Reduction in the resident intestinal myelomonocytic cell population occurs during \(Apce^{Min/+}\) mouse intestinal tumorigenesis

OLUSOLA O. FALUYI1-3, MARK A. HULL1, ALEXANDER F. MARKHAM1, CONSTANZE BONIFER4 and P. LOUISE COLETTA1

1Section of Molecular Gastroenterology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF; 2Experimental Cancer Medicine Centre, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside CH63 4JY; 3Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Merseyside L69 3BX; 4Section of Experimental Haematology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF, UK

Received May 24, 2020; Accepted November 11, 2020

DOI: 10.3892/ol.2021.12524

Abstract. With its significant contribution to cancer mortality globally, advanced colorectal cancer (CRC) requires new treatment strategies. However, despite recent good results for mismatch repair (MMR)-deficient CRC and other malignancies, such as melanoma, the vast majority of MMR-proficient CRCs are resistant to checkpoint inhibitor (CKI) therapy. MMR-proficient CRCs commonly develop from precursor adenomas with enhanced Wnt-signalling due to adenomatous polyposis coli (APC) mutations. In melanomas with enhanced Wnt signalling due to stabilized β-catenin, immune anergy and resistance to CKI therapy has been observed, which is dependent on micro-environmental myelomonocytic (MM) cell depletion in melanoma models. However, MM populations of colorectal adenomas or CRC have not been studied.

To characterize resident intestinal MM cell populations during the early stages of tumorigenesis, the present study utilized the \(Apce^{Min/+}\) mouse as a model of MMR-proficient CRC, using enhanced green fluorescent protein (EGFP) expression in the mouse lysozyme (M-lys)\(^{+/+}\) mouse as a pan-myelomonocytic cell marker and a panel of murine macrophage surface markers. Total intestinal lamina propria mononuclear cell (LPMNC) numbers significantly decreased with age (2.32±1.39x10\(^7\) \(n=4\)) at 33 days of age vs. 1.06±0.24x10\(^7\) \(n=8\) at 109 days of age) during intestinal adenoma development in \(Apce^{Min/+}\) mice \((P=0.05;\) unpaired Student's t-test), but not in wild-type littermates \((P=0.35)\). Decreased total LPMNC numbers were associated with atrophy of intestinal lymphoid follicles and the absence of MM/lymphoid cell aggregates in \(Apce^{Min/+}\) mouse intestine, but not spleen, compared with wild-type mice. Furthermore, during the early stage of intestinal adenoma development, there was a two-fold reduction of M-lys expressing cells \((P=0.05)\) and four-fold reduction of ER-HR3 (macrophage sub-set) expressing cells \((P=0.05;\) two tailed Mann-Whitney U test) in mice with reduced total intestinal LPMNCs \(n=3\). Further studies are necessary to determine the relevance of these findings to immune-surveillance of colorectal adenomas or MMR-proficient CRC CKI therapy resistance.

Introduction

Colorectal cancer (CRC), which accounts for nearly a million global deaths each year, remains a major cause of cancer mortality due to the limited efficacy of currently available systemic treatment for advanced disease (1). Consequently, improved understanding of the disease is required to further optimize systemic treatment strategies including immunotherapy. CRC is known to develop from intestinal epithelium following progressive accumulation of genetic alterations, which include mutations of the adenomatous polyposis coli (APC) gene (2). In the highly evolutionarily conserved canonical Wnt signalling pathway, APC is known to target β-catenin for cytoplasmic
degradation, thus preventing its nuclear translocation to promote tumorigenesis (3). Most sporadic CRCs are thought to acquire APC mutations as an early event during tumorigenesis, prior to the development of adenomas (4). Furthermore, patients with familial adenomatous polyposis (FAP) carry a germ-line APC mutation, which predisposes the individual to intestinal adenomas and CRC (5). The ApcMin/+ mouse is a model of FAP that possess a germline heterozygous Δ850 APC mutation (6). Such mice develop predominantly small intestinal adenomas and die at ~130 days of age from the intestinal adenoma burden (6). In addition, haematopoietic defects, including the development of generalized atrophy of lymphoid tissue, occur during the early stages of intestinal tumorigenesis at ~80 days of age (7), while myeloid defects have been reported at an advanced age in the ApcMin/+ mouse and another mouse model that is haplo-insufficient for Apc (8,9).

Over the past decade, immune checkpoint inhibitor (CIK) therapy including targeting programmed cell death protein-1 (PD-1), has emerged as an effective therapeutic strategy against several types of cancer, such as lung, melanoma and renal cell cancer (10). More recently, CIK therapy has been shown to be effective for the mismatch repair (MMR)-deficient or microsatellite instability (MSI)-high subset of various malignancies, including CRC (11,12). However, this strategy has proven ineffective so far in the management of the majority of MMR-proficient CRC that represent >90% of sporadic CRCs (13). For melanoma, higher neoantigen burden (14) and a greater extent of T lymphocyte infiltration (15) are correlated with enhanced responses to PD-1 inhibition. However, T lymphocyte and MM cell infiltration have been inversely correlated with enhanced β-catenin pathway signalling in melanoma (16). Furthermore, a study in autochthonous mouse melanoma models with constitutive β-catenin signalling has demonstrated the dependence of T lymphocyte infiltration on the MM cell population (16). Therefore, characterization of the intestinal MM cell population during intestinal adenoma development in the ApcMin/+ model could yield insight into any early MM population changes associated with enhanced Wnt signalling.

A review on MM cells highlighted their heterogeneity, with no pan-MM cell marker defined, which has compounded previous studies on MM cell populations (17). However, a mouse with EGFP knocked into the mouse-lysozyme (M-lys) locus by homologous recombination (M-lyslys-EGFP/lys-EGFP) was previously generated, which utilizes EGFP expression to facilitate studies on murine MM cells (18). In this model, EGFP fluorescence has been observed in multiple surface marker-defined peripheral MM sub-populations (18). The present study had two aims. First, to determine if there is reduction of the total resident intestinal LPMNC population during the early stage of intestinal tumorigenesis. Furthermore, utilizing ApcMin/+ and wild-type mice bred onto the M-Lyslys-EGFP/+ background, it was investigated if there is a reduction in the resident intestinal MM cell population during the early stage of intestinal tumorigenesis.

**Materials and methods**

*Mice.* C57BL/6J and C57BL/6J-ApcMin/+ mice were obtained from The Jackson Laboratory. C57BL/6J/Sv129-M-lyslys-EGFP/lys-EGFP mice (18) were obtained from Albert Einstein College of Medicine. All mice were bred in-house, kept under isolator conditions at temperatures between 19 and 23°C on a 12-h light-dark cycle. They were pathogen-free by regular bacteriological and serological testing. Relative humidity was kept between 45 and 55%. The mice were fed on mouse complete maintenance diet with free access to food and water. For the experiments described here, the following mice were utilized: ApcMin/+M-lyslys/+ (n=20), ApcMin/+M-lyslys+ (n=23), ApcMin/+M-lyslys-EGFP+ (n=9) and ApcMin/+M-lyslys-EGFP/+ (n=12).

**Mouse breeding and genotyping.** ApcMin/+ and ApcMin/+ mice on the M-Lyslys/+ background were obtained by mating male ApcMin/+M-lyslys/+ mice with female ApcMin/+M-lyslys/+ mice. Furthermore, ApcMin/+ and ApcMin/+ mice on the M-Lyslys-EGFP/+ background were obtained by mating male ApcMin/+M-lyslys-EGFP/+ mice with female ApcMin/+M-lyslys-EGFP/lys-EGFP mice. The offspring were genotyped for Apc and M-lys at ~30 days of age by PCR analysis of genomic DNA (18,19).

**Resident peritoneal cell, splenic and intestinal tissue collection.** Each mouse was sacrificed between 30 and 138 days of age for experiments described below by cervical dislocation, immediately after which the peritoneal cavity was opened and peritoneal mononuclear cells (when required) were obtained by lavage with sterile phosphate buffer saline (PBS) at room temperature (25°C), prior to dissection of the spleen or whole intestine. Splenic and intestinal tissues were collected in ice cold PBS, then stored in ice cold PBS for ≤5 min until processed as described in subsequent sections.

**Intestinal adenoma count.** Following lavage for peritoneal cells and dissection of the spleen, intestine was removed from the pylorus to the anus. The small intestine was then separated from the caecum and colon. Intestines were flushed out gently with PBS until no luminal content remained, after which they were carefully cut and opened out longitudinally to avoid adenoma disruption. For five ApcMin/+M-lyslys-EGFP/+ at 92±23 days of age, adenomas were counted by naked eye examination of small intestinal tissue.

**Histology.** Tissue from the small intestine and spleen of three pairs of ApcMin/+M-lyslys-EGFP/+ and ApcMin/+M-lyslys-EGFP/+ mice at 93±23 days of age underwent histological evaluation and immunohistochemistry for EGFP localisation as described below. Tissue from an SW480 human CRC xenograft transplanted with an EGFP-expressing herpes saimiri viral vector served as positive control due to previously demonstrated EGFP expression (20). Tissue from age matched ApcMin/+M-lyslys-EGFP/+ mice served as negative control. Sections were fixed in 4% (v/v) paraformaldehyde in PBS for 6 h at 25°C and paraffin wax embedded. Sections were cut to 5-μm thickness and underwent haematoxylin and eosin staining or immunohistochemistry (as described in the next section). Sections were viewed using fluorescence and phase contrast microscopy by a NIKON Eclipse E1000 fluorescence microscope (Nikon Corporation). Images were then captured using LUCIA GF imaging software (version 4.60) (Nikon Corporation).

**Immunohistochemistry for the detection of EGFP.** Steps of the procedure were performed at room temperature (25°C)
except otherwise stated. Sections were de-waxed progressively in xylene for 1 min each three times, then absolute (100%) ethanol for a minute each (x3), then washed in distilled water before endogenous tissue peroxidase activity was blocked by immersion of slides in 2% (v/v) H₂O₂ in absolute methanol for 15 min. Subsequently, slides were washed in distilled water for 10 min. Immunohistochemical staining of intestinal sections was carried out as previously described (21). Serum block was with 1.5% (v/v) goat serum (Dako; Agilent Technologies, Inc.) in PBS for 30 min. Sections were then incubated with rabbit anti-Aquorea anti-EGFP primary antibody (1:4,000; cat. no. A-6455; Invitrogen; Thermo Fisher Scientific, Inc.) for 20 h at 4˚C, after which slides were washed in PBS four times for 5 min each. Sections were then incubated for 30 min with HRP/dextran polymer-conjugated goat anti-rabbit secondary antibody (ready to use; cat. no. K4002; Dako; Agilent Technologies, Inc.) at room temperature. Subsequently, sections were washed in PBS four times for 5 min each. Sections were then incubated for 10 min with 0.1% (v/v) diaminobenzidine solution (Dako; Agilent Technologies, Inc.) in Tris-buffer (0.05 M Tris (pH 7.6 with HCl), containing 0.03% (v/v) H₂O₂ at room temperature. Sections were washed in tap water four times for 5 min each, counterstained with Mayer's Haematoxylin (cat no. MHS32; Sigma-Aldrich; Merck KGaA) at 25˚C in the same culture medium as for LPMNCs prior to mounting (cat. no. 100579; Millipore Sigma). Sections were, viewed and images were captured as aforementioned.

Isolation and enumeration of small intestinal lamina propria mononuclear cells. Utilizing Apc⁺/+ M-Lys⁺/+ mice as controls, intestinal LPMNCs were isolated from Apc⁻/- M-Lys⁻/- mice at the following ages: Weaning (~30 days of age; n=4 pairs), prior to the appearance of macroscopically visible adenomas (~70 days of age; n=8 pairs), prior to death from macroscopic adenoma burden (~100 days of age; n=8 pairs). LPMNCs were isolated from mouse small intestine at room temperature (25˚C) with viability and numbers determined in absolute ethanol for 3 min three times, then immersed in xylene for three times 3 min each followed by mounting in DPX mountant (cat. no. 100579; Millipore Sigma). Sections were, viewed and images were captured as aforementioned.

Flow cytometric analysis of small intestinal lamina propria mononuclear cells. Flow cytometric analysis of small intestinal LPMNCs has been described previously for EGFP, phycoerythrin (PE) and propidium iodide (PI) (23). Flow cytometry was performed at room temperature (25˚C) on intestinal LPMNCs of six Apc⁺/+ M-Lys⁺/+EGFP⁺ mice and seven Apc⁻/- M-Lys⁻/-EGFP⁺ mice at 74±2 days of age. Monoclonal primary antibodies utilized were as follows: F4/80 (1:100; cat. no. MCA497G; clone A3-1; BioRad Laboratories, Inc.), BDMM-1, ER-HR3 (1:10), ER-MP23, ER-MP58, ER-TR9, MOMA-1 (all 1:10) and MOMA-2. Antibodies (with the exclusion of F4/80) were hybridoma-conditioned supernatant, a kind gift from Professor Pieter Leenen (24). A PE-conjugated goat anti-rat antibody was utilised (cat. no. 305009; Bio-Rad Laboratories, Inc.) at 1: 100 dilution. Cells were then washed in 10% foetal calf serum (FCS) labelled with propidium iodide (cat. no. P4864; Sigma-Aldrich; Merck KGaA) at 1:2000 dilution. Flow cytometry was performed using 5x10⁴ LPMNCs and a FACS Vantage cytomter (Becton-Dickinson and Company) with Cell Quest™ software version 3.3 (Becton-Dickinson and Company). The R1 gate was set to exclude PI-positive cells and cells with low forward scatter (deemed non-viable). EGFP-positive cells (fluorescence level greater than that obtained by <0.1% of wild-type LPMNCs) and macrophage marker positive cells ([M] with fluorescence level greater than that obtained by <0.1% of cells with non-specific labelling by control rat IgG) were analysed as expressing the relevant marker. Some cells were labelled with a cocktail of ER-HR3, F4/80 and MOMA-1 primary antibodies defined as the ‘Mac-mix’ (at the same concentration as utilized for single markers). BMDM-1, ER-MP23, ER-MP58, ER-TR9 and MOMA-2 were not evaluated further, due to the level of expression of undiluted hybridoma supernatant being no higher than for control rat IgG (data not shown).

Isolation of resident peritoneal cells. Lavaged peritoneal cells from three pairs of Apc⁺/+ M-Lys⁺/+EGFP⁺ and Apc⁻/- M-Lys⁻/-EGFP⁺ mice at 92±3 days were treated with 5 mM EDTA in Hank's Balanced Salt Solution (Invitrogen; Thermo Fisher Scientific, Inc.) for 75 min and collage‑nase-dispase enzymes for 90 min at 37˚C as for small intestinal LPMNCs (23). Peritoneal cells were then washed twice in an excess of 10% (v/v) foetal calf serum in PBS and re-suspended at 25˚C in the same culture medium as for LPMNCs prior to been viewed by fluorescence microscopy.

Statistical analysis. The mean ± standard error of mean (SEM) was calculated for numbers or proportions of cells belonging to different small intestinal LPMNC sub‑populations of different groups of mice. Analysis of the difference between total LPMNCs of the oldest and youngest mice of either genotype (parametric data) was compared using unpaired two‑tailed Student’s t‑tests. Statistical comparison of the myelomonocytic sub‑population and adenoma numbers between mice was conducted using two‑tailed Mann-Whitney U tests. Statistical analysis utilized Minitab software version 13 (Minitab, LLC). P<0.05 was considered to indicate a statistically significant difference.

Results

Small intestinal LPMNC numbers decrease with age in Apc⁻/- mice. Initially, the total small intestinal LPMNC population was characterised during intestinal tumorigenesis in the Apc⁻/- mouse. It was determined if there were any differences in small intestinal LPMNC numbers with age. There were no significant differences in LPMNC viability between groups of mice (Table I). There was no significant difference in total intestinal LPMNC numbers with age in Apc⁺/+ mice (33±1 vs. 109±2 days old; P=0.35), though older mice had a trend to reduced total LPMNCs (Table I). By contrast, total intestinal LPMNCs numbers significantly reduced with age in Apc⁻/- mice (33±1 vs. 109±2 days old; P=0.05; Table I). This suggested significantly reduced intestinal LPMNCs with age in Apc⁻/- mice.
No significant effect of M-lys hemizygosity on Apc<sup>Min/+</sup> mouse small intestinal tumorigenesis. A previous study reported no difference in the proportion of EGFP-expressing cells in the blood and bone marrow of Apc<sup>+/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup>/M-lys<sup>-/+</sup>EGFP<sup>-</sup> compared with Apc<sup>+/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup>/M-lys<sup>-/+</sup>-EGFP<sup>-</sup> mice (18). Therefore, Apc<sup>+/+</sup> and Apc<sup>Min/+</sup> mice were bred onto the M-lys<sup>-/+</sup>-EGFP<sup>-</sup>/M-lys<sup>-/+</sup>-EGFP<sup>-</sup> background to facilitate the study of MM cell populations with intact M-lys function. It was determined if there was any impact of heterozygous M-lys deletion on intestinal tumorigenesis by counting macroscopic adenomas from Apc<sup>Min/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup>/M-lys<sup>-/+</sup>-EGFP<sup>-</sup> intestine. Adenoma numbers were 45.8±10 (mean ± SEM; n=5) from the small intestine of Apc<sup>Min/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup>/M-lys<sup>-/+</sup>-EGFP<sup>-</sup> mice (data not shown), similar to that of Apc<sup>Min/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup> mice previously bred in our facility that had 53±4 tumours (mean ± SEM; n=25) (25). Consequently, hemizygous deletion of M-lys appeared not to have significant impact on intestinal tumorigenesis in the Apc<sup>Min/+</sup> mouse.

EGFP fluorescence in isolated small intestinal LPMNCs of Apc<sup>Min/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup> mice. M-lys mRNA expression has previously been demonstrated in mouse intestine (26). The presence of EGFP protein was tested for and fluorescence in isolated intestinal LPMNCs of Apc<sup>Min/+</sup> M-lys<sup>-/+</sup>-EGFP<sup>-</sup> mice in situ as well as in the LPMNC isolate was observed (Fig. S1).
EGFP expression in the spleen and small intestine of Apc<sup>min/M-lys<sup>EGFP/+</sup> and Apc<sup>min/M-lys<sup>EGFP/+</sup> mice. Utilizing an EGFP-expressing SW480 human CRC xenograft as positive control, it was determined if there was any difference in the resident intestinal MM cell localization between Apc<sup>min/M-lys<sup>EGFP/+</sup> and Apc<sup>min/M-lys<sup>EGFP/+</sup> mice at ~100 days of age (n=3 pairs) by immunohistochemistry for EGFP (Figs. 1 and 2). The spleen was studied as independent lymphoid tissue with a sentinel MM cell population. Even though there was some fibrotic distortion of Apc<sup>min/M-lys<sup>EGFP/+ splenic tissue, EGFP-expressing cells were localized to the marginal zone of the spleen in both types of mice (Fig. 1B and C). In the intestine, EGFP-expressing cells were localized to intestinal villi and in particular lymphoid follicles of Apc<sup>min/M-lys<sup>EGFP/+ mice (Fig. 2Aa-c). While EGFP-expressing cells were also localized to the intestinal villi of Apc<sup>min/M-lys<sup>EGFP/+ mice and the periphery of adenomas, lymphoid follicles were absent from the intestine of Apc<sup>min/M-lys<sup>EGFP/+ mice (Fig. 2Ba-c). This suggested loss of myelomonocytic cells and immune cell aggregates in Apc<sup>min/M-lys<sup>EGFP/+ mouse intestine.
Small intestinal myelomonocytic sub-populations of \( Apc^{Min/+} \) \( M\text{-Lys}^{lys-EGFP/+} \) and \( Apc^{Min/+} M\text{-Lys}^{lys-EGFP/+} \) mice. To determine any differences in the intestinal MM population during the early stages of intestinal tumorigenesis, mice were studied at \( \sim70 \) days of age, which is prior to overt \( Apc \text{Min/}+ \) mouse lymphoid atrophy (7). This was also prior to ulceration, bleeding and potential secondary inflammation associated with advanced intestinal adenomas (6). As for mice on the \( M\text{-Lys}^{+/+} \) background, there was a trend towards reduced total intestinal LPMNCs in \( Apc \text{Min/}+ M\text{-Lys}^{lys-EGFP/+} \) mice which did not reach statistical significance (2.65\( \pm \)0.23\( \times \)10\(^7\) \( Apc^{+/+} \) \( M\text{-Lys}^{lys-EGFP/+} \) vs. 1.72\( \pm \)0.39\( \times \)10\(^7\) \( Apc \text{Min/}+ M\text{-Lys}^{lys-EGFP/+} \) mice, \( P=0.12 \)).

Typical flow cytometry plots are shown in Fig. 3. There was no significant difference in the proportion of cells in the R1 gate (\( \% \) \( Apc^{+/+} \) 35.40\( \pm \)4.00 vs \( Apc \text{Min/}+ \) 38.00\( \pm \)4.60, \( P=0.52 \)).

For the three expressed macrophage marker antibodies, their mixture (Mac mix) and EGFP, data on the three expressed macrophage marker antibodies, their mixture (Mac mix) and EGFP are displayed for \( Apc^{+/+} M\text{-Lys}^{lys-EGFP/+} \) and \( Apc^{Min/+} M\text{-Lys}^{lys-EGFP/+} \) mice (Table II). A higher proportion of LPMNCs from \( Apc^{+/+} M\text{-Lys}^{lys-EGFP/+} \) mice (n=6) expressed EGFP (\( P=0.11 \)), ER-HR3 (\( P=0.11 \)) or the Mac mix (\( P=0.18 \)) compared with \( Apc \text{Min/}+ M\text{-Lys}^{lys-EGFP/+} \) littermates (n=7) (Table II). However, these differences were not statistically significant.

Pre-immune rat IgG served as the antibody-isotype control. G+, EGFP-positive LPMNCs; G, EGFP-negative LPMNCs.

**Table II. Small intestinal myelomonocytic cell populations of \( Apc^{Min/+} M\text{-Lys}^{lys-EGFP/+} \) and \( Apc^{+/+} M\text{-Lys}^{lys-EGFP/+} \) mice at \( 74\pm2 \) days of age.**

<table>
<thead>
<tr>
<th>Myelomonocytic cell marker</th>
<th>( Apc^{+/+} )</th>
<th>( Apc^{Min/+} )</th>
<th>( P )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFP (M-lys)</td>
<td>4.29( \pm )0.68</td>
<td>2.90( \pm )0.47</td>
<td>0.11</td>
</tr>
<tr>
<td>ERHR-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.11( \pm )0.03</td>
<td>0.13( \pm )0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>G+</td>
<td>1.02( \pm )0.25</td>
<td>0.55( \pm )0.13</td>
<td>0.23</td>
</tr>
<tr>
<td>F4/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.22( \pm )0.17</td>
<td>0.31( \pm )0.18</td>
<td>0.52</td>
</tr>
<tr>
<td>G+</td>
<td>0.24( \pm )0.10</td>
<td>0.14( \pm )0.07</td>
<td>0.20</td>
</tr>
<tr>
<td>MOMA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.04( \pm )0.01</td>
<td>0.07( \pm )0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>G+</td>
<td>0.13( \pm )0.09</td>
<td>0.04( \pm )0.01</td>
<td>0.39</td>
</tr>
<tr>
<td>MAC-MIX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.16( \pm )0.10</td>
<td>0.15( \pm )0.05</td>
<td>0.48</td>
</tr>
<tr>
<td>G+</td>
<td>1.20( \pm )0.34</td>
<td>0.66( \pm )0.18</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Small intestinal myelomonocytic cells in the \( Apc^{Min/+} M\text{-Lys}^{lys-EGFP/+} \) mice with the lowest total small

**Figure 3. Macrophage marker flow cytometry on \( M\text{-lys}^{lys-EGFP/+} \) intestinal LPMNCs.** Representative flow cytometry plots from \( Apc^{+/+} M\text{-lys}^{lys-EGFP/+} \) mouse intestinal LPMNCs. Figures show the percentage of the total population of LPMNCs in relevant regions. EGFP fluorescence is on the abscissa, while PE fluorescence for macrophage markers is on the ordinate. R1, viable cell gate (not shown); R2, G+M+; R3, G+M−; R4, G−M+; R5, GM+; R6, LPMNCs that do not express EGFP, but were labelled by the macrophage surface marker at a similar level to non-specific rat IgG; R7, LPMNCs that expressed EGFP and were labelled by macrophage surface markers at a similar level to non-specific rat IgG. LPMNCs, lamina propria mononuclear cells; M-lys, mouse lysozyme; PE, phycoerythrin; G+, EGFP-positive LPMNCs; G−: EGFP-negative LPMNCs. M+, LPMNCs labelled by macrophage markers above levels of non-specific binding by rat IgG. M−, LPMNCs not labelled by macrophage markers.

**Table II. Small intestinal myelomonocytic cell populations of \( Apc^{Min/+} M\text{-Lys}^{lys-EGFP/+} \) and \( Apc^{+/+} M\text{-Lys}^{lys-EGFP/+} \) mice at \( 74\pm2 \) days of age.**

<table>
<thead>
<tr>
<th>Myelomonocytic cell marker</th>
<th>( Apc^{+/+} )</th>
<th>( Apc^{Min/+} )</th>
<th>( P )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFP (M-lys)</td>
<td>4.29( \pm )0.68</td>
<td>2.90( \pm )0.47</td>
<td>0.11</td>
</tr>
<tr>
<td>ERHR-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.11( \pm )0.03</td>
<td>0.13( \pm )0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>G+</td>
<td>1.02( \pm )0.25</td>
<td>0.55( \pm )0.13</td>
<td>0.23</td>
</tr>
<tr>
<td>F4/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.22( \pm )0.17</td>
<td>0.31( \pm )0.18</td>
<td>0.52</td>
</tr>
<tr>
<td>G+</td>
<td>0.24( \pm )0.10</td>
<td>0.14( \pm )0.07</td>
<td>0.20</td>
</tr>
<tr>
<td>MOMA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.04( \pm )0.01</td>
<td>0.07( \pm )0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>G+</td>
<td>0.13( \pm )0.09</td>
<td>0.04( \pm )0.01</td>
<td>0.39</td>
</tr>
<tr>
<td>MAC-MIX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-</td>
<td>0.16( \pm )0.10</td>
<td>0.15( \pm )0.05</td>
<td>0.48</td>
</tr>
<tr>
<td>G+</td>
<td>1.20( \pm )0.34</td>
<td>0.66( \pm )0.18</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Pre-immune rat IgG served as the antibody-isotype control. G+, EGFP-positive LPMNCs; G, EGFP-negative LPMNCs.
The authors would like to thank Dr Sarah Holwell and Mr David Brooke (University of Leeds) who assisted with mouse genotyping, Dr Peter Smith, Ms Deborah Clarke and Ms Liz Straszynski (University of Leeds) for help with EGFP-expressing SW480 colorectal cell line tissue, L-cell conditioned medium and flow cytometric analysis, respectively, Professor Thomas Graf (Albert Einstein College of Medicine) for supplying C57BL/6J/Sv129-M-Ly5.2EGFP/ly5.1EGFP mice and Professor Pieter Leenen (Erasmus University) for providing hybridoma supernatant antibodies to murine macrophage surface markers. The abstract was presented 4th-6th
November 2018 at the UK Annual National Cancer Research Institute conference in Glasgow, UK.

Funding

OOF was funded by an Overseas Research Student Scholarship. Work on intestinal tumorigenesis at St. James’s University Hospital was funded by Yorkshire Cancer Research (grant no. L283).

Availability of data and materials

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

OOF performed experiments and wrote the initial version of the manuscript. OOF, MAH, AFM, CB and PLC were involved in study design, interpretation of the data and statistical analysis. All authors confirm authenticity of the data and agreed to the final version of the manuscript.

Ethics approval and consent to participate

All animal work was carried out under the Animals (Scientific Procedures) Act 1986 (PPL 40/3291 UK Home Office). Ethical approval to conduct the study was obtained from The University of Leeds Animal Welfare and Ethical Review Committee.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.