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Abstract. Although accumulating evidence has confirmed 
the potential biological functions of long non‑coding RNAs 
(lncRNAs) as competitive endogenous RNAs (ceRNAs) in 
colorectal tumorigenesis and progression, few studies have 
focused on rectosigmoid junction cancer. In the present 
study, a comprehensive analysis was conducted to explore 
lncRNA‑mediated ceRNA implications and their potential 
value for prognosis. lncRNA, microRNA (miR/miRNA) 
and mRNA expression profiles were downloaded from 
The Cancer Genome Atlas database. Subsequently, a 
lncRNA‑miRNA‑mRNA regulatory network was constructed 
to evaluate the functions of these differentially expressed genes 
on overall survival (OS) for rectosigmoid junction cancer. As a 
result, a rectosigmoid junction cancer‑specific ceRNA network 
was successfully constructed with 7 differentially expressed 
(DE)lncRNAs, 16 DEmiRNAs and 71 DEmRNAs. Among 
the network, one DElncRNA (small nucleolar RNA host 

gene 20) and three mRNAs (sodium‑ and chloride‑dependent 
taurine transporter, fibroblast growth factor 13 and tubulin 
polyglutamylase TTLL7) were significantly associated with 
OS (P<0.05). Additionally, two lncRNAs (KCNQ1OT1 
and MIR17HG) interacted with most of the DEmiRNAs. 
Notably, two top‑ranked miRNAs (hsa‑miR‑374a‑5p and 
hsa‑miR‑374b‑5p) associated networks were identified to be 
markedly associated with the pathogenesis. Furthermore, four 
DEmRNAs (caveolin‑1, MET, filamin‑A and AKT3) were 
enriched in the Kyoto Encylopedia of Gene and Genomes 
pathway analysis, as well as being included in the ceRNA 
network. In summary, the present results revealed that a 
specific lncRNA‑miRNA‑mRNA network was associated with 
rectosigmoid junction cancer, providing several molecules that 
may be used as novel prognostic biomarkers and therapeutic 
targets.

Introduction

Rectosigmoid junction cancer accounts for 9% of colorectal 
cancer (CRC) cases (1), ranking third in terms of inci‑
dence (10.2%) and with the second‑highest mortality rate (9.2%) 
worldwide in 2018 (2). The rectosigmoid junction (C19.9) is 
encoded as an independent segment of the intesimum crassum 
in the International Classification of Disease for Oncology of 
the World Health Organization (3).

To the best of our knowledge, few studies have discussed 
rectosigmoid junction cancer, in which the rectosigmoid junc‑
tion was not entirely researched separately and was either 
included in the colon or the rectum (4‑7). Meanwhile, the 
treatment of colorectal tumors has become increasingly differ‑
entiated and individualized. Hence, there is an urgent need of 
identifying effective potential molecular biomarkers for the 
early diagnosis, prognosis and treatment of rectosigmoid junc‑
tion cancer.

In the last decade, regulatory networks composed of long 
non‑coding RNAs (lncRNAs), microRNAs (miRs/miRNAs) 
and mRNAs have stimulated great interest in the research of 
molecular biological mechanisms participating in the patho‑
genesis and prognosis of tumors (8‑10). The ceRNA theory was 
proposed by Salmena et al (11) in 2011, which established the 
existence of a complex post‑transcriptional regulatory network, 
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where lncRNAs, mRNAs and other non‑coding RNAs share 
mutual miRNA response elements (MREs) with miRNAs, and 
that ceRNAs can act as natural miRNA sponges to suppress 
miRNA function by competitively binding to MREs on the 
target mRNA. In the ceRNA network, lncRNAs function as 
ceRNAs to adjust the level of protein‑coding genes and take 
part in the regulation of cell biology by sponging miRNAs (11).

In recent years, lncRNA‑mediated ceRNA regulatory 
networks were proven to be implicated in the tumorigenesis 
and progression of CRC (12‑17). Nevertheless, to the best of 
our knowledge, a comprehensive analysis of the rectosigmoid 
junction cancer‑associated lncRNA‑mediated ceRNA network 
has not been performed.

The present study compared integrated RNA expression 
profiles based on The Cancer Genome Atlas (TCGA) database 
between 69 tumor tissues and 7 normal tissues of rectosigmoid 
junction cancer. Next, an integrated analysis was performed to 
select aberrantly expressed lncRNAs, miRNAs and mRNAs. 
Finally, 9 lncRNAs, 16 miRNAs and 71 mRNAs were screened 
to build the lncRNA‑miRNA‑mRNA ceRNA network. 
Furthermore, relevant overall survival (OS) analysis of differen‑
tially expressed (DE)RNAs involved in the ceRNA network was 
performed to screen significant prognostic biomarkers.

Materials and methods

Sequencing and clinical data. The RNA expression and corre‑
sponding clinical data of patients with rectosigmoid junction 
cancer embedded in the comprehensive analysis were obtained 
from the TCGA database (https://portal.gdc.cancer.gov/). The 
following exclusion criteria were used: i) Patients suffering 
malignancies other than rectosigmoid junction cancer; 
ii) samples with incomplete data for analysis; iii) duplicate 
samples; and iv) patients who underwent preoperative neoad‑
juvant radiotherapy and chemotherapy. Overall, data from 
a total of 69 tumor tissues and 7 normal tissues adjacent to 
surgically removed tumors were obtained from 69 patients 
with rectosigmoid junction cancer. The patients consisted of 
35 males and 34 females, with a mean age of 63.9 years and 
a median age of 67 years (age range, 31‑90 years). The RNA 
and miRNA sequence data from the 76 cases originated from 
Illumina HiSeq2000 and Illumina Genome Analyzer IIX 
platforms. Their detailed information is shown in Table SI. 
The Union for International Cancer Control/American Joint 
Committee on Cancer TNM staging system was used (18).

Aberrant expression analysis. Multiple data, including 
sequencing and clinical data, were analyzed by running the 
‘gdcDEAnalysis’ package in R‑Portable language software 
(v3.5.1; https://www.r‑project.org/). Adjusted P<0.01 and 
log2[fold‑change (FC)]>2.0 were set as statistical significance 
for DElncRNAs and DEmRNAs, while log2(FC)>2.5 and 
adjusted P<0.01 were considered for DEmiRNAs. LogFC >0 
was set to high expression, and logFC <0 was set to low 
expression. For the screening of DElncRNAs, DEmiRNAs 
and DEmRNAs, volcano maps were generated using the 
‘gdcVolcanoPlot’ package (v1.1.1) in R.

Functional enrichment analysis. The Gene Ontology 
(GO) analysis and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis of DEmRNAs were 
performed using the R platform. A KEGG pathway or 
GO term with a false discovery rate (FDR) <0.01 was consid‑
ered statistically significant. The GO analysis of the cellular 
component (CC), molecular function (MF) and biological 
process (BP), and the enriched pathways of DEmRNAs were 
ranked by enrichment score [‑log10(P‑value)] and performed to 
investigate the underlying function of all DEmRNAs.

Formation of the lncRNA‑miRNA‑mRNA network. The 
lncRNA‑miRNA‑mRNA ceRNA network was based on 
the hypothesis that lncRNAs can directly interact with 
miRNA sponges to influence the bioactivity of mRNAs (11). 
The ceRNA network of rectosigmoid junction cancer was 
established as follows.

Firstly, highly reliable miRNA reference databases 
[mirTarBase (19) (http://mirtarbase.mbc.nctu.edu.tw/php/index.
php), miRcode (http://www.mircode.org/) and ENCORI (20) 
(http://starbase.sysu.edu.cn/)] were utilised to determine 
miRNA‑targeted mRNAs. Subsequently, miRNA‑targeted 
lncRNAs were retrieved from SpongeScan (http://spongescan.
rc.ufl.edu/), miRcode and ENCORI databases. The intersection 
of the overlapping predicted results, DElncRNAs and DEmRNAs 
was then obtained. Furthermore, the miRNAs negatively regu‑
lating the intersection expression of lncRNAs and mRNAs 
were selected based on the aforementioned ceRNA hypothesis. 
The lncRNA‑miRNA‑mRNA network was visualized using 
Cytoscape v3.6.1 (https://cytoscape.org/). The process of ceRNA 
network construction is shown in the flowchart presented in Fig. 1.

Generat ion of  f unct ional  lncR NA‑miR NA‑mR NA 
regulatory modules. In order to screen the functional 
lncRNA‑miRNA‑mRNA regulatory modules of rectosig‑
moid junction cancer, the degree, Maximal Clique Centrality 
(MCC), betweenness centrality and closeness centrality of 
lncRNAs were calculated using the cytoHubba plugin on 
Cytoscape v3.6.1. The overlapping top‑ranked lncRNAs 
among the four calculation methods were extracted.

Survival analysis of candidate RNAs. To identify prognostic 
DERNA signatures, the survival curves of all RNAs involved 
in the ceRNA network were plotted using the R survival 
package (v1.1.1). Univariate survival analysis was estimated 
based on the Kaplan‑Meier curve analysis using the log‑rank 
test. Unless otherwise stated, P<0.05 was considered to indi‑
cate a statistically significant difference.

Results

Identification of DElncRNAs. A total of 151 DElncRNAs were 
identified by running the ‘gdcDEAnalysis’ package in R. As 
a result, 109 (72.19%) upregulated and 42 (27.81%) down‑
regulated DElncRNAs were identified (Fig. 2A). The top 21 
upregulated and 21 downregulated lncRNAs, and the related 
logFC, P‑values and FDR values, are listed in Table I.

Identification of DEmiRNAs. A total of 243 DEmiRNAs were 
identified using the ‘gdcDEAnalysis’ package in R. As shown in 
Fig. 2B, there were 155 (63.79%) upregulated and 88 (36.21%) 
downregulated DEmiRNAs. The top 21 upregulated and 
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21 downregulated lncRNAs, and the related logFC, P‑values 
and FDR values are listed in Table II.

Identification of DEmRNAs. A total of 2,231 DEmRNAs 
were selected using the ‘gdcDEAnalysis’ package. As shown 
in Fig. 2C, 793 (35.54%) DEmRNAs were upregulated and 
1,438 (64.46%) DEmRNAs were downregulated. The top 21 
upregulated and 21 downregulated lncRNAs, and the related 
logFC, P‑values and FDR values are listed in Table III.

GO functional enrichment and KEGG pathway analysis of 
DEmRNAs. GO analysis indicated significant enrichment 

in the BP of ‘leukocyte migration’, ‘positive regulation of 
cytosolic calcium ion concentration’ and ‘regulation of 
chemotaxis’. CC analysis suggested enrichment in the ‘protein‑
aceous extracellular matrix’, ‘sarcolemma’ and ‘costamere’. 
Additionally, the DEmRNAs exhibited MF enrichment in 
‘transcription factor activity, RNA polymerase II proximal 
promoter sequence‑specific DNA binding’ (Fig. 3A).

KEGG pathway analysis allows for the functional annota‑
tion of DEmRNAs. The present study obtained nine KEGG 
pathways. The dotplot in Fig. 3B shows the results of the KEGG 
pathway with P‑values ranging from low to high. The complete 
results of the KEGG pathway analysis are shown in Table IV. 

Figure 1. ceRNA network analysis flowchart. ceRNA, competitive endogenous RNA; miRNA, microRNA; lncRNA, long non‑coding RNA.

Figure 2. Volcano plots of differentially expressed genes. Differentially expressed (A) long non‑coding RNAs, (B) microRNAs and (C) mRNAs. Volcano plots 
were constructed using |log2(fold‑change)|>2.0 and FDR<0.01. Green dots represent downregulated differentially expressed genes, while red dots represent 
upregulated differentially expressed genes. FDR, false discovery rate.
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Table I. Top 21 upregulated and 21 downregulated differ‑
entially expressed long non‑coding RNAs in rectosigmoid 
junction cancer samples.

A, Upregulated

Name log(FC) P‑value FDR

MAFG‑AS1 2.752340839 6.67x10‑10 3.10x10‑08

PVT1 2.657857958 2.18x10‑08 6.25x10‑07

SNHG17 2.378579537 5.72x10‑08 1.39x10‑06

LINC02253 6.040229343 1.30x10‑07 2.77x10‑06

BLACAT1 4.927333574 1.84x10‑07 3.72x10‑06

AC021218.1 4.467747207 1.93x10‑07 3.85x10‑06

MGC32805 4.452660405 3.21x10‑07 5.85x10‑06 

SNHG15 1.667019645 4.62x10‑07 8.02x10‑06

CAPN10‑AS1 1.622484665 6.05x10‑07 1.01x10‑05

CASC21 5.142108745 1.14x10‑06 1.73x10‑05

LINC01605 3.06645948 1.16x10‑06 1.76x10‑05

LINC01232 1.751414603 2.04x10‑06 2.84x10‑05

CRNDE 3.301683337 2.89x10‑06 3.79x10‑05

AL121832.3 2.327872764 2.93x10‑06 3.84x10‑05

MIR4435‑2HG 1.932326125 3.66x10‑06 4.68x10‑05

MIR17HG 2.827330119 3.84x10‑06 4.86x10‑05

VPS9D1‑AS1 2.686552396 4.25x10‑06 5.29x10‑05

AC073335.2 2.234963344 4.26x10‑06 5.29x10‑05

ZFAS1 1.656374536 5.13x10‑06 6.19x10‑05

FOXP4‑AS1 2.284408492 5.42x10‑06 6.49x10‑05

SNHG20 1.424697676 6.31x10‑06 7.32x10‑05

B, Downregulated   

Name log(FC) P‑value FDR

CDKN2B‑AS1 ‑5.926520656 4.05x10‑17 2.15x10‑14

MBNL1‑AS1 ‑2.861799886 9.56x10‑16 3.30x10‑13

HAGLR ‑3.577536261 6.83x10‑14 1.28x10‑11

AC016027.1 ‑1.97046862 2.68x10‑11 2.06x10‑09

AC106869.1 ‑2.561290755 9.22x10‑11 5.72x10‑09

PDCD4‑AS1 ‑1.440015713 7.53x10‑10 3.44x10‑08

MIR22HG ‑1.735841168 1.49x10‑09 6.29x10‑08

B4GALT1‑AS1 ‑1.711349731 6.23x10‑09 2.17x10‑07

ZNF667‑AS1 ‑2.1010172 7.62x10‑09 2.57x10‑07

LINC00294 ‑1.035031181 4.44x10‑08 1.14x10‑06

LINC00641 ‑1.533058923 8.46x10‑08 1.94x10‑06

AL691432.2 ‑1.206788789 1.09x10‑07 2.39x10‑06

AC006333.2 ‑1.201587737 1.57x10‑07 3.25x10‑06

ZNF710‑AS1 ‑1.66124648 2.57x10‑07 4.85x10‑06

U91328.2 ‑1.235272793 4.09x10‑07 7.20x10‑06

FENDRR ‑2.175974452 2.00x10‑06 2.79x10‑05

AC016888.1 ‑1.749061747 2.42x10‑06 3.27x10‑05

AL135905.2 ‑1.476920272 4.08x10‑06 5.13x10‑05

AP002761.4 ‑1.384651324 4.75x10‑06 5.79x10‑05

AL662844.4 ‑1.308823325 5.14x10‑06 6.19x10‑05

LINC02441 ‑2.443144586 5.33x10‑06 6.38x10‑05

FC, fold‑change; FDR, false discovery rate.

Table II. Top 21 upregulated and 21 downregulated differentially 
expressed miRNAs in rectosigmoid junction cancer samples.

A, Upregulated   

Name log(FC) P‑value FDR

hsa‑miR‑21‑5p 6.884706944 2.22x10‑29 1.01x10‑26

hsa‑miR‑126‑3p 5.027647848 9.38x10‑17 7.12x10‑15

hsa‑miR‑101‑3p 5.347152405 7.17x10‑16 4.08x10‑14

hsa‑miR‑106b‑5p 5.429063826 7.18x10‑15 3.27x10‑13

hsa‑miR‑24‑2‑5p 5.070084953 9.31x10‑15 3.85x10‑13

hsa‑miR‑452‑5p 7.358520015 1.68x10‑13 4.71x10‑12

hsa‑miR‑192‑5p 5.126016035 1.92x10‑13 4.85x10‑12

hsa‑miR‑141‑3p 6.308116527 3.48x10‑13 8.33x10‑12

hsa‑miR‑24‑3p 3.122933649 5.22x10‑13 1.19x10‑11

hsa‑miR‑194‑5p 4.418901392 6.84x10‑13 1.48x10‑11

hsa‑miR‑379‑5p 5.130530865 3.49x10‑12 7.22x10‑11

hsa‑miR‑889‑3p 5.058722699 1.26x10‑11 2.38x10‑10

hsa‑miR‑429 6.825921399 1.78x10‑11 3.24x10‑10

hsa‑miR‑19b‑3p 6.910550025 2.17x10‑11 3.80x10‑10

hsa‑miR‑130b‑3p 4.447213787 5.73x10‑11 8.99x10‑10

hsa‑miR‑140‑5p 4.976522784 6.45x10‑11 9.47x10‑10

hsa‑miR‑16‑5p 5.352104156 9.06x10‑11 1.17x10‑09

hsa‑miR‑141‑5p 5.336691795 8.98x10‑11 1.17x10‑09

hsa‑miR‑200a‑3p 5.028635315 9.22x10‑11 1.17x10‑09

hsa‑miR‑26b‑5p 4.109853806 9.13x10‑11 1.17x10‑09

hsa‑miR‑374a‑3p 7.166807838 1.32x10‑10 1.63x10‑09

B, Downregulated   

Name log(FC) P‑value FDR

hsa‑miR‑766‑3p ‑5.176574242 2.30x10‑19 2.61x10‑17

hsa‑miR‑197‑3p ‑5.178244912 2.09x10‑19 2.61x10‑17

hsa‑miR‑328‑3p ‑6.527470364 2.25x10‑19 2.61x10‑17

hsa‑let‑7d‑3p ‑4.940073713 6.56x10‑17 5.97x10‑15

hsa‑miR‑139‑5p ‑5.893898996 1.40x10‑16 9.09x10‑15

hsa‑miR‑1306‑5p ‑4.697991354 6.86x10‑15 3.27x10‑13

hsa‑miR‑6511b‑3p ‑6.027857145 1.86x10‑14 7.07x10‑13

hsa‑miR‑129‑5p ‑6.398340279 4.50x10‑14 1.57x10‑12

hsa‑miR‑574‑3p ‑5.128565486 6.02x10‑14 1.83x10‑12

hsa‑miR‑149‑5p ‑5.701365419 5.87x10‑14 1.83x10‑12

hsa‑miR‑99b‑5p ‑3.912360633 1.76x10‑13 4.71x10‑12

hsa‑miR‑195‑3p ‑4.325681902 6.36x10‑12 1.26x10‑10

hsa‑miR‑125a‑5p ‑4.807276424 2.32x10‑11 3.91x10‑10

hsa‑miR‑139‑3p ‑6.158797314 2.43x10‑11 3.94x10‑10

hsa‑let‑7e‑3p ‑3.856910446 6.25x10‑11 9.47x10‑10

hsa‑miR‑1976 ‑3.895162028 9.09x10‑11 1.17x10‑09

hsa‑miR‑378a‑5p ‑3.988573695 1.40x10‑10 1.68x10‑09

hsa‑let‑7b‑3p ‑3.134133079 1.61x10‑10 1.88x10‑09

hsa‑miR‑486‑5p ‑5.916429249 2.81x10‑10 2.85x10‑09

hsa‑miR‑193a‑5p ‑4.373097741 1.21x10‑09 1.10x10‑08

hsa‑miR‑642a‑5p ‑4.982818274 1.48x10‑09 1.32x10‑08

miR/miRNA, microRNA; FC, fold‑change; FDR, false discovery rate.
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Only one cancer‑associated pathway, ‘Proteoglycans in 
cancer’, was identified, which contained 43 genes (Table SII) 
and a P‑value of 0.007893. This signaling pathway became the 
focus of subsequent analyses.

Construction of the ceRNA network in rectosigmoid junction 
cancer. To further understand the role of DElncRNAs in 
rectosigmoid junction cancer, the interaction of DEmiRNAs 
with DElncRNAs and DEmRNAs was predicted. A total of 
98 DElncRNAs were predicted to interact with 16 DEmiRNAs 
using SpongeScan, miRcode and ENCORI databases. 
Furthermore, targeted mRNAs that were searched on the 
basis of the aforementioned 16 miRNAs were retrieved from 
mirTarBase, miRcode and ENCORI. A total of 1,411 targeted 
DEmRNAs that were selected were included in all three data‑
bases. The detailed information is shown in Table SIII.

Finally, 7 DElncRNAs, 16 DEmiRNAs and 71 DEmRNAs 
were screened to construct the ceRNA network. The asso‑
ciation between DElncRNAs and DEmiRNAs is shown 
in Table V. All three types of RNAs that participated in 
constructing the lncRNA‑miRNA‑mRNA ceRNA network 
are listed in Table VI. The ceRNA regulatory network was 
visualized using Cytoscape software (Fig. 4).

Functional lncRNA‑miRNA‑mRNA regulatory modules. To 
specify the key lncRNA‑miRNA‑mRNA regulatory modules 
in the process of rectosigmoid junction cancer, the degree, 
betweenness centrality, MCC and closeness centrality were 
calculated using cytoHubba plugin on Cytoscape. The results 
of the top 10 RNAs calculated by the four aforementioned 
methods are listed in Table VII. The upregulated lncRNAs 
KCNQ1OT1 and MIR17HG were closely associated with most 
of the DEmiRNAs in the ceRNA network. In addition, the 
upregulated KCNQ1OT1 competed with five key DEmiRNAs 
(miR‑152‑3p, miR‑148a‑3p, miR‑29c‑3p, miR‑29b‑3p and 
miR‑326) to regulate the expression of target genes. Two 
miRNAs, hsa‑miR‑374a‑5p and hsa‑miR‑374b‑5p, ranked top 
among all four calculation methods. The genes caveolin‑1 
(CAV‑1), MET, filamin‑A (FLNA) and AKT3 were enriched 
in the KEGG ‘Proteoglycans in cancer’ pathway, as well as 
being involved in the ceRNA network. This suggested that 
these two miRNAs and four mRNAs may serve essential roles 
in the carcinogenesis and development of rectosigmoid junc‑
tion cancer.

Survival analysis for RNAs in the ceRNA network. To 
identify the potential RNAs with prognostic characteristics, 
Kaplan‑Meier univariate analysis was applied to calculate 
the OS for all DElncRNAs, DEmiRNAs and DEmRNAs in 
rectosigmoid junction cancer. The results revealed that one 
DElncRNA and three mRNAs were significantly associated 
with OS (P<0.05). Furthermore, high expression levels of the 
only DElncRNA, small nucleolar RNA host gene 20 (SNHG20), 
and of one DEmRNA, sodium‑ and chloride‑dependent taurine 
transporter (SLC6A6), were associated with a favourable prog‑
nosis, while low expression levels of the other two DEmRNAs 
[fibroblast growth factor 13 (FGF13) and tubulin polyglu‑
tamylase TTLL7 (TTLL7)] were associated with a favourable 
prognosis (Fig. 5). The OS data for DElncRNAs, DEmiRNAs 
and DEmRNAs are presented in Table SIV.

Table III. Top 21 upregulated and 21 downregulated differ‑
entially expressed mRNAs in rectosigmoid junction cancer 
samples.

A, Upregulated   

Name log(FC) P‑value FDR

TGFBI 3.490648701 8.74x10‑18 6.49x10‑15

NFE2L3 2.676746374 1.85x10‑15 5.72x10‑13

ETV4 5.060920019 6.19x10‑14 1.19x10‑11

NEBL 1.988240629 1.25x10‑13 2.06x10‑11

CDH3 4.902363409 1.52x10‑13 2.45x10‑11

GRAMD1A 1.756550954 3.72x10‑13 5.09x10‑11

KAT2A 1.753706981 3.56x10‑12 3.55x10‑10

FUT1 2.650628542 4.84x10‑12 4.67x10‑10

GTF2IRD1 2.158124288 5.98x10‑11 4.17x10‑09

CARD14 3.115786643 6.05x10‑11 4.18x10‑09

DKC1 1.389511094 6.06x10‑11 4.18x10‑09

SOX9 1.996396591 6.43x10‑11 4.41x10‑09

CBX8 1.700207115 8.05x10‑11 5.24x10‑09

ENC1 1.754690772 8.47x10‑11 5.42x10‑09

SLC6A6 3.116405062 9.10x10‑11 5.70x10‑09

VEGFA 1.894191494 9.10x10‑11 5.70x10‑09

KRT80 6.211404628 1.52x10‑10 8.69x10‑09

XPO5 1.289131767 2.15x10‑10 1.17x10‑08

NOP2 1.428528716 2.53x10‑10 1.35x10‑08

SALL4 5.004008301 2.62x10‑10 1.38x10‑08

STPG4 5.379593583 3.00x10‑10 1.55x10‑08

B, Downregulated   

Name log(FC) P‑value FDR

CLEC3B ‑4.476185728 2.90x10‑32 4.31x10‑28

BEST4 ‑6.422652094 4.95x10‑31 3.67x10‑27

GCNT2 ‑3.601840574 8.79x10‑24 4.34x10‑20

LYVE1 ‑4.911974763 4.40x10‑23 1.63x10‑19

FAM107A ‑3.43110438 6.40x10‑22 1.36x10‑18

LIFR ‑3.8063879 5.06x10‑22 1.36x10‑18

ABCG2 ‑4.544022652 5.74x10‑22 1.36x10‑18

ABCA8 ‑5.474165401 1.09x10‑21 2.02x10‑18

GLDN ‑4.008350765 4.32x10‑21 7.12x10‑18

GNG7 ‑3.06421636 6.59x10‑21 9.78x10‑18

PKIB ‑4.432199222 1.41x10‑20 1.90x10‑17

MT1M ‑5.317272589 1.35x10‑19 1.67x10‑16

RNF152 ‑3.354536011 3.38x10‑19 3.58x10‑16

SCN9A ‑4.300397577 3.17x10‑19 3.58x10‑16

C2orf88 ‑4.094084525 3.87x10‑19 3.82x10‑16

ALPI ‑5.148481336 4.75x10‑19 4.40x10‑16

SULT1A2 ‑4.06180475 6.24x10‑19 5.15x10‑16

SFRP1 ‑5.485109328 6.03x10‑19 5.15x10‑16

TNXB ‑4.688553804 4.63x10‑18 3.61x10‑15

ADH1B ‑6.502588649 1.03x10‑17 7.12x10‑15

AQP8 ‑7.780183426 1.06x10‑17 7.12x10‑15

FC, fold‑change; FDR, false discovery rate.
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Figure 3. Functional enrichment analysis plots. (A) GO items barplot. The bars represent the enrichment of differentially expressed mRNAs, with vertical axis 
for GO items and horizontal axis for the number of genes enriched in the items, and the color of the bar is associated with the P‑value. (B) KEGG pathway 
dotplot. The size of the circle represents the number of genes enriched in the pathway, and the color of the circle is associated with the P‑value. GO, Gene 
Ontology; CC, cellular component; MF, molecular function; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table IV. Kyoto Encyclopedia of Genes and Genomes pathways enriched in differentially expressed mRNAs in rectosigmoid 
junction cancer.

PathwayID Description P‑value Count

hsa04020 Calcium signaling pathway 2.01x10‑06 47
hsa04360 Axon guidance 1.07x10‑05 43
hsa04022 cGMP‑PKG signaling pathway 4.12x10‑05 39
hsa04972 Pancreatic secretion 6.59x10‑05 27
hsa04015 Rap1 signaling pathway 0.000102002 45
hsa04921 Oxytocin signaling pathway 0.000156228 35
hsa04713 Circadian entrainment 0.00019243 25
hsa05205 Proteoglycans in cancer 0.00021282 43
hsa04270 Vascular smooth muscle contraction 0.000221981 31
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Discussion

CRC is the result of multiple etiological effects, one of which 
is the assemblage of diverse genetic or epigenetic altera‑
tions and their complex connections (21‑23). Accumulating 
evidence has demonstrated that lncRNAs have considerable 
biological roles by modulating gene expression at multiple 
levels in tumorigenesis and tumor progression (24), and 
lncRNAs also form the main part of the ceRNA network of 
CRC.

Although a number of studies have revealed that the 
lncRNA‑mediated ceRNA network of CRC provides new clues 
and directions for tumor diagnosis and treatment (15,25,26), to 
the best of our knowledge, no studies have focused on recto‑
sigmoid junction cancer. The present study first systematically 
screened DElncRNAs, DEmiRNAs and DEmRNAs, and then 
successfully constructed a lncRNA‑mediated ceRNA network 
to explore the regulatory mechanism. Functional KEGG 
enrichment analysis revealed the potential role of DEmRNAs 

in the carcinogenesis and development of rectosigmoid junc‑
tion cancer. Furthermore, a few significant RNAs from the 
ceRNA network were identified, which may represent novel 
crucial prognostic elements and possible therapeutic targets 
for rectosigmoid junction cancer.

To the best of our knowledge, no studies have been 
performed to predict the prognostic value of lncRNAs and 
their corresponding ceRNA network in rectosigmoid junction 
cancer. In the present study, 98 DElncRNAs were screened 
in rectosigmoid junction cancer samples and compared with 
normal samples, 7 of which were associated with the construc‑
tion of the ceRNA network. Moreover, it was noted that the 
upregulated lncRNAs KCNQ1OT1 and MIR17HG were 
closely associated with most of the DEmiRNAs in the ceRNA 
network. Upregulation of both MIR17HG and KCNQ1OT1 
has been previously associated with CRC (27‑29), which is 
consistent with the present results. Upregulated MIR17HG 
expression promotes tumorigenesis and metastasis in CRC via 
miR‑17‑5p to negatively regulate B‑cell linker protein, which 

Table V. DE long non‑coding RNAs interacting with the 16 DEmiRNAs retrieved from the ENCORI database.

lncRNA miRNAs

KCNQ1OT1 hsa‑miR‑152‑3p, hsa‑miR‑148a‑3p, hsa‑miR‑29c‑3p, hsa‑miR‑29b‑3p, hsa‑miR‑326
MIR17HG hsa‑miR‑130a‑3p, hsa‑miR‑454‑3p, hsa‑miR‑301a‑3p, hsa‑miR‑130b‑3p
SNHG1 hsa‑miR‑326, hsa‑miR‑421, hsa‑miR‑21‑5p 
MAGI2‑AS3 hsa‑miR‑374b‑5p, hsa‑miR‑374a‑5p 
HAGLR hsa‑miR‑125a‑3p
SNHG20 hsa‑miR‑495‑3p
SNHG15 hsa‑miR‑24‑3p

DE, differentially expressed; miRNA/miR, microRNA.

Table VI. List of three types of RNAs involved in the lncRNA‑miRNA‑mRNA competitive endogenous RNA network.

RNA Upregulated Downregulated

lncRNA MIR17HG, SNHG15, SNHG20, SNHG1, KCNQ1OT1 HAGLR, MAGI2‑AS3
miRNA hsa‑miR‑130a‑3p, hsa‑miR‑130b‑3p, hsa‑miR‑148a‑3p,  hsa‑miR‑125a‑3p, hsa‑miR‑326
 hsa‑miR‑152‑3p, hsa‑miR‑21‑5p, hsa‑miR‑24‑3p, 
 hsa‑miR‑29b‑3p, hsa‑miR‑29c‑3p, hsa‑miR‑301a‑3p, 
 hsa‑miR‑374a‑5p, hsa‑miR‑374b‑5p, hsa‑miR‑421, 
 hsa‑miR‑454‑3p, hsa‑miR‑495‑3p 
mRNA TOMM34, SCML1, TRAF5, TRIB3, SLC7A5, MET, STX1A,  NTN1, MYLK, CYBRD1, TNS1, 
 RBM28, RPL28, COL7A1, ABCB6, AMPD2, TMEM9,  CDC14A, EPB41L3, CAV1, TLE4, 
 SLC6A6, AGAP3, ARHGEF19, ARHGAP39, HOMER1,  TBC1D9, RIPOR2, UST, FAM46A, 
 C16orf59, VSNL1, ABLIM2, PITX2, CMTM8, BCL2L1,  PDE4D, NR3C1, AKT3, ADGRL2, 
 SNTB1, SHMT2, KLHL17, ZDHHC9, ADAT2,  PPP1R3C, RECK, SGPP1, FGF13, ZSWIM6, 
 ANKRD13B APC, PI15, TTLL7, LYST, MEIS1, LHFPL2, 
  FOXO1, DIP2C, DST, ADAMTSL3, PLPP3, 
  EDIL3, ZEB2, PCDH7, DMXL1, FLNA, 
  LPAR1, L1CAM, DMD, VAMP2

lncRNA, long non‑coding RNA; miRNA/miR, microRNA.
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also participates in positive feedback regulation through a 
ceRNA mechanism involving miR‑375 in CRC (27).

The dysregulation of KCNQ1OT1 in the lncRNA‑coated 
territory is due to the excessive expression of nuclear 
β‑catenin, which prompts variation in its lncRNA‑coated terri‑
tory profile; this may trigger a chain reaction that results in 
the formation of malignant colorectal tumors (28). The present 
study noted that upregulated KCNQ1OT1 may compete with 
five key DEmRNAs (miR‑152‑3p, miR‑148a‑3p, miR‑29c‑3p, 
miR‑29b‑3p and miR‑326) to regulate the expression of 
target genes. Moreover, high SNHG20 expression resulted 
in an improved OS in patients with rectosigmoid junction 
cancer compared with low expression, which was also one of 
the key genes in the present ceRNA network. As a member 
of lncRNAs, SNHG20 is frequently expressed in multiple 
types of tumor, such as hepatocellular carcinoma, ovarian 

carcinoma, bladder carcinoma and CRC, accounting for tumor 
development and progression through modifying transcrip‑
tion or post‑transcription (30). A previous study revealed that 
SNHG20 may regulate CRC cell proliferation, invasion and 
migration through modulation of cyclin A1 and p21 expres‑
sion (31).

Although lncRNAs have become the focus of research in 
recent years, miRNAs have also attracted attention. In order to 
screen the key miRNAs participating in the regulatory network, 
closeness centrality, degree, MCC and betweenness centrality 
of all DERNAs were calculated using the cytoHubba plugin 
on Cytoscape. The results indicated that hsa‑miR‑374a‑5p and 
hsa‑miR‑374b‑5p were the top two miRNAs ranked among all 
four calculation methods, suggesting that these two miRNAs 
with the highest node score may serve a key role in the carci‑
nogenesis and development of rectosigmoid junction cancer.

Figure 5. Survival curves of the OS based on the expression levels of three DEmRNAs and one DE long non‑coding cRNA in the competitive endogenous 
RNA network of rectosigmoid junction cancer. (A) SLC6A6, (B) FGF13, (C) TTLL7 and (D) SNHG20. The x‑axis indicates the OS time and the y‑axis 
indicates the cumulative survival rate. OS, overall survival; DE, differentially expressed; SNHG20, small nucleolar RNA host gene 20; SLC6A6, sodium‑ and 
chloride‑dependent taurine transporter; FGF13, fibroblast growth factor 13; TTLL7, tubulin polyglutamylase TTLL7.

Figure 4. lncRNA‑miRNA‑mRNA ceRNA network. Circles indicate lncRNAs, diamonds indicate miRNAs and squares indicate mRNAs. Red represents 
upregulated genes and grey represents downregulated genes. lncRNA, long non‑coding RNA; miRNA/miR, microRNA; ceRNA, competitive endogenous 
RNA.
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Aberrantly expressed miRNAs have been reported to serve 
a variety of roles in carcinomas. A previous study replicated 
CRC‑specific miRNAs to evaluate prognostic indications, 
revealing that hsa‑miR‑374a‑5p significantly decreased the 
risk of death for all cases, regardless of tumor site (32). 
Additionally, another comprehensive analysis for miRNA 
expression in breast cancer demonstrated that increased 
expression levels of hsa‑miR‑374b‑5p and another 11 miRNAs 
predicted improved breast cancer survival independently (33). 
However, the present results revealed that these two highly 
expressed miRNAs resulted in neither improved nor worse 
survival compared with those without expression. To the best 
of our knowledge, no studies have identified whether these 
miRNAs exert functions in tumorigenesis and interact with 
the prognosis of patients with rectosigmoid junction cancer.

To further understand the biological roles and potential 
mechanisms of DEmRNAs in the pathogenesis of rectosig‑
moid junction cancer, KEGG pathway analysis was performed. 
Among the significant KEGG pathways, ‘Proteoglycans in 
cancer’ was the only cancer‑associated pathway. The genes 
caveolin‑1 (CAV‑1), MET, filamin‑A (FLNA) and AKT3 were 
enriched in the KEGG pathway analysis, as well as being 
involved in the ceRNA network. Observations from several 
studies have demonstrated that CAV‑1 can exert dual bioactivity, 
where it acts as a negative regulator in the early stages of CRC 
but as an oncogene in advanced disease (34,35). Additionally, 
miR‑384 inhibits the proliferation of CRC by directly targeting 
AKT3 (36). A previous study revealed that FLNA may serve 
protective roles as a suppressor in CRC SW480 cells by 
stimulating proliferation via the activation of several signaling 
pathways (37). Furthermore, another study demonstrated that 
proteoglycans and glycoproteins act as signal co‑receptors or 
bridging molecules and activate c‑MET, which contributes 
to cancer progression (38). In the present study, MET was 
enriched in the ‘Proteoglycans in cancer’ pathway. Notably, 
it was found that three DEmRNAs (SLC6A6, FFGF13 and 
TTLL7) involved in the ceRNA network were significantly 
associated with the OS of patients with rectosigmoid junction 
cancer (P<0.05). TTLL7 is a mammalian β‑tubulin polyglu‑
tamylase (39), and the phosphinic acid‑based inhibitors of 
TTLL7 are well‑characterized inhibitors of polyglutamy‑
lases (40), while the modified polyglutamylation is associated 
with tumorigenesis and resistance to chemotherapeutic drugs 
targeting microtubules (41).

Table VII. Node scores of top 10 competitive endogenous 
RNAs calculated with the cytoHubba plugin on Cytoscape.

A, Closeness centrality 

RNA Score

hsa‑miR‑374b‑5p 39.5
hsa‑miR‑374a‑5p 39.5
MEIS1 21
TTLL7 21
RECK 21
PLPP3 21
ZSWIM6 21
DMD 21
APC 21
PCDH7 21

B, Degree 

RNA Score

hsa‑miR‑374b‑5p 39
hsa‑miR‑374a‑5p 39
hsa‑miR‑24‑3p   9
hsa‑miR‑29c‑3p   7
hsa‑miR‑29b‑3p   7
hsa‑miR‑326   5
KCNQ1OT1   5
MIR17HG   4
hsa‑miR‑130a‑3p   4
hsa‑miR‑454‑3p   4

C, Maximal Clique Centrality 

RNA Score

hsa‑miR‑374b‑5p 39
hsa‑miR‑374a‑5p 39
hsa‑miR‑24‑3p   9
hsa‑miR‑29c‑3p   7
hsa‑miR‑29b‑3p   7
hsa‑miR‑326   5
KCNQ1OT1   5
MIR17HG   4
hsa‑miR‑130a‑3p   4
hsa‑miR‑454‑3p   4

D, Betweenness centrality 

RNA Score

hsa‑miR‑374b‑5p 741.0
hsa‑miR‑374a‑5p 741.0
hsa‑miR‑326 456.7
hsa‑miR‑24‑3p 376.0
TOMM34 356.0

Table VII. Continued.

D, Betweenness centrality 

RNA Score

KCNQ1OT1 270.3
SNHG1 164.0
hsa‑miR‑29c‑3p 122.7
hsa‑miR‑29b‑3p 122.7
ANKRD13B 119.3

miR, microRNA.
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In conclusion, the present study identified differentially 
expressed lncRNAs, miRNAs, and mRNAs that may be used as 
novel important prognostic biomarkers and potential treatment 
targets for rectosigmoid junction cancer. A lncRNA‑associated 
ceRNA network was constructed to provide novel and avail‑
able options for subsequent functional studies of lncRNAs in 
rectosigmoid junction cancer.
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