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Abstract. Skin cancer is caused by abnormal proliferation, 
gene regulation and mutation of epidermis cells. Compound 
C is commonly used as an inhibitor of AMP‑activated protein 
kinase (AMPK), which serves as an energy sensor in cells. 
Recently, compound C has been reported to induce apoptotic 
and autophagic death in various skin cancer cell lines via an 
AMPK‑independent pathway. However, the signaling pathways 
activated in compound C‑treated cancer cells remain unclear. 
The present oligodeoxynucleotide‑based microarray screening 
assay showed that the mRNA expression of the zinc‑finger 
transcription factor early growth response‑1 (EGR‑1), which 
helps regulate cell cycle progression and cell survival, was 
significantly upregulated in compound C‑treated skin cancer 
cells. Compound C was demonstrated to induce EGR‑1 mRNA 
and protein expression in a time and dose‑dependent manner. 
Confocal imaging showed that compound C‑induced EGR‑1 
protein expression was localized in the nucleus. Compound 
C was demonstrated to activate extracellular signal‑regu‑
lated kinase (ERK) phosphorylation. Inhibition of this 
compound C‑induced ERK phosphorylation downregulated the 
mRNA and protein expression of EGR‑1. In addition, removal 

of compound C‑induced reactive oxygen species (ROS) not 
only decreased ERK phosphorylation, but also inhibited 
compound C‑induced EGR‑1 expression. A functional assay 
showed that knock down of EGR‑1 expression in cancer cells 
decreased the survival rate while also increasing caspase‑3 
activity and apoptotic marker expression after compound C 
treatment. However, no difference in autophagy marker 
light chain 3‑II protein expression was observed between 
compound C‑treated control cells and EGR‑1‑knockdown 
cells. Thus, it was concluded that that EGR‑1 may antagonize 
compound C‑induced apoptosis but not compound C‑induced 
autophagy through the ROS‑mediated ERK activation pathway.

Introduction

Compound C (6‑[4‑(2‑piperidin‑1‑yl‑ethoxy)‑phenyl] 
3‑pyridin‑4‑yl‑pyrazolo[1,5‑a] pyrimidine) is a small molecule 
with cell‑permeable and selective ATP‑competitive functions 
that inhibits AMP‑activated protein kinase (AMPK) and 
interferes with AMPK metabolic regulation (1). Compound C 
has been reported to attenuate metformin‑induced apoptosis 
via AMPK inhibition (2). In contrast, it has been suggested 
that compound C treatment directly induces apoptosis in hepa‑
toma, glioma and breast carcinoma cells (2‑4). In addition, 
compound C has been described to inhibit AMPK‑dependent 
autophagy in yeast, hepatocytes and HeLa cells (5). Therefore, 
controversially, compound C has dual roles in autophagic 
protection against compound C‑induced apoptosis in glioma 
cancer cells, and autophagic cell death in colorectal cancer 
cells (6,7). This evidence indicates that compound C has vari‑
able effects on apoptosis and the type of autophagy in dose‑, 
cell type‑ and/or context‑dependent manners.

The transcription factor early growth response‑1 (EGR‑1) 
is a member of the immediate‑early family of genes and 
encodes a 59‑kDa phosphoprotein (8). Numerous factors, such 
as growth factors, cytokines, radiation, injury and mechanical 
stress, can induce EGR‑1 protein expression (9). There are 
five serum response elements (SREs) in the EGR‑1 promoter 
region, and the level of EGR‑1 transcription is most commonly 
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mediated by transcription factors in the Elk‑1 family, which are 
activated by the MAP kinase family. CREB‑binding protein 
(CBP) and serum response factor (SRF) associate with Elk‑1 to 
form the ternary complex factor that binds to SREs (9,10). There 
are several specificity protein 1 (SP1) consensus sequences, 
a putative AP‑1‑binding site, functional cAMP regulatory 
elements (CREs) and a functional NF‑κB‑binding site in 
the EGR‑1 promoter region (10). EGR1 transcription is also 
self‑regulated via binding to functional EGR‑1 binding sites 
(EBS). The targeting of EGR‑1 by E26 transformation‑specific 
transcription factors is involved in hematopoiesis, angiogen‑
esis and neoplasia (11). The EGR‑1 promoter contains two 
activating transcription factor 5 (ATF5) consensus sequences 
that are activated by ATF5 in fibroblasts (10). Moreover, there 
are two functional non‑consensus binding sites for the tumor 
suppressor protein p53. The binding of p53 to the EGR‑1 
promoter in response to DNA damage leads to sustained 
expression of EGR‑1 protein and induction of apoptosis (12). 
The activity and stability of the EGR‑1 protein are regulated by 
post‑translational modifications. Acetylation improves EGR‑1 
protein stability and may facilitate cell survival, whereas 
phosphorylation of EGR‑1 protein in response to stress may 
favor cell death (13). Sumoylation directs EGR‑1 protein to the 
nucleus (14), and the short half‑life of EGR‑1 protein is a result 
of ubiquitination and degradation by the proteasome (15).

EGR‑1 protein is associated with cell proliferation and 
the regulation of apoptosis as it belongs to a network of 
tumor suppressor genes that include p53 and p73, which 
promote apoptosis in cancer cells in response to stress and 
DNA damage (16‑19). In contrast, EGR‑1 protein specifically 
promotes prostate cancer progression. The mRNA expres‑
sion of EGR‑1 is higher in prostate adenocarcinoma tissue 
compared with normal tissues. The degree of differentiation of 
carcinoma cells is inversely correlated with the levels of EGR‑1 
mRNA and protein expression (20). Evidence indicates that the 
role of EGR‑1 protein in prostate cancer could be due, at least 
in part, to an interaction with the androgen receptor (21). Thus, 
while EGR‑1 protein mediates apoptosis in response to stress 
and DNA damage by regulating a tumor suppressor network, 
it also promotes the proliferation of prostate cancer cells via 
a mechanism that is not fully understood. EGR‑1 protein was 
reported to bind to the promoter of the autophagy gene light 
chain 3B (LC3B), increasing LC3B expression and promoting 
autophagy. Knocking down EGR‑1 expression inhibits ciga‑
rette smoke extract‑induced autophagy and protects epithelial 
cells from cigarette smoke extract‑induced apoptosis (22).

In our previous study, we demonstrated that compound C 
induced not only autophagy but also apoptosis in skin cancer 
cells (23). The present study showed that compound C could 
induce EGR‑1 gene expression through the reactive oxygen 
species (ROS)‑mediated extracellular signal‑regulated 
kinase (ERK) activation pathway, which provided a protec‑
tive response against compound C‑induced apoptosis. Thus, 
targeting EGR‑1 expression may increase the antitumor 
efficacy of compound C in skin cancer.

Materials and methods

Reagents and antibodies. Compound C was purchased 
f r om C a lb io chem;  Merck  KG a A.  Met fo r m i n, 

N‑acetylcysteine (NAC) and U0126 were obtained from 
Sigma‑Aldrich; Merck KGaA. Cells were treated with 40 µM 
compound C for 0, 1, 2, 4, 6, 8, 12, or 24 h, or 0, 1, 5, 10, 20, 
or 40 µM compound C for 6 or 8 h. Cells were treated with 
4 mM metformin for 0, 1, 2, 4, 6, 8, 12, or 24 h, or 0, 1, 5, 10, 
20, or 40 µM compound C for 6 or 8 h. Cells were treated with 
2 mM NAC or 10 µM U0126 for 1 h before compound treat‑
ment. An antibody specific for LC3 (cat. no. NB600‑1384) was 
purchased from Novus Biologicals, LLC. Antibodies specific 
for p53 (cat. no. 9282), cleaved caspase‑3 (cat. no. 9661), 
caspase‑9 (cat. no. 7237), poly ADP‑ribose polymerase 
(PARP) (cat. no. 9541), EGR‑1 (cat. no. 4154), AMPKα (cat. 
no. 2532), phosphorylated‑AMPKα (Thr172) (cat. no. 2535), 
phosphorylated‑ERK (cat. no. 9101) and ERK (cat. no. 4695) 
were purchased from Cell Signaling Technology, Inc. An 
antibody specific for β‑actin (cat. no. sc‑47778) was purchased 
from Santa Cruz Biotechnology, Inc.. All antibodies were 
1000‑fold dilution for detection.

Cell culture. A basal cell carcinoma (BCC) cell line 
(BCC‑1/KMC) was cultured in Roswell Park Memorial 
Institute‑1640 (RPMI‑1640) (Gibco; Thermo Fisher Scientific, 
Inc.) medium supplemented with 10% fetal bovine serum 
(FBS) (Gibco; Thermo Fisher Scientific, Inc.). The human 
keratinocyte cell line HaCaT and human melanoma cell lines 
C32 and A375 were obtained from Bioresource Collection 
and Research Center. C32 and A375 cells were cultured in 
Minimum Essential Medium (Gibco; Thermo Fisher Scientific, 
Inc.) supplemented with 10% FBS. HaCaT cells were cultured 
in Dulbecco's modified Eagle's medium (DMEM) (Gibco; 
Thermo Fisher Scientific, Inc.) supplemented with 10% FBS.

Cell viability assay. Cell viability was evaluated with a trypan 
blue exclusion assay (Gibco; Thermo Fisher Scientific, Inc.). 
Cells were seeded at 2x105 cells/well in a 6‑well plate before 
compound C treatment. After compound C treatment for 48 h, 
the cells were collected and stained with trypan blue for 3 min 
at room temperature to count the number of viable cells under 
a light microscope (Carl Zeiss AF).

ROS detection. Cells were pretreated with 2 mM NAC for 
1 h at 37˚C and then treated with compound C for 4 h. After 
compound C treatment, the cells were stained with 1 µM 
CM‑H2DCFDA (Invitrogen; Thermo Fisher Scientific, Inc.) for 
30 min at 37˚C and the stained cells were detected with a BD 
FACSCalibur™ cytometer and analyzed with BD CellQuest™ 
Pro, Version 6.0 (Beckman Coulter, Inc.).

Cell cycle analysis. Cells treated with compound C for 
48 h were harvested and fixed in 70% ethanol at 4˚C for 
overnight. After centrifugation (300 x g) at 4˚C for 5 min, 
the cell pellets were resuspended in a buffer containing 
phosphate‑buffered saline (PBS), 0.05% RNase A and 
40 µg/ml propidium iodide (PI) and incubated at 37˚C for 
30 min. After staining, the cells were collected and resus‑
pended in PBS. The fluorescence emitted from the PI‑DNA 
complexes following laser excitation of the fluorescent dye 
was quantified using a BD FACSCalibur™ cytometer and 
analyzed with BD CellQuest™ Pro version 6.0 (Beckman 
Coulter, Inc.).
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Protein immunoblotting. Cells were harvested, and 
whole‑cell extracts were prepared with PRO‑PREP protein 
extraction reagent (Level Biotechnology, Inc.). Protein 
samples (30 µg/lane) were resolved by electrophoresis with 
15% SDS‑acrylamide gel and transferred to polyvinylidene 
difluoride membranes by electroblotting. Then, the blots 
were blocking with 5% bovine serum albumin (BSA) (Gibco; 
Thermo Fisher Scientific, Inc.) for 1 h at room tempera‑
ture. After blocking, the blots were incubated overnight at 
4˚C in PBS supplemented with 0.05% Tween‑20 (TBST) 
containing primary antibodies as aforementioned. After 
washing three times (10 min/time at room temperature) with 
TBST, the blots were incubated for 1 h at room tempera‑
ture with a corresponding horseradish peroxidase‑coupled 
anti‑rabbit or anti‑mouse secondary antibody (Pierce). After 
washing three times (10 min/time at room temperature) with 
TBST, the blots were visualized with SuperSignal West 
Pico ECL reagents (Pierce), and chemiluminescence was 
detected by exposing the membranes to Kodak‑X‑Omat film 
(Sigma‑Aldrich; Merck KGaA). The levels of the β‑actin 
signal were used to verify equal protein loading among all 
lanes.

Reverse transcription PCR. Total RNA of whole cell extract was 
isolated using TRIzol® (Invitrogen; Thermo Fisher Scientific, 
Inc.) reagent. First‑strand cDNA was synthesized from total 
RNA using the Sprint PowerScript PrePrimed Single Shots kit 
(Takara Bio, Inc.). PCR was performed using cDNA (25 cycles 
at 94˚C for 30 sec, 55˚C for 30 sec and 68˚C for 1 min) and 
Titanium Taq DNA polymerase (Takara Bio, Inc.). The primer 
pairs were as follows: Human EGR‑1 forward, 5'‑CTG CGA 
CAT CTG TGG AAG AA‑3' and reverse, 5'‑TGT CCT GGG AGA 
AAA GGT TG‑3'; and GAPDH forward, 5'‑ACC ACA GTC 
CAT GCC ATC AC‑3' and reverse, 5'‑TCC ACC ACC CTG TTG 
CTG T‑3'. All PCR products were separated by 2% agarose gel 
electrophoresis and visualized with ethidium bromide.

Luciferase reporter assay. The human EGR‑1 promoter 
sequence containing the region from‑714 bases to the trans‑
lational start site was amplified from the pDRIVE‑hEGR‑1 
plasmid (InvivoGen) by PCR as described in a previous 
report (24). This plasmid was co‑transfected with the 
pGL4.74 plasmid containing the Renilla luciferase gene 
(Promega Corporation) into cells and incubated for 48 h. The 
transfected cells were treated with compound C and then 
harvested. Supernatants were collected for a Dual‑Glo lucif‑
erase assay to evaluate promoter activity. Luciferase activity 
was measured with a dual‑luciferase reporter assay system 
(Promega Corporation). Light units were normalized to those 
corresponding to Renilla luciferase activity. Final data were 
presented as the fold change in the EGR‑1 luciferase activity 
compared with untreated group.

Immunocytochemistry. Cells (5x104 cells per chamber) 
were cultured on two‑chamber slides and then treated with 
compound C. The treated cells were fixed in 4% formalde‑
hyde in PBS overnight at 4˚C. For intracellular staining, the 
cells were blocked with 2% normal horse serum (Invitrogen; 
Thermo Fisher Scientific, Inc.) for 30 min at room temperature, 
incubated with antibodies against EGR‑1 in PBS containing 

0.2% Triton X‑100 (PBST), and then incubated with a goat 
fluorescein isothiocyanate‑conjugated anti‑rabbit IgG antibody 
(Sigma‑Aldrich; Merck KGaA). After washing with PBST, 
the cells were mounted using an antifade, DAPI‑containing, 
water‑based mounting medium (Vector Laboratories, Inc.). 
For Magic Red staining, cells were seeded at 5x104 cells/well 
in a 6‑well plate containing one 22x22‑mm glass coverslip 
in each well (Sigma‑Aldrich; Merck KGaA), stained with a 
Magic Red assay kit (ImmunoChemistry Technologies, LLC) 
at 37˚C for 1 h and washed with PBS before image capture. 
Before fluorescent image capture, the coverslips were detached 
from the 6‑well plate and sealed on glass microscope slides. 
All fluorescent images were captured by confocal microscopy 
(Olympus Corporation).

Construction of RNA interference (RNAi) vectors and intro‑
duction of RNAi vectors into BCC cells. Human short hairpin 
shAMPKα1/2 and control shRNA plasmids (Santa Cruz 
Biotechnology, Inc.) were transfected at 37˚C into BCC cells 
using jetPEI™ (Polyplus‑transfection®) for 48 h and then selected 
with 10 µg/ml puromycin to obtain stably transfected clones. The 
stable clones were maintained with RMPI medium containing 
10 µg/ml puromycin. The level of AMPK‑knockdown in the 
stable clones was analyzed by immunoblotting with specific 
AMPKα and phosphorylated‑AMPKα (Thr172) antibodies. To 
construct an EGR‑1 RNAi vector, a DNA fragment containing 
a human U6 promoter followed by an EGR‑1‑specific shRNA 
sequence (5'‑CAC CGA CCC TAA GCT GGA GGA GAT GAT 
TCA AGA GAT CAT CTC CTC CAG CTT AGG GTT TTT TTG‑3') 
was retrieved from the CMV‑/Hu6‑RNAi plasmid by HindIII and 
EcoRI double digestion. This DNA fragment was then inserted 
into the mammalian expression vector pcDNA3, which resulted 
in a plasmid carrying the U6 promoter driving the expression 
of the EGR‑1‑specific shRNA. This allowed for the selection of 
stably transfected clones. An EGFP RNAi vector was employed 
as the negative control for EGR‑1‑knockdown. The EGR‑1 
RNAi and EGFP RNAi vectors were subsequently transfected 
into BCC cells using jetPEI™, followed by 800 µg/ml G418 
(Invitrogen) treatment for 48 h post‑transfection to select stably 
transfected clones. The degree of EGR‑1 knockdown in these 
stable clones was verified by protein immunoblotting analysis of 
endogenous EGR‑1 protein expression using anti‑human EGR‑1 
antibodies after compound C treatment. The method of protein 
immunoblotting analysis was performed as aforementioned.

Oligodeoxynucleotide‑based microarray screening assay. The 
BCCs were treated with 40 µM compound C for 4 h, and the 
control and compound C‑treated cells were then harvested for 
total RNA extraction. Total RNA was isolated using TRIzol 
reagent. The concentration and purity of RNAs were checked 
to confirm OD260/OD280 (>1.8) and OD260/OD230 (>1.6) 
using an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.). 
In total, 1 µg of RNA was prepared for fluorescent antisense 
RNA (aRNA) targets using the OneArray® Amino Allyl aRNA 
Amplificant kit (Phalanx Biotech Group) and Cy5 dye (Cyvita). 
The fluorescent targets were hybridized to the Human Whole 
Genome OneArray® with a Phalanx Hybridization system 
(Phalanx Biotech Group) (25). The signal intensity of each 
spot was analyzed with the Rosetta Resolver system® (Rosetta 
Biosoftware), and the normalized intensity of each spot was 
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translated into gene expression by log2 ratios compared with 
the control. The distribution of 11,909 normalized plots, which 
were represented by 11,909 normalized genes, was represented 
by scatter plots using the Nested graph family in GraphPad 
Prism 8 (GraphPad Software, Inc.).

Ingenuity pathway analysis® (IPA). After the oligodeoxynu‑
cleotide‑based microarray screening assay, the resultant gene 
lists were used with a decision‑tree‑based classifier method 
to analyze the microarray data (26). The selected genes were 
used to confirm the relationship with BCC cells. The genetic 
pathways were analyzed by IPA (Ingenuity Systems; QIAGEN) 
with species and confidence levels.

Statistical analysis. All statistical results are representative 
of three independent experiments. Data are presented as 
mean ± SEM. Data between were analyzed with one‑way or 
two‑way ANOVA tests for multiple comparisons, and P<0.05 
was considered to indicate a statistically significant differ‑
ence. The statistical analysis was performed using GraphPad 
Prism 8 (GraphPad Software, Inc.).

Results

Compound C increases the expression of EGR‑1 in skin cancer 
cell lines. Several studies have indicated that the AMPK 
inhibitor compound C induces apoptosis and autophagy in 
an AMPK‑independent manner (4,6,7,27). To evaluate the 
putative mechanisms that regulate compound C‑induced 
apoptosis and autophagy in cancer cells, an oligodeoxy‑
nucleotide‑based microarray screening assay was used to 
identify compound C‑induced gene expression. Then, 11,909 
normalized genes were surveyed and the top five were found 
to be FOS, EGR‑1, BAAT, GDF15 and INSIG1 (Fig. 1A and 
Table SI.).

Next, the selected genes were input into IPA and found 
that TP53‑EGR‑1 pathway was associated with compound C 
treatment in BCC cells (Fig. S1A). We had previously 
demonstrated that compound C‑induced apoptosis in skin 
cancer cells was p53‑dependent (23). Hence, EGR‑1 was 
selected as the targeted gene for further investigation. The 
expression of the EGR‑1 gene was confirmed by RT‑PCR 
compared with mock DMSO‑treated cells (0 h) (Fig. 1B). 
After treatment with compound C, BCC cells showed 
enhanced EGR‑1 mRNA expression after 2 h, with expres‑
sion peaking at 4 h and then gradually declining (Fig. 1B). 
The protein expression of EGR‑1 was upregulated by 
compound C treatment in a similar time‑ and dose‑depen‑
dent manner, although different kinetics were observed 
in the BCC, C32 and A375 cell lines (Figs. 1C and S1B). 
Furthermore, the protein expression of EGR‑1 was induced 
when treated with a high concentration of compound C 
(40 µM) (Fig. 1C).

EGR‑1 was also localized in the nucleus after compound C 
treatment, as demonstrated by immunofluorescence staining 
(Figs. 1D and S1C). Growth factors and cytokines have been 
reported to induce the expression of EGR‑1 (11). To rule out 
the possibility that growth factors and cytokines involved in 
EGR‑1 induction, the expression of EGR‑1 was examined in 
culture medium with or without FBS. As shown in Fig. 1E, 

the EGR‑1 expression in the BCC cell line was increased after 
compound C treatment regardless of whether FBS was added 
to the culture medium. This result indicated that FBS did not 
contribute to compound C‑mediated EGR‑1 induction. Thus, 
it was concluded that a high dose of compound C may induce 
EGR‑1 mRNA and protein expression in skin cancer cells.

Compound C‑induced EGR‑1 expression is independent of 
AMPK activation. Compound C is a commonly used AMPK 
inhibitor, and activation of AMPK also reportedly induces the 
expression of EGR‑1 and its target dual specificity phospha‑
tase 4 (28). To evaluate the role of AMPK activation in the 
regulation of EGR1 expression, BCC cells were treated with 
metformin, an AMPK activator, to evaluate whether the acti‑
vation of AMPK (p‑AMPK) can control EGR‑1 expression. 
Metformin induced the activation of AMPK but had no effect on 
the expression of EGR‑1 in skin cancer cells (Figs. 2A and S2). 
Co‑treatment with metformin and compound C did not change 
the level of compound C‑induced EGR‑1 expression in skin 
cancer cells (Figs. 2B and S2). To confirm whether AMPK 
is involved in compound C‑induced EGR‑1 production, 
EGR‑1 in stable AMPK‑knockdown BCC cells (shAMPK) 
treated with compound C were examined. In control and 
AMPK‑knockdown BCC cells without compound C treatment, 
EGR‑1 expression was not induced, indicating that AMPK 
may be dispensable in the regulation of EGR‑1 expression 
in un‑stimulated conditions (Fig. 2C). Expression of EGR‑1 
was highly induced in AMPK‑knockdown BCC cells treated 
with compound C, revealing that compound C‑induced EGR‑1 
expression may be controlled by other pathways and further 
enhanced in the AMPK‑knockdown condition.

Compound C upregulates EGR‑1 mRNA expression via the 
ROS‑mediated ERK signaling pathway. Further investigation 
into whether compound C induces EGR‑1 expression through 
transcriptional regulation of the EGR‑1 gene was conducted. 
Using a luciferase reporter assay, EGR1 promoter activity was 
shown to be increased by 1.3‑, 1.6‑, 2.3‑, and 3.1‑fold at 6, 8, 
12 and 24 h, respectively, in cells treated with compound C 
(Fig. 3A). This result confirmed that compound C could 
induce EGR‑1 expression at the mRNA level. As the transcrip‑
tion of EGR‑1 is reportedly regulated by the ERK signaling 
pathway in cancer cells (20), it was evaluated whether 
compound C‑induced EGR‑1 transcriptional regulation was 
mediated by the ERK signaling pathway. First, compound C 
was demonstrated to significantly induce ERK phosphory‑
lation in skin cancer cells (Figs. 3B and S3A). Next, the 
MEK/ERK inhibitor U0126 was used to evaluate whether the 
ERK signaling pathway was involved in compound C‑induced 
EGR‑1 expression in BCC, C32 and A375 cells. Pretreatment 
with U0126 decreased the basal‑level mRNA expression of 
EGR‑1 and inhibited the compound C‑induced mRNA and 
protein expression of EGR‑1 and p‑ERK (Fig. 3C and D) 
in BCC cells. Similarly, U0126 pretreatment inhibited the 
compound C‑induced protein expression of EGR‑1 and 
p‑ERK in C32 cells (Fig. S3B). In the promoter activity assay, 
pretreatment with U0126 not only decreased the promoter 
activity of EGR‑1 in the compound C‑treated pEgr‑1/‑714 
group compared with only compound C‑treated pEgr‑1/‑714 
group, but also decreased the promoter activity of EGR‑1 
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in the U0126‑treated pEgr‑1/‑714 group compared with 
pEgr‑1/‑714 group (Fig. 3E). We previously demonstrated 
that compound C‑induced p53‑dependent apoptosis in skin 
cancer cells is mediated by compound C‑induced ROS (23). 
Figs. 3F and S3C show that compound C induced ROS 
production in BCC and C32 cells, but pretreatment with NAC 
decreased the level of compound C‑induced ROS production. 
Thus, it was evaluated whether compound C‑induced ROS also 
promoted ERK activation and subsequent EGR‑1 expression. 
As shown in Figs. 3G and S3D, the antioxidant NAC not only 
mitigated compound C‑induced ERK phosphorylation but also 
inhibited EGR‑1 expression in BCC and C32 cells. Thus, it 
was concluded that compound C upregulates EGR‑1 mRNA 
expression via ROS‑mediated ERK activation.

EGR‑1 knockdown enhanced compound C‑induced apop‑
tosis. Previous studies found that compound C efficiently 
increases apoptotic and autophagic populations in skin cancer 
cells (23). A rapid and transient increase in EGR‑1 expression 
was demonstrated during compound C treatment. Therefore, it 
was hypothesized that the apoptotic and autophagic effects of 
compound C may be regulated by EGR‑1. To investigate this 
hypothesis, the effect of compound C on BCC cells with an 
EGR‑1 functional deficiency was evaluated. RNAi was used 
to reduce the level of endogenous EGR‑1, which was sufficient 

to abolish EGR‑1 function. An EGR‑1‑specific shRNA vector 
carrying a human U6 promoter was transfected into BCC 
cells, and the stably transfected clones were screened by 
G418 selection. BCC cells stably expressing an EGFP RNAi 
vector were used as a negative control for EGR‑1‑knockdown, 
and the degree of EGR‑1 knockdown in cells was validated 
by EGR‑1 immunoblotting. The endogenous EGR‑1 level in 
BCC/EGR‑1‑shRNA stable clones dropped to a barely detect‑
able level after compound C treatment, which indicated the 
efficiency of EGR‑1 knockdown (Fig. 4A). As expected, 40 µM 
compound C triggered a slight reduction in the number of cells 
transfected with the BCC/sh negative control (NC) (Fig. 4B). 
However, compound C decreased the BCC/EGR‑1‑shRNA 
clone cell numbers in a dose‑dependent manner (Fig. 4B), 
suggesting that compound C‑induced cell death was enhanced 
by EGR‑1 knockdown.

Then, apoptosis was characterized by a DNA content 
assay, revealing that ~32% of the apoptosis observed for 
the BCC/EGR‑1‑shRNA clone was caused by compound C 
(Fig. 4C). Caspase‑3 activity was also increased in the 
BCC/EGR1‑shRNA clone compared with BCC control cells 
after compound C treatment (Fig. 4D). Consistently, the 
cleaved caspase‑9, caspase‑3 and PARP levels were increased 
in the BCC/EGR1‑shRNA clone after compound C treatment 
(Fig. 4E). However, there was no difference in the protein 

Figure 1. Compound C induces EGR‑1 expression in BCC cells. (A) BCC cells were treated with 40 µM compound C for 4 h, and the mRNA expression levels of 
genes were detected with an oligodeoxynucleotide‑based microarray assay. (B) BCC cells were treated with 40 µM compound C for 0, 1, 2, 4, 6, 8, 12 or 24 h, and 
the mRNA expression levels of EGR‑1 were detected by reverse transcription PCR. (C) BCC cells were treated with 40 µM compound C for 0, 1, 2, 4, 6, 8, 12 or 
24 h or with 0, 1, 5, 10, 20 or 40 µM compound C for 6 h. Protein expression levels of EGR‑1 were detected by immunoblotting. (D) BCC cells were treated with 
0 or 40 µM compound C for 6 h. (E) BCC cells were treated with 40 µM compound C and culture medium with or without 10% FBS for 6 h. Scale bar, 20 µm. 
Protein expression level of EGR‑1 was detected by immunoblotting. EGR‑1, early growth response‑1; BCC, basal cell carcinoma; FBS, fetal bovine serum.
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expression of the autophagy induction marker light chain 3‑II 
(LC3‑II) between the BCC/shNC and BCC/EGR‑1‑shRNA 
cells (Fig. 4F). Collectively, these data revealed that EGR‑1 
can protect against compound C‑induced apoptosis but not 
against compound C‑induced autophagy in skin cancer cells.

Discussion

I n  ou r  p rev ious  s t udy,  we  demonst ra t ed  t ha t 
compound C‑induced apoptosis in human skin cancer cells is 
p53‑dependent (23). The present oligodeoxynucleotide‑based 
microarray assay showed that the EGR‑1 gene was one of 
highest upregulated genes in BCC cells after compound C 
treatment. The results of IPA indicated that TP53 and EGR‑1 
expression might be connected in BCC cells with compound C 
treatment. The report that p53 gene expression is under EGR‑1 
regulation may indicate the possibility that EGR‑1 is involved in 
compound C‑induced p53‑dependent apoptosis (17). However, 
according to the result of Figure S4, compound C treatment still 
induced p53 expression in EGR‑1‑knockdown BCC cells. This 
result indicated that p53 gene expression cannot be controlled 
by EGR‑1 in compound C‑treated BCC cells, and therefore 
EGR‑1 may play another role in compound C‑induced apoptosis 
in BCC cells. Thus, understanding the role of EGR‑1 in cancer 
could improve cancer therapeutic methods. The expression of 
EGR‑1 increased after compound C treatment in BCC, C32 
and A375 cells, and the EGR‑1 protein was also localized in 
the nucleus. These results indicated that compound C‑induced 
EGR‑1 expression and localization are dose‑dependent in 
different skin cancer cells. The kinetic expression patterns of 
EGR‑1 may be related to the different genetic backgrounds in 

different cells (13‑15,29‑33). The present study demonstrated 
that the expression level of EGR‑1 after compound C treatment 
was higher in serum‑free medium compared with in serum. 
EGR‑1 is a zinc‑finger transcription factor with EBS, with 
a CRE‑binding site, serum response elements/erythroblast 
transformation‑specific‑binding site and NF‑κB‑like‑binding 
site, ATF5 consensus sequences, an AP1 site and an SP1 
site upstream of the promoter region (11). Growth factors 
activate the Ras/Raf/MAP kinase signaling pathway and 
facilitate formation of the Elk‑1/CBP/SRF complex, which 
binds to the SRE functional element of the EGR‑1 promoter 
to induce EGR‑1 transcription (20). When cells are in the 
absence of growth factors, EGR‑1 is induced, and the activities 
of JNK/SAPK and p38 are increased (22,34‑36). Collectively, 
these results indicate that compound C is capable of inducing 
EGR‑1 expression and regulating EGR‑1 transcription in an 
environmental context‑dependent manner in cancer cells.

In the absence of energy, AMPK activation induces EGR‑1 
expression in hepatocytes (28). A high‑glucose state activates 
the protein kinase C (PKC)‑ERK signaling pathway, inducing 
EGR‑1 expression; however, valsartan, a Food and Drug 
Administration approved antihypertensive drug, activates 
the liver kinase B1‑AMP‑activated protein kinase signaling 
pathway and inhibits EGR‑1 expression independent of the 
PKC‑ERK signaling pathway in THP1 cells (37). These 
results indicate that the role of AMPK in EGR‑1 expres‑
sion might be dependent on cell type and environmental 
conditions. Compound C is a widely used AMPK inhibitor 
that has the ability to regulate apoptosis and autophagy in 
an AMPK‑independent manner (1,4,6,7,16,27). The present 
results indicated that treatment with metformin did not induce 

Figure 2. AMPK activation is not involved in compound C‑induced EGR‑1 expression in BCC cells. (A) BCC cells were treated with 4 mM metformin 
for 0, 1, 2, 4, 6, 8, 12 or 24 h. (B) BCC cells were cotreated with or without 4 mM metformin and 40 µM compound C for 6 h. (C) BCC, BCC/shNC and 
BCC/shAMPK cells were treated with 40 µM compound C for 6 h. Expression levels of EGR‑1, AMPK, p‑AMPK and β‑actin were detected by immunoblotting. 
AMPK, AMP‑activated protein kinase; BCC, basal cell carcinoma; p‑, phosphorylated; NC, negative control; sh, short hairpin.
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EGR‑1 expression. In addition, co‑treatment with metformin 
and compound C did not decrease compound C‑induced EGR‑1 
expression. These results showed that compound C‑induced 
EGR‑1 expression is AMPK activation‑independent in skin 
cancer cells. However, the level of compound C‑induced 
EGR‑1 induction in AMPK‑knockdown cells was higher 
compared with that in control cells. However, EGR‑1 expres‑
sion was not induced in control and AMPK‑knockdown 
BCC cells without compound C treatment. This indicated 
that AMPK inhibition or knockdown is not enough to solely 
induce EGR‑1 expression, and that compound C‑induced 
EGR‑1 expression may be controlled by other pathways and 

only enhanced by AMPK‑knockdown conditions in skin 
cancer cells.

MAPK proteins, such as ERK1/2, JNK, and p38‑MAPK, 
induce EGR‑1 activation (20). In the present study, 
compound C can induce EGR‑1 expression at the mRNA level. 
According to RT‑PCR analysis and reporter assay evaluating 
the EGR‑1 promoter, the present study hypothesized that 
ERK may regulate compound C‑induced EGR‑1 expres‑
sion. Pretreatment with the ERK inhibitor U0126 decreased 
compound C‑induced promoter activity and the mRNA and 
protein expression of EGR‑1. Notably, pre‑treatment with the 
ERK inhibitor U0126 decreased the promoter activity of the 

Figure 3. Compound C upregulates EGR‑1 mRNA expression via the ROS‑mediated ERK signaling pathway. (A) BCC cells were co‑transfected with 
pGL3‑basic‑hEGR‑1‑pro‑1/‑714 and pGL3 carrying the Renilla luciferase gene for 48 h and then incubated in medium containing 0% FBS and 40 µM 
compound C for 0, 1, 2, 4, 6, 8, 12 or 24 h, and analyzed with one‑way ANOVA. (B) BCC cells were treated with 40 µM compound C for 0, 1, 2, 4, 6, 8, 12 or 
24 h. Expression levels of p‑ERK, ERK and β‑actin were detected by immunoblotting. (C and D) BCC cells were pretreated with 10 µM U0126 for 1 h and 
then treated with 40 µM compound C for 6 h. mRNA and protein expression levels of EGR‑1 were detected by reverse transcription PCR and immunoblotting, 
respectively. (E) BCC cells were co‑transfected with pGL3‑basic‑hEGR‑1‑pro‑1/‑714 and pGL4.74 carrying the Renilla luciferase gene for 48 h. Cells were 
pretreated with 10 µM U0126 for 1 h in serum‑free medium and then treated with 0 or 40 µM compound C for 6 h, and analyzed with two‑way ANOVA. 
(F) BCC cells were pretreated with 2 mM NAC for 1 h and then treated with 40 µM compound C for 4 or 6 h to evaluate the ROS or protein expression level. 
This statistical result was analyzed using one‑way ANOVA. (G) Expression levels of EGR‑1, p‑ERK, ERK and β‑actin were detected by immunoblotting with 
specific antibodies. Data are expressed as the mean ± SEM. of three independent experiments. **P<0.01 and ***P<0.001 compared with the control. EGR‑1, early 
growth response‑1; BCC, basal cell carcinoma; NAC, N‑acetyl‑cysteine; p‑, phosphorylated.
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control group and compound C treatment group. This result 
implied that ERK might also be involved in EGR‑1 mRNA 

expression at the post‑transcriptional level. Additionally, it is 
possible that the regulatory sequences that are responsible for 

Figure 4. Expression of EGR‑1 is important for the survival of BCC cells after compound C treatment. BCC cells were transfected with shRNA plasmids 
carrying green fluorescent protein. (A) Cells were treated with or without 40 µM compound C for 6 h. Protein expression level of EGR‑1 was detected by 
immunoblotting. (B) Cells were treated with 0, 20 or 40 µM compound C for 48 h. (C) Cells were treated with 0 or 40 µM compound C for 48 h. Percentage 
of subG1 cells was measured by cell cycle analysis. (D) Cells were treated with 40 µM compound C for 6 h (E and F) Cells were treated with or without 
40 µM compound C for 6 h. Two‑way ANOVA was used for statistical analysis. *P<0.05, **P<0.01 and ***P<0.001 compared with the control. BCC, basal cell 
carcinoma; EGR‑1, early growth response‑1; PARP, ADP‑ribose polymerase; LC3, light chain 3‑II; sh, short hairpin. The value of scale bar was 20 µm.
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endogenous EGR‑1 mRNA induction may not be contained in 
the cloned promoter of the luciferase reporter plasmid. These 
results consequently indicated that EGR‑1 mRNA expres‑
sion was upregulated by compound C via the ERK signaling 
pathway. In malignant tumor progression, cellular adhesion 
is lost and eventually promotes tumor cell migration or inva‑
sion into surrounding tissues (38). Hepatocyte growth factor 
can facilitate cellular mobility by triggering the ERK/EGR‑1 
signaling pathway to promote HepG2 cell scattering (39,40). 
U0126 and PD98059, ERK inhibitors, can inhibit the EGR‑1 
expression induced by neuron growth factor in PC‑12 cells (41). 
In addition to the ERK signaling pathways involved in EGR‑1 
expression, the PI3K/Akt signaling pathway has been shown 
to modulate EGR‑1 expression (36,42,43). Protein kinase A 
(PKA) activates CREB and cAMP response element‑binding 
protein, binding to CREs to promote the transcription of target 
genes (44,45), and exendin‑4 induces the expression of EGR‑1 
through the cAMP/PKA/CREB signaling pathway in type II 
diabetes (46,47). These studies demonstrate that numerous 
signaling pathways are involved in the modulation of EGR‑1 
expression. Whether these other signaling pathways, in addi‑
tion to the ERK pathway, regulate compound C‑induced 
EGR‑1 expression requires further investigation.

ROS constitutes one of numerous extracellular and intra‑
cellular stimuli that activate the MAPK pathways for cell 
proliferation, differentiation, survival and death; such as the 
Raf‑MEK‑ERK axis activated in response to growth factor 
receptor stimulation by oxidative stress. ROS can also activate 
EGF and platelet derived growth‑factor (PDGF) receptors to 
stimulate the Ras and ERK pathways in cancer cells (48,49). 
Our previous study demonstrated that compound C induced 
ROS production and caused apoptosis in skin cancer cells in a 
p53‑dependent manner (23). The data from the present study 
further suggested that compound C‑activated EGR‑1 may act 
through ROS‑mediated ERK activation in cancer cells.

An EGR‑1‑specific shRNA was used to knock down EGR‑1 
expression to evaluate whether the apoptotic and autophagic 
effects of compound C are regulated by EGR‑1. Knocking 
down EGR‑1 expression caused more compound C‑induced 
cell death. Furthermore, caspase‑3 activity and the expression 
of cleaved caspase‑9, caspase‑3 and PARP were significantly 
increased, but there was no difference in the protein expres‑
sion of LC3‑II between BCC/shNC control cells and 
BCC/EGR‑1‑shRNA cells. These results implied that the 
protective role of EGR‑1 in compound C‑induced cell death 
affects apoptosis but not autophagy in skin cancer cells. In 
HaCaT cells, cigarette smoke extracts and UVB exposure 
induces EGR‑1 expression and then increases TNF‑α secre‑
tion (50,51). UVB‑induced EGR‑1 expression is involved in the 
expression of DNA repair proteins that repair DNA damage 
and protect cells against apoptosis (52). The localization of 
EGR‑1 in the nucleus after compound C treatment in BCC and 
HaCaT cells implied that EGR‑1 may be related to DNA repair 
in compound C‑induced apoptosis. Thus, the mechanism 
involving EGR‑1 in the DNA repair system needs to be further 
investigated.

The present study found that the ROS‑mediated ERK acti‑
vation pathway may be a mechanism by which compound C 
induces EGR‑1 expression. In EGR‑1‑knockdown cells, treat‑
ment with compound C increased caspase‑3 activity and the 

expression of cleaved caspase‑9, caspase‑3 and PARP. Loss 
of EGR‑1 causes pancreatic β‑cell apoptosis induced by 
palmitic acid treatment (53). Overexpression of EGR‑1 has 
been reported to promote cell proliferation and prevent cycle 
arrest and apoptosis in prostate carcinoma cells (54). Thus, one 
function of EGR‑1 in various cell types is to protect against 
stress‑induced death. The present study's results indicated that 
EGR‑1 played a protective role in compound C‑induced apop‑
tosis. It was concluded that compound C has potential in skin 
cancer therapy and that EGR‑1 may be a promising therapeutic 
target for increasing compound C sensitivity in skin cancer 
cells.
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