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Abstract. Hepatocellular carcinoma (HCC) is one of the most 
common types of primary liver cancer. Despite advancements in 
the treatment strategies of HCC, there is an urgent requirement to 
identify and develop novel therapeutic drugs that do not lead to 
resistance. These novel agents should have the potential to influ‑
ence the primary mechanisms participating in the pathogenesis 
of HCC. Heparan sulfate proteoglycans  (HSPGs) are major 
elements of the extracellular matrix that perform structural and 
signaling functions. HSPGs protect against invasion of tumor 
cells by preventing cell infiltration and intercellular adhesion. 
Several enzymes, such as heparanase, matrix metalloproteinase‑9 
and sulfatase‑2, have been reported to affect HSPGs, leading to 
their degradation and thus enhancing tumor invasion. In addi‑
tion, some compounds that are produced from the degradation 
of HSPGs, including glypican‑3 and syndecan‑1, enhance tumor 
progression. Thus, the identification of enzymes that affect 
HSPGs or their degradation products in HCC may lead to the 
development of novel therapeutic targets. The present review 
discusses the main enzymes and compounds associated with 
HSPGs, and their involvement with the pathogenicity of HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) accounts for 85‑90% of 
primary liver cancer cases. HCC is an aggressive cancer, 
which has a marked clinical and epidemiological impact, with 
600,000 mortalities and ~1,000,000 new cases of HCC being 
reported annually, worldwide (1,2). Following a diagnosis of 
HCC, patients survive <1 year. In addition, the mortality rates 
are high, with an overall survival rate of <12% (3). HCC arises 
from the aggregation of normal cells following accumulation 
of several genetic changes that activates oncogenes and deac‑
tivates tumor suppressor genes, nuclear factors, growth factors 
and cytokines (4). The functions of the liver, as well as the liver 
reserve, are altered and damaged during the course of disease. 
Despite advancements in the treatment strategies of HCC, 
the prognosis of patients remains poor due to metastasis and 
development of drug resistance. Currently, hepatic resection or 
transplantation are considered the only curative therapies (5). 
Even with surgery, ~30% of patients with HCC undergo 
hepatectomy as they receive a diagnosis at an advanced tumor 
stage. Furthermore, radiofrequency ablation is used to treat 
patients with early‑stage HCC. Several factors lead to the poor 
prognosis of patients with HCC, including history of cirrhosis, 
poverty and limited medical resources. The rapid onset and 
fast‑growing characteristics of HCC results in limited treat‑
ment options for patients. In addition, HCC is characterized 
by a high angioinvasive capacity due to portal vein obstruc‑
tion (6). Thus, there is an urgent requirement to identify and 
develop novel therapeutic drugs for the treatment of HCC.

2. Heparan sulfate proteoglycans (HSPGs)

Structure. HSPGs are highly anionic carbohydrate compounds. 
HSPGs are composed of a limited quantity of a core protein 
that is covalently linked to ≥1 sugar chain, representing HS 
side chains. These chains are considered linear polysaccha‑
rides, which are built of ≤200 units of a repeated disaccharide 
formed by N‑acetyl glucosamine with uronic acid, glucuronic 
or iduronic acids (7).

The structure of HSPGs is modified in the Golgi apparatus 
following the addition of sulfate groups instead of acetyl 
groups, or by sulfation of the hydroxyl groups at C‑6 and C‑3 
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in the N‑acetylglucosamine moiety, or by sulfation of the 
hydroxyl group at C‑2 in the uronic acid moiety (8). There are 
several families of cell surface HSPGs, such as syndecan and 
glypican. The presence of several carboxyl and sulfate groups 
in HS is similar to the polyanionic nature of mammalian 
cells compared with the neighboring cells and extracellular 
matrix (ECM) (9). Thus, cell surface HSPGs produce multiple 
structural and signaling functions due to their capability to 
interact with several protein ligands, including growth factors 
and their receptors, proteases, cytokines, chemokines, adhe‑
sion molecules and ECM proteins, including fibronectin, 
collagen and fibrin (10).

Function. HSPGs are one of the most important elements of 
the ECM, and are located on the surface of the cell membrane 
of most animal cells, such as hepatocytes and leukocytes (11). 
HSPGs are involved in several interactions between adjacent 
cells or between cells and the ECM. HSPGs regulate several 
signaling pathways and receptor trafficking, and control ligand 
secretion. The variability of HS generated by its modifying 
enzymes led to the hypothesis of ‘sugar code’, which is char‑
acterized by specific HS alterations observed in the embryo 
to orchestrate development through modification of certain 
signaling pathways. It depends on the regulation of special 
areas of HS‑modifying enzymes to regulate their activity 
or even change their functions. The sugar code is consid‑
ered a dynamic process as HS chains can be hydrolyzed by 
heparanase or sulfatase enzymes (12). HSPGs participate in 
an extensive range of biological processes, such as develop‑
ment  (13), homoeostasis control  (11) and enhancement of 
inflammatory and malignant diseases (14). In addition, HSPGs 
control cell adhesion, motility, proliferation, differentiation 
and apoptosis (8).

HSPGs and cancer. HSPGs act as anchors for the lipoprotein 
lipase located on the outer surface of capillary endothelial cells. 
They protect against invasion of tumor cells by preventing both 
cell infiltration and intercellular adhesion (15). The activities 
of HSPG‑degrading enzymes are elevated in highly invasive 
cancer cells compared with less invasive cells  (16). When 
the basal membrane is ruptured by hematogenous metastatic 
cancer cells, HSPGs located inside the tumor microenviron‑
ment are attacked by several enzymes, such as heparanase, 
matrix metalloproteinase‑9, sulfatase‑2, which are capable of 
modifying the proteoglycan structure, which alters transporta‑
tion of inflammatory cells from vessels into the surrounding 
tissues (17). Consequently, cytokines, proteases, growth factors 
and angiogenic factors, which bind to HSPGs, are released and 
promote the infiltration and metastasis of cancer cells (15).

3. Enzymes hydrolyzing HSPGs

Matrix metalloproteinase (MMP)‑9. MMPs constitute a 
family of transmembrane zinc‑dependent endopeptidases that 
have the ability to digest the ECM and basement membrane. 
The MMP family consists of 25 members in vertebrates and 
22 in humans (18). Previously, MMP‑9 was called type IV 
collagenase or gelatinase B. MMP‑9 is capable of degrading 
type  IV collagen, a major constituent of the basement 
membrane  (19,20). The active zone of MMP‑9 consists of 

two zinc ions and five calcium ions. The proteolytic activity 
of MMP‑9 is maintained by the two zinc ions and cysteine 
switch motif of the pro‑domain (21). MMP‑9 also contains a 
fibronectin‑like domain, which is strongly O‑glycosylated and 
is important for binding to collagen or gelatin (18).

MMPs play an important role in proliferation, invasion and 
metastasis of tumor cells (22). Deryugina and Quigley (23) 
demonstrated an association between ECM degradation by 
MMPs and the invasion of cancer cells. MMP‑9 releases 
fibroblast growth factor (FGF)‑1 and FGF‑2 from their stores, 
producing potent angiogenic effects (24). In addition, MMP‑9 
attacks HSPGs inside the tumor microenvironment to enhance 
the proteolytic release of syndecan‑1 and to potentiate tumor 
growth and metastasis (17,25). Thus, tumors that express MMP‑9 
at high levels are more likely to exhibit relapse or metastasis 
compared with tumors that express low levels of MMP‑9.

Previous studies have demonstrated the role of certain 
MMP‑9 inhibitors in the treatment of HCC both in vivo and 
in vitro (Table I). Although, several synthetic MMP inhibitors 
have been developed, none of them have reached phase III 
clinical trials due to either lack of efficacy or serious side effects.

Heparanase. Heparanase is an endo‑β‑glucuronidase that 
belongs to the glycoside hydrolase 79 family. Heparanase 
hydrolyses HS at specific intrachain positions with low sulfa‑
tion and participates in the degradation and remodeling of the 
ECM (26).

Heparanase is upregulated in several types of human 
tumor, such as HCC, myeloma and breast cancer, and it 
strongly enhances the invasiveness of tumors in experimental 
animals (27). Heparanase releases HS fragments associated 
with angiogenic factors from the tumor microenvironment 
to produce an angiogenic response. In addition, heparanase 
facilitates vascularization, accelerates primary tumor growth 
and provides a gate for invading metastatic cells, thus leading 
to cancer progression (28).

Heparanase inhibitors notably decrease the incidence of 
metastasis in experimental animals (29). Suramin was subse‑
quently assessed in rats with HCC, where it was demonstrated 
to elevate the percentage of survival rate of rats with HCC, 
and decrease the level of serum α‑fetoprotein. Furthermore, 
suramin has been demonstrated to ameliorate fibrosis, thus 
producing an hepatoprotective effect (15). Table II summa‑
rizes several studies that assessed heparanase inhibitors in the 
treatment of HCC.

Sulfatase‑2. Sulfatase‑2 is an extracellular enzyme that 
enhances the removal of 6‑O‑sulfate from HS disaccharides, 
and controls the interactions between HSPGs and extracellular 
factors. Sulfatase‑1 and ‑2 are expressed in malignant tumors, 
including highly invasive brain cancer (30). Sulfatase‑1 acts 
as a tumor suppressor gene, which downregulates the phos‑
phorylation and activation of tyrosine kinase receptors (31). 
Conversely, sulfatase‑2 decreases the affinity of HSPGs for 
several signaling molecules, such as glypican‑3 and syndean‑1, 
detaching them from HSPGs and preparing the transition of 
different signaling pathways, particularly the insulin‑like 
growth factor (IGF) pathway (32).

Upregulation of sulfatase‑2 is considered oncogenic, and 
is associated with HCC in human, animal and tissue culture 
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models (33,34). Sulfatase‑2 enhances the expression of growth 
factors available to cell surface receptors, thus promoting 
the proliferation and migration of tumor cells. In addition, it 
enhances the activity of glypican‑3, activates FGF signaling, 
potentiates the phosphorylation of both Erk and Akt, and 
induces Wnt/β‑catenin signaling (35).

Some studies have focused on the use of sulfatase‑2 
inhibitors for treating HCC. Adiponectin, a suppressor of the 
synthesis of sulfatase‑2 protein, has been reported to exhibit 
antitumor activity both in vivo and in vitro (35). In addition, 
OKN‑007, an inhibitor of sulfatase‑2, significantly decreases 
solid tumor growth  (36). Table  III summarizes the results 
of previous studies that used sulfatase‑2 inhibitors for the 
treatment of HCC.

4. Important HSPGs products

Syndecan‑1. Syndecan‑1 is a transmembrane HSPG that 
is located on epithelial cells. The syndecan family consists 

of four members, syndecan‑1, syndecan‑2, syndecan‑3 and 
syndecan‑4. Among these four members, syndecan‑1 has 
been extensively studied. Its name is derived from the Latin 
syndein, which means binding together, since syndecans are 
involved in the binding of cells to the ECM (37). Syndecans 
are composed of three domains forming highly conserved 
intracellular and transmembrane domains, as well as an 
extracellular domain, which is uniquely characteristic to each 
member (38).

Syndecan‑1 controls cell‑cell and cell‑ECM adhesion 
interactions, as well as their activities through its HS chains. 
It modulates certain proteolytic enzymes and chemokines 
in vivo, and controls the recruitment of leukocytes and the 
remodeling of tissues during inflammation (39). In addition, 
syndecan‑1 modulates proteolytic v, thus leading to the regula‑
tion of leucocyte recruitment with subsequent remodeling of 
tissues (40).

The release of syndecan‑1 from its membrane‑bound form 
by MMP‑9 (syndecan‑1 sheddase) to the soluble molecule 

Table I. Summary of studies that assessed MMP‑9 inhibitors in the treatment of HCC.

Model	 Summary	 Cell type	 (Refs.)

Human	 Diosmetin downregulates MMP‑9, leading to the inhibition of migration and 	 SK‑HEP‑1	 (69)
	 invasion of HCC cells
	 Niclosamide downregulates MMP‑9, leading to the suppression of HCC cell 	 HLF and PLC/PRF/5	 (70)
	 migration
	 Retinoic acid‑induced protein I inhibits the migration and invasion of 	 Liver cells	 (71)
	 HCC cells by decreasing MMP‑9 levels
	 MicroRNA‑133a targets MMP‑9, and prevents HCC cell proliferation, 	 HepG2 and SMMC‑7721	 (72)
	 migration and invasion
	 The antibiotic salinomycin blocks the invasion and migration of HCC cells 	 HCCLM3	 (73)
	 through JNK/JunD‑mediated MMP‑9 expression
	 Glabridin inhibits the invasion of human HCC cells, and may act as a 	 Huh7 and Sk‑Hep‑1	 (74)
	 chemopreventive agent against liver cancer metastasis
Mice	 Tanshinone II‑A prevents the invasion and metastasis of HCC cells by 	 Liver cells	 (75)
	 blocking the activity of MMP‑9
Rat	 Epigallocatechin‑gallate blocks MMP‑9 activity, leading to hepatoprotective 	 Liver cells	 (76)
	 and chemoprotective effects
	 Doxycycline produces hepatoprotective and antitumor activity by blocking 	 Liver cells	 (77)
	 MMP‑9

MMP, matrix metalloproteinase; HCC, hepatocellular carcinoma.
 

Table II. Summary of studies that used heparanase inhibitors for the treatment of HCC.

Model	 Summary	 Cell type	 (Refs.)

Human	 Downregulation of heparanase enhances the suppression of invasion, migration 	 HepG2, BEL‑7402, 	 (77,78)
	 and adhesion in HCC	 and HCCLM3
	 Administering 160 mg/day PI‑88 produces significant clinical advantages for 	 Liver cells	 (79,80)
	 patients with HCC
Rats 	 Suramin exerts antitumor activity in HCC through the deactivation of heparanase	 Liver cells	 (15)

HCC, hepatocellular carcinoma.
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inside the circulation represents the transition of the tumor 
from a proliferative stage to an invasive stage (25). Syndecan‑1 
binds to both the ECM and FGF family. Overexpression of 
the MMP‑9/syndecan‑1/FGF‑2 axis potentiates the apoptosis 
pathway in several tumor models (41,42).

A previous study demonstrated the role of inhibiting 
syndecan‑1 by synstatin, which exhibits promising antitumor 
activity against rats with HCC (43).

Glypican‑3. Glypican‑3 is the most commonly studied member 
of the glypican family of glycosyl‑phosphatidylinositol‑(GPI) 
cell‑surface HSPGs  (44). It consists of six medium‑sized 
HSPGs that are attached to the cell surface via a GPI anchor, 
with an insertion of 2‑4 HS chains. Glypican‑3 regulates Wnt, 
Hedgehog and FGF signaling (38).

Glypican‑3 is upregulated in HCC  (34); thus, serum 
glypican‑3 may be a promising potential selective marker 
for HCC (45). Glypican‑3 regulates multiple tumor activities 
through Wnt signaling modulation (46). Glypican‑3 enhances 
both in vitro and in vivo HCC growth, and interacts with 
growth factors, such as IGF‑II and its receptor leading to 
activation of its signaling pathway (47).

Glypican‑3 is considered an attractive therapeutic target 
in HCC. Antibodies against glypican‑3 exhibit strong 
antitumor activities in several models of HCC  (33,34). 
Recently, several mouse monoclonal antibodies targeting 
glypican‑3 have been produced  (48). One of these anti‑
bodies is the humanized GC33 (hGC33), which has been 
assessed in a phase I clinical trial. hGC33 acts against the 
carboxyl‑terminal region of glypican‑3 and is effective in 
HepG2 xenografts (49). In addition, another human heavy 
chain variable domain antibody, NH3, inhibits the prolifera‑
tion of glypican‑3‑positive cells and blocks HCC xenograft 
growth in nude mice by modulating the TGF‑β/SMAD 
pathway (50). Zaghloul et al (34) demonstrated that treat‑
ment of rats with HCC with monoclonal anti‑glypican‑3 
increased survival rate up to 90% and decreased the level of 
serum AFP. In addition, anti‑glypican‑3 was demonstrated to 
affect the sulafatase‑2/IFG‑II pathway. Glypican‑3 has also 
been reported to act as a predictive marker of HCC recur‑
rence following radial surgery (51). Table IV represents a 
summary of studies that have assessed the role of glypican‑3 
inhibitors in treating HCC.

Fascin. Fascin is an actin‑binding protein that controls cell 
movement under physiological or pathological conditions (52). 
It regulates cell motility and is considered one of the cytoskel‑
eton‑regulatory proteins (53).

Fascin expression has been associated with tumor inva‑
sion and metastasis, and its expression is low in normal 
tissues (52). Overexpression of fascin elevates cell membrane 
processes, such as broken intercellular junctions, and 
enforces cell movement associated with changes to the cyto‑
skeleton and ECM, thus facilitating tumor metastasis (54). 
It has been reported that upregulation of fascin in several 
tumors, including HCC, is associated with tumor invasion 
and metastasis (55). In addition, fascin is unable to control 
cell migration alone, unless it is supported by other factors, 
such as MMP‑9. This can be explained by the fact that the 
ability of fascin to act as a migration factor is only associated 
with epithelial‑to‑mesenchymal transition or MMP‑9, which 
facilitate their invasiveness (56).

5. Products of ECM

Glucosaminoglycans. Glucosaminoglycans are linear 
polysaccharides composed of repeat units, with areas of gluc‑
uronic acid and N‑acetyl glucosamine. They contain regions 
of 2‑O‑sulfated iduronic acid and N‑sulfoglucosamine. 
Between these regions, there are transition zones with both 
sulfo‑glucosamine and acetyl‑glucosamine, which are associ‑
ated with polypeptide core‑forming HSPGs (57).

Glucosamine (2‑amino‑2‑deoxy‑α‑D‑glucose). Glucosamine 
is an amino saccharide that is present in almost all tissues, 
and abundant in liver, kidney and cartilage  (58). It is the 
predominant building unit in the synthesis of glycolipids, 
glycoproteins, glycosaminoglycans and proteoglycans (59). 
Glucosamine induces autocrine TGF‑β activity (60) and helps 
in the O‑linked glycosylation of proteins. As an alteration of 
the structure of proteins with O‑linked N‑acetylglucosamine, 
glucosamine has evolved as an important regulator of cellular 
physiology. This alteration is associated with several diseases, 
such as cancer, neurodegenerative disorders and cardiovas‑
cular diseases (61). Notable elevation in the serum levels of 
glucosamine has been observed in patients and animals with 
HCC (15,62,63).

Table III. Summary of studies that assessed sulfatase‑2 inhibitors in the treatment of HCC.

Model	 Summary	 Cell type	 (Refs.)

Human	 2,4‑Disulfonylphenyl‑tert‑butylnitrone (OKN‑007) produces antitumor effects against HCC 	 Huh7	 (36)
	 by suppressing TGF‑β1/SMAD2 and Hedgehog/GLI1 signaling
Rats	 Adiponectin inhibits sulfatase‑2 activity, leading to hepatoprotective and chemoprotective 	 Liver cells	 (35)
	 effects
	 Sodium ascorbate produces cytotoxic effects against HCC, which can be explained by the 	 Liver cells	 (81)
	 inhibition of sulfatase‑2	
Mice	 Silencing sulfatase‑2 signaling inhibits angiogenesis and tumor growth by inhibiting 	 Liver cells	 (82)
	 TGF‑β1/SMAD

HCC, hepatocellular carcinoma.
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Glucuronic acid. Glucuronic acid is synthesized from 
UDP‑glucose inside the liver via UDP‑glucosedehydrogenase. 
It participates in several detoxification pathways, such as 
xenobiotic and bilirubin (64). Elevated levels of hyaluronic 
acid in liver diseases are the main cause for increased levels 
of serum glucosamine and glucuronic acid (65). Degradation 
of hyaluronic acid, which is initiated by its binding to CD44, 

notably enhances the activation of cell migration molecules, 
thus leading to tumor motility (66).

Sialic acid (N‑acetyl neuraminic acid). Sialic acid is part 
of the plasma membrane of mammalian cells. It binds to 
N‑acetyl galactosamine via an O‑glycosidic linkage, which 
is associated with the proteins that form glycoproteins (58). 

Table IV. Summary of studies that assessed glypican‑3 inhibitors in the treatment of HCC.

Model	 Summary	 Cell type	 (Refs.)

Human	 Human monoclonal antibody targeting glypican‑3 prevents the migration 	 Hep3B and HepG2	 (83)
	 and motility of HCC
	 Glypican‑3‑targeted chimeric antigen receptor T cell provides a promising 	 HepG2, Hep3B, PLC/PRF/5	 (84)
	 therapeutic target for glypican‑3‑positive HCC	 and SK‑Hep‑1
	 Silencing the glypican‑3 gene protects against HCC	 HepG2	 (85‑87)
	 Interfering glypican‑3 gene transcription blocks HCC cell apoptosis and 	 MHCC‑97H and Huh7	 (88)
	 prevents metastasis via the Wnt/β‑catenin signaling pathways
	 hGC33 protects patients with HCC	 Liver cells	 (89‑91)
	 By targeting glypican‑3, microRNA‑219‑5p exerts antitumor effects 	 Liver cells	 (92)
	 in HCC
Rat	 Anti‑glypican‑3 antibody protects against HCC	 RH7777	 (93)
	 Anti‑glypican‑3 antibody exerts antitumor and hepatoprotective effects 	 Liver cells	 (34)
	 against HCC
Mice	 Targeted photoimmunotherapy for glypican‑3 combined with nanoparticle 	 Liver cells	 (94)
	 albumin‑bound paclitaxel is a promising method for treating HCC
	 Glypican‑3 cDNA vaccine by using a recombinant plasmid encoding 	 Liver cells	 (95)
	 murine glypican‑3 cDNA for treatment of HCC produces specific and 
	 effective antitumor immunity against HCC	

HCC, hepatocellular carcinoma.
 

Figure 1. HSPGs pathway changes in HCC. HCC increases the ability of the enzymes, MMP‑9, sulfatase‑2 and heparanase to attack HPSGs, leading to 
the formation of several intermediate compounds that enhance inflammation and tumor invasion. HSPGs, heparan sulfate proteoglycans; HCC, hepatocel‑
lular carcinoma; MMP, matrix metalloproteinase; FGF, fibroblast growth factor; E‑cad, E‑cadherin; Synd‑1, syndecan‑1; IGF, insulin‑like growth factor; 
GPC3, glypcian‑3; PKC, protein kinase C; NFκB, nuclear factor κB; TNF‑α, tumor necrosis factor‑α.
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Sialic acid is a major player in several physiological and patho‑
logical processes, such as progression and spread of multiple 
malignancies, such as neuroblastoma, oral cancer and breast 
cancer (67). A variation in the sialic acid levels in patients with 
cirrhosis and HCC is an important diagnostic tool. Elevated 
sialic acid levels in HCC may be explained by endothelial cell 
dysfunction or macrovascular disease (68).

6. Conclusions and future directions

HCC triggers metabolic and dynamic modifications that 
lead to the activation of certain enzymes, such as MMP‑9, 
sulfatase‑2 and heparanase, resulting in the degradation of 
HSPGs. Increasing evidence suggests that some of the HSPG 
degradation products, such as syndecan‑1 and glypican‑3, 
are associated with the activation, migration and apoptosis 
of tumor cells (Fig. 1). Thus, an improved understanding of 
the role of HSPGs and their degradation products will aid the 
identification of novel effective therapeutic targets and strate‑
gies for preventing and treating HCC.

Cancer treatment has shifted from single target treatment 
to multiple target therapies. HSPGs represent a goal for a 
new trend in multiple target therapies, since they comprise 
several enzymes and important compounds located in the 
tumor microenvironment that control multiple biological and 
pathological processes. Prospective studies will focus on the 
specific post‑translational modifications of these compounds 
in the HSPG pathway, along with further assessment of the 
inhibitors and modulators of cell signaling.
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