2C) indicated that high age (HR=1.032; 
95% CI, 1.011‑1.054; P=0.003), high WHO grade (HR=2.357; 
95%  CI,  1.400‑3.969; P=0.001) and high risk score 
(HR=13.708; 95% CI, 4.579‑41.037; P<0.001) were signifi‑
cant prognostic factors for poor prognosis. Furthermore, in 

the multivariate Cox  regression analysis (Fig.  S2D), age 
(HR=1.025; 95% CI, 1.002‑1.048; P=0.033), high WHO grade 
(HR=1.911; 95% CI, 1.068‑3.419; P=0.029) and high risk score 
(HR=6.940; 95% CI, 2.024‑23.802; P=0.002) were identified 
to be independently associated with poor OS.

Assessing the accuracy of the prognostic model. A nomogram 
and ROC curve were generated to examine the accuracy of 
the prognostic model. The ROC curve analysis of TCGA 
prognostic model is presented in Fig. 6A, and the risk score 
area under the curve was 0.886, suggesting that the TCGA 
IRGPM could be used to assess survival. Furthermore, TCGA 
prognostic model nomogram is illustrated in Fig. 6B, and the 
C‑index was identified to be 0.741 (data not shown).

The ROC curve analysis of the validation prognostic model 
is presented in Fig. S3A, with an area under the curve of 0.688. 
In addition, the GSE43378 validation model nomogram is 
shown in Fig. S3B.

Prognostic model and immune cell infiltration correla‑
tion analysis. The correlation between the risk score and 

Figure 1. DEGs and DEIRGs in The Cancer Genome Atlas. Heatmap of (A) DEGs and (B) DEIRGs between glioma and normal tissues. Volcano plot of 
(C) DEGs and (D) DEIRGs between glioma and normal tissues. Red dots represent upregulated genes and green dots represent downregulated genes with 
statistical significance. DEGs, differentially expressed genes; DEIRGs, differentially expressed immune‑related genes; FC, fold change; fdr, false discovery 
rate; N, normal; T, tumor.
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Figure 2. Enriched KEGG pathways and the intersection network. (A) Top 10 KEGG enrichment pathways of differentially expressed IRGs. (B) Visual 
intersection network of the top five KEGG pathways and the involved IRGs. IRGs, immune‑related genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3. Expression profiles of survival‑associated IRGs. Forest plot of hazard ratios showing the survival‑associated IRGs in glioma. The red dots represent 
upregulated genes and green dots represent downregulated genes. IRGs, immune‑related genes.
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six  different types of immune cell infiltration (B  cells, 
CD4+ T cells, CD8+ T cells, dendritic cells, macrophages and 
neutrophils) was analyzed using TCGA. The results (Fig. 7) 
demonstrated that the prognostic risk score was positively 
correlated with the infiltration of B cells (correlation, 0.376; 
P<0.001; Fig. 7A), CD8+ T cells (correlation, 0.122; P=0.002; 
Fig. 7C), dendritic cells (correlation, 0.306; P<0.001; Fig. 7D), 
macrophages (correlation, 0.317; P<0.001; Fig. 7E) and neutro‑
phils (correlation, 0.343; P<0.001; Fig. 7F).

Analysis and verification of gene expression. To further 
evaluate the expression levels of key genes in the prognosis 
model, five genes (CDK4, IL24, NOX4, BMP2 and BIRC5) 
were randomly selected for analysis of the expression levels 
in glioma tissues and adjacent healthy tissues. The expression 
levels of these five genes in glioma tissues and normal tissues 
were significantly different: CDK4 (P<0.001; Fig. 8A), IL24 
(P<0.001; Fig. 8B), NOX4 (P<0.001; Fig. 8C), BMP2 (P<0.001; 
Fig. 8D) and BIRC5 (P<0.026; Fig. 8E). The expression levels 
of these genes were higher in glioma tissues compared with 

normal tissues, which was consistent with TCGA and the 
GSE43378 dataset (Fig. 8).

Discussion

Glioma accounts for ~80% of primary brain tumors in 
adults, and GBM is the most common type of glioma  (1). 
The biological characteristics of glioma are diverse, and 
the prognosis of glioma with different pathological types 
varies  (20). Immunotherapy has become a hot topic and 
research of immunotherapy for glioma is increasing rapidly, 
but remains unsuccessful (12). In the present study, IRGs were 
used to predict the prognosis of patients with glioma, which 
may facilitate the understanding of its clinical significance 
and molecular characteristics. The present study identified 
DEIRGs by comparing TCGA data with all immune genes. 
Using further survival and clinical analyses, the prognostic 
model and the validation model of IRGs were constructed. The 
prognostic model included 15 key genes (FCER1G, NOX4, 
TRIM5, SOCS1, APOBEC3C, BIRC5, VIM, TNC, BMP2, 

Figure 4. Construction of the IRGs prognostic model. (A) Rank and group distribution of the prognostic index. (B) Survival status of patients in different risk 
groups. (C) Heatmap of expression profiles of included IRGs. IRGs, immune‑related genes.
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CMTM3, IL24, JAG1, CALCRL, HNF4G and CDK4), all of 
which are protein‑coding genes. According to TCGA data, 
patients with glioma in the high‑risk group had worse prog‑
nosis compared with those in the low‑risk group. In addition, 

patients with GBM in the high‑risk group had a worse outcome 
compared with those in the low‑risk group. The prognostic 
model was validated using the GSE43378 dataset, and the 
results were consistent with the aforementioned findings. 

Figure 5. Survival analysis of The Cancer Genome Atlas prognostic model in glioma and glioblastoma. (A) Kaplan‑Meier curve indicated that patients with 
glioma in the high‑risk group had a lower survival probability. (B) Patients with glioblastoma in the high‑risk group also had a lower survival probability. 
(C) Univariate Cox regression analysis of glioma. (D) Multivariate Cox regression analysis of glioma. IDH1, isocitrate dehydrogenase 1.
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Among the 15 genes, CDK4, IL24, NOX4, BMP2 and BIRC5 
were randomly selected for PCR verification.

The protein encoded by CDK4 is a member of the 
Ser/Thr protein kinase family, which is important for cell 

cycle G1 phase progression (21). A CDK4 mutation has been 
revealed to be associated with tumorigenesis in a variety of 
cancer types (22). Furthermore, CDK4/6 inhibitors not only 
are cytostatic, but also have immunomodulatory functions in 

Figure 6. ROC curve and nomogram of TCGA prognostic model in glioma. (A) ROC curve of TCGA prognostic model. (B) Nomogram of TCGA model. AUC, 
area under the curve; IDH, isocitrate dehydrogenase; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; WT, wild type.
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tumors (23). It has been reported that CDK4 is highly expressed 
in GBM, and is involved in the process of glioma induced by 
the circular RNA(circ) MMP9/microRNA (miR)‑124 axis (24).

The NADPH oxidase family has been demonstrated to 
be the main source of reactive oxygen species production in 
various cells (25). NOX4 is abundantly expressed in GBM, 

and may serve a vital role in the invasion, angiogenesis and 
radioresistance of GBM (26). The BIRC5 gene is a member 
of the inhibitor of apoptosis gene family, which is highly 
expressed during fetal development and in most tumors (27). 
A recent study reported that patients with non‑small cell lung 
cancer with high anti‑BIRC5 IgG expression had an improved 

Figure 7. Associations between the risk score and infiltration abundances of six types of immune cells. (A) B cells. (B) CD4+ T cells. (C) CD8+ T cells. 
(D) Dendritic cells. (E) Macrophages. (F) Neutrophils. Cor, correlation.
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prognosis (28). Additionally, in glioma tissues, the mRNA 
levels of Yes1 associated transcriptional regulator/tafazzin and 
its target gene BIRC5 are markedly upregulated (29).

IL24 expression can promote apoptosis and has been 
regarded as a tumor suppressor (30). IL24 can also induce the 
secretion of proinflammatory cytokines and the induction of 
Th1 type cytokines in monocytes, suggesting that IL24 serves 
an important role in tumor immunity (31). In the present study, 
IL24 expression was upregulated in glioma and was associ‑
ated with high‑risk score. Furthermore, RT‑qPCR results 
demonstrated that IL24 expression in glioma was upregulated 
compared with that in healthy tissue.

BMP2 can promote differentiation and growth inhibition 
in glioma (31,32). Furthermore, BMP2 expression is associated 
with WHO grade, which may be expected to be an indepen‑
dent prognostic factor (33). In the present study, BMP2 was 
highly expressed in glioma, but it was negatively associated 
with the risk score.

Tumor immunotherapy has gained increased attention; 
however, tumor‑related immunosuppression remains a chal‑
lenge. Therefore, it is necessary to understand the tumor-related 
immune signaling pathway. To improve the understanding of 
the underlying biological mechanism of the IRGs, the present 
study identified five key KEGG pathways (‘Neuroactive 
ligand‑receptor interaction’, ‘Cytokine‑cytokine receptor inter‑
action’, ‘Viral protein interaction with cytokine and cytokine 
receptor’, ‘Intestinal immune network for IgA production’ and 
‘cAMP signaling pathway’).

The ‘Neuroactive ligand‑receptor interaction’ signaling 
pathway mainly involved downregulated genes in the visual 
network. Furthermore, the ‘Neuroactive ligand‑receptor 
interaction’ and ‘Cytokine‑cytokine receptor interaction’ 
signaling pathways have been reported in neurodegenera‑
tive diseases (34) and GBM (35,36). In a study of prognostic 
markers of GBM, Zhou et al (37) identified that upregulated 
DEGs were enriched in cytokine‑cytokine receptor interac‑
tion and circadian entrainment, while the downregulated DEG 

was enriched in neuroactive ligand‑receptor interaction and 
transforming growth factor‑β signaling pathways, which was 
consistent with the current results. A comprehensive analysis 
suggested that patients with GBM with defective ‘neuroactive 
ligand‑receptor interaction’ signaling pathway have a poor 
prognosis  (38), while another study has demonstrated that 
‘Cytokine‑cytokine receptor interaction’ is one of the main 
long non‑coding RNA enrichment signaling pathways in 
low‑grade glioma (39).

The ‘Intestinal immune network for IgA production’ 
signaling pathway is associated with inflammatory immune 
diseases, including kidney diseases and osteoarthritis (40,41), 
and is emerging as a novel target of potential therapeutic 
interventions  (42). As an important metabolic pathway, 
the activation of the ‘cAMP signaling pathway’ has also 
been reported to inhibit proliferation of glioma (43,44). For 
instance, oncogenic cAMP/Protein Kinase A Inhibitor signal 
transduction is implicated in the occurrence and development 
of various human cancer types (45). It has been demonstrated 
that miR‑150 can inhibit the activity of PI3K and AKT via the 
cAMP‑PKA‑C‑terminal Src kinase signaling pathway (46). In 
addition, it has been reported that the association between the 
cAMP signaling pathway and the MAPK signaling pathway 
may provide a potential strategy for glioma treatment (47). 
Furthermore, Daniel et al (48) revealed that in GBM, sensitive 
cells can be efficiently killed by cAMP agonists, and targeting 
both the cAMP and MAPK signaling pathways leads to the 
apoptosis of resistant GBM cells.

Glioma cells can secrete a variety of immunoregulatory 
factors, attracting several types of cells, including immune cells, 
into the tumor microenvironment (TME) (49). A previous study 
has demonstrated that the different content of glioma immune 
cells is associated with varying prognosis (50). Glioma‑related 
macrophages and microglia, together with dendritic cells and 
neutrophils, constitute the glioma TME, regulating and inhib‑
iting the tumor immune response (12). In the present study, 
multivariate Cox regression analysis identified that age, grade, 

Figure 8. Expression levels of CDK4, IL24, NOX4, BMP2 and BIRC5 in tumor tissues and adjacent tissues of patients with glioma. Expression levels of 
(A) CDK4, (B) IL24, (C) NOX4, (D) BMP2 and (E) BIRC5. BIRC5, baculoviral IAP repeat containing 5; BMP2, bone morphogenetic protein 2; NOX4, 
NADPH oxidase 4.
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IDH1 and risk score were independent prognostic factors. 
Furthermore, IDH1‑WT was associated with poor prognosis 
and was an independent prognostic factor for OS. Glioma with 
IDH mutation has a CpG island methylation phenotype, and 
the survival time of patients with this is longer compared with 
that of patients with IDH‑WT (5). Therefore, the difference in 
the immune‑related cell content may be a potential important 
factor in the varying survival rates between the two tumor 
types. Furthermore, the present results suggested that the infil‑
tration of B cells, CD8+ T cells, dendritic cells, macrophages 
and neutrophils was correlated with the prognostic risk score. 
Therefore, it was speculated that the increased infiltration of 
these cells was associated with poor prognosis.

Macrophages are the main cell type of the immune system 
and key drivers of inflammation (51). During tumor progres‑
sion, macrophages establish an inflammatory environment, 
which stimulates angiogenesis, enhances the migration and 
invasion of tumor cells and inhibits antitumor immunity (52). 
Previous studies have reported that the accumulation of 
tumor‑associated macrophages is associated with poor clinical 
prognosis (53,54). Dendritic cells are antigen‑presenting cells, 
which are necessary for T‑cell‑mediated immunity, and serve 
a crucial role in the initial activation of tumor immunity (55). 
Additionally, dendritic cell maturation is required to provide 
co‑stimulatory signals to T  cells; however, this is often 
not sufficient to induce effective immunity in tumors (56). 
Furthermore, tumor cells can use dendritic cells to escape 
immunity in the cancer environment  (57). B  cells are an 
important cell component of immunity in humans, and serve a 
role in biological functions, such as antigen presentation, acti‑
vation of T cells and secretion of antibodies (58). In addition, it 
has been suggested that B cells and the differentiation‑related 
molecular signaling pathways are involved in tumor promo‑
tion (59). Furthermore, neutrophils are key effector cells in the 
immune system. However, compared with other immune cells, 
the role of neutrophils in the pathogenesis of tumors remains 
unknown. Neutrophils are generally considered to have a 
defensive response to tumor cells, but there is increasing 
evidence that tumor‑related neutrophils are associated with 
tumor progression (60,61). Furthermore, clinical analysis has 
demonstrated that neutrophil count can be used as a biomarker 
to predict the prognosis of several types of tumors (62,63).

In conclusion, the present study established a prognosis 
model based on IRGs to predict the immune status and 
clinical prognosis of patients with glioma. Multivariate Cox 
analysis demonstrated that the risk score could be used as an 
independent predictor of glioma. The association between the 
risk score and immune cell infiltration provided a basis for 
the prognosis and immunotherapy of glioma. However, there 
are some limitations to the present study. Firstly, the prog‑
nosis model involved 15 prognosis‑related IRGs, which is not 
concise and effective enough. Therefore, future research will 
aim to construct a more concise and stable prognostic model. 
In addition, the function of some genes in this model remains 
unknown. Therefore, studies should further investigate the 
function and mechanism of these genes in immunity.
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