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Abstract. Bladder cancer (BLCA) is a common malignancy of 
human urinary tract, whose prognosis is influenced by complex 
gene interactions. Immune response activity can act as a 
potential prognostic factor in BLCA. The present study estab‑
lished a prognostic model, based on the identification of tumor 
transcription factors (TFs) and immune‑related genes (IRGs), 
and further explored their therapeutic potential in BLCA. The 
enrichment scores of 29 IRG sets, identified in The Cancer 
Genome Atlas BLCA tumor samples, were quantified by 
single‑sample Gene Set Enrichment Analysis. The abundance 
of infiltrated immune cells in tumor tissues was determined 
using the Estimating Relative algorithm. Tumor‑related TFs and 
IRGs signatures were retrieved using Least Absolute Shrinkage 
and Selection Operator Cox regression analysis. A prognostic 
gene network was built using Pearson's correlation analysis 
as a means of predicting the regulatory relationship between 
prognostic TFs and IRGs. A nomogram was devised to also 

predict the overall survival (OS) rate of patients with BLCA. 
Based on the Genomics of Drug Sensitivity in Cancer data, 
potential therapeutic drugs were identified upon analyzing 
the relationship between the expression level of prognostic 
genes and respective IC50 values. In vitro experiments were 
implemented for further validation. Respective TF binding 
profiles were acquired from the JASPAR 2020 database. The 
elevated infiltration of CD8+ T Cells was correlated with an 
improved OS of patients with BLCA. An innovative prog‑
nostic model for BLCA was then constructed that composed 
of nine putative gene markers: CXCL13, prepronociceptin, 
microtubule‑associated protein tau, major histocompatibility 
class I polypeptide‑related sequence B, prostaglandin E2 
receptor EP3 subtype, IL20RA, proepiregulin, early growth 
response protein 1 and FOS‑related antigen 1 (FOSL1). 
Furthermore, a theoretical basis for the correlation between 
the prognostic TFs and IRGs was reported. For this, 10 poten‑
tially effective drugs targeting the TFs in the present model 
for patients with BLCA were identified. It was then verified 
that downregulation of FOSL1 can lead to an enhanced sensi‑
tivity of the TW37 in T24 bladder cancer cells. Overall, the 
present prognostic model demonstrated a robust capability 
of predicting OS of patients with BLCA. Hence, the gene 
markers identified could be applied for targeted therapies 
against BLCA.

Introduction

Bladder cancer (BLCA) is a common malignancy that 
affects the urinary tract, with an estimated 81,400 new cases 
diagnosed in the United States in 2020 (1). BLCA represents 
a major cause of tumor‑associated death that muscle‑invasive 
bladder cancer outcomes remain <10% survival at 5 years 
despite aggressive treatment (2). Patients with BLCA are more 
likely to develop distant metastasis when their respective tumor 
cells invade the bladder's muscle membrane (3). Historically, 
the combination chemotherapy, including methotrexate, 
vinblastine, doxorubicin and cisplatin (MVAC), has been 
the first‑line therapy for advanced BLCA. Nevertheless, the 
clinical benefits of this multi‑chemotherapeutic approach have 
been restricted due to extensive drug toxicity, which includes 
neutropenia, cardiac and neurological conditions, thus making 
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approximately half of patients with BLCA ineligible for this 
type of chemotherapy (4,5).

The suppression of programmed cell death ligand 1 
(PD‑L1) or programmed cell death protein 1 (PD‑1) may 
recover immune cell cytotoxicity and also suppresses tumor 
progression (6). Hence, the application of PD‑L1 and PD‑1 
inhibitors appear to have a positive impact on the overall 
survival (OS) of patients with advanced BLCA (7). Still, the 
immunotherapeutic efficiency of these drugs varies among 
patients, where some patients can achieve prolonged survival 
while others may show continuous tumor progression (8). 
Therefore, identifying novel prognostic genes that may predict 
patient survival and sensitivity to immunotherapy is important 
so that personalized treatments can be further implemented.

Previous studies, focused on the tumor microenviron‑
ment (TME) associated with BCLA, have indicated that the 
efficacy of certain immunotherapies is associated with host 
immune response and the composition of infiltrated immune 
cells in the TME (9,10). Indeed, a number of IRG signatures, 
associated with prognosis of patients with MIBC, have been 
reported (11). Although a number of genes and mechanisms 
have been shown to be closely associated with the immune 
response and prognosis of BLCA, a more comprehensive over‑
view of all potential immune‑related genes (IRGs) and their 
regulatory networks in BLCA is needed.

Upon analysis of The Cancer Genome Atlas (TCGA) 
database, the present study investigated the immune landscape 
associated with the transcriptome of patients with BLCA. 
Hence, the differentially expressed IRGs and transcription 
factors (TFs) associated with patients from high and low 
immune response groups were compared. A putative prog‑
nostic model, mainly consisting of nine IRGs and TFs, was 
constructed using a Least Absolute Shrinkage and Selection 
Operator (LASSO) Cox regression model. According to 
various statistical methods, the model was robust enough 
to predict the OS of patients with BLCA. Additionally, a 
gene‑based network that could decipher the potential regula‑
tory relationships between TFs and IRGs was constructed. 
Finally, a small molecule inhibitor named TW‑37 was tested 
as a putative therapeutic drug for BLCA, using T24 cells as an 
in vitro model.

Materials and methods

Normalization of gene expression data and clinical 
information. Firstly, fragments per kilobase million (FPKM) 
data of RNA‑sequencing profiles from BLCA samples (n=433) 
were downloaded from TCGA (https://portal.gdc.cancer.
gov). Clinical information of patients with BLCA (n=391) 
was downloaded from TCGA (https://portal.gdc.cancer.
gov/). Case records with unknown Tumor‑Node‑Metastasis 
stages or clinical stages were excluded (n=35). Before data 
analysis, FPKM values were transformed into transcripts 
per kilobase million (TPM) values using R software 3.6.3 
(https://www.r‑project.org).

Implementation of immune‑related hierarchy clustering. 
Immune, stromal and tumor purity scores, and ESTIMATE 
scores were evaluated, based on normalized gene 
expression data matrix, using the ESTIMATE R package 

(version 3.6.3) (12). IRGs, originated from respective tumor 
tissues, were collected from the immunological signatures 
gene dataset from the Molecular Signatures Database 
(MSIGDB) and downloaded from the Broad Institute official 
website (https://www.gsea‑msigdb.org/gsea/msigdb/collec‑
tions). The quantified scores of 29 IRG sets were acquired from 
published signature gene lists across all BLCA samples using 
the single‑sample Gene Set Enrichment Analysis (ssGSEA) 
method (13). The ssGSEA scores of each individual IRG 
set were respectively obtained and normalized. The quanti‑
fied scores of each IRG set were grouped into high, medium 
and low immune response group according to the ssGSEA 
scores. This classification was performed using a hierarchical 
agglomerative clustering method, based on Euclidean distance 
accessible on the ‘sparcl’ R package (14).

Estimative of the immune cell proportions in the BLCA 
tumor microenvironment. The Cell Type Identification By 
Estimating Relative (CIBERSORT) R package was utilized to 
assess the proportion of tumor‑infiltrating immune cells in the 
TME (15). BLCA gene expression profiles were normalized 
using the limma‑voom method (16) and transformed into 
an infiltrating proportion of 22 immune cells. The relative 
proportions of these 22 immune cells for each sample was 
determined. Significant results with P<0.05 were selected for 
further analyses.

Differentially expressed genes (DEGs) from distinct immune 
response groups. The R package ‘limma’ was used to identify 
DEGs in the low versus high immune response BLCA groups,  
the empirical Bayesian approach was implemented to evaluate 
changes on gene expression (17). Genes with P<0.05 and a 
|log2 fold‑change (FC) value|>1.0 were defined as DEGs. The 
list of IRGs was retrieved from the Immunology Database and 
Analysis Portal (ImmPort, https://immport.niaid.nih.gov) (18). 
Among the 2,498 IRGs retrieved from the ImmPort database, 
401 differentially expressed IRGs were identified using a 
cut‑off of |log2FC|>1.0 and adjusted P<0.05. Tumor‑related 
TFs were obtained from the Cistrome project (http://cistrome.
org/CistromeCancer/) for further analysis (19).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses. The 
R package ‘clusterProfiler’ was used to implement GO and 
KEGG evaluation as well as the Gene Set Enrichment Analysis 
(GSEA) (20). The GSVA R package was also used to perform 
the Gene Set Variation Analysis (GSVA) among the tumor 
samples with changes on evaluated pathway activity, upon 
comparing high versus low immune response groups (13). 
The P<0.05 and |log2FC|>0.20 was set as the cut‑off threshold 
for the comparative analysis of the activated or suppressed 
signaling pathways.

Establishment of a prognostic gene signature using LASSO 
Cox regression modeling. Genes from the ‘immunological 
signatures gene set’, which was retrieved from the MSIGDB 
were selected as potential prognostic biomarkers. For this, 
DEG analysis was performed by comparing high versus low 
immune response groups to narrow down the screening scope. 
Univariate and multivariate Cox regression analyses were 
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performed to build an appropriate prognostic signature for 
BLCA samples, based on the differentially expressed IRGs. 
The risk score of the prognostic immune gene model was 
calculated, for each patient tumor, according to the relative 
expression of each individual gene and its associated 
coefficient. The calculation formula was the following: 
                 Risk score = ,

where: ‘Expri’ represents the expression value of each specific 
IRG in the model of patient ‘I’, ‘coefi’ is the coefficient of gene 
‘I’ obtained via multivariate Cox regression analysis.

Prediction ability of the prognostic gene signature. According 
to the patient clinical data obtained from TCGA database 
(n=391), patients with BLCA were classified in low‑ and 
high‑risk groups, as determined by the risk scores, which were 
generated using our IRG based prognostic model. Thereafter, a 
time‑dependent receiver operating characteristic (ROC) curve 
was used to assess the sensitivity and specificity of the model. 
In order to evaluate the prediction accuracy of the model, the 
area under the curve (AUC) for 1‑, 3‑ and 5‑year OS was further 
assessed, according to the ‘survival ROC’ R package (21).

Independence of the TF and IRG‑based prognostic model. 
To determine whether our prognostic model was significantly 
distinct from standard clinical characteristics, all patient details 
featured on the TCGA‑BLCA dataset, including age, sex, 
pathological tumor stage, histological subtype and TNM stage, 
were assessed. Patients were divided according to their age 
(≤ and ≥65 years). Patient subgroups were generated according 
to sex, I‑IV pathological tumor stage, N0 and N1‑3 stage, patho‑
logical T0‑T2 and T3‑4 stage. Low and high‑risk subgroups 
were defined according to the mean risk score of OS assessed 
by the COX regression model for each patient. Forest plots were 
used to illustrate the hazard ratio (HR) of each subgroup.

TF binding site prediction and correlation analysis between 
IRGs and TFs. Boxplots were constructed to show the rela‑
tionship between risk score and the distinct immune response 
subgroups. Heatmaps were constructed according to the 
expression of IRGs from each respective group (low, median 
and high immune response). Dot plots and corresponding 
fit curves were used to illustrate the correlation between 
model‑related immune genes and prognostic transcription 
factors. According to the expression values of each IRG from 
the prognostic model and respective TFs, Pearson's correlation 
coefficient analysis was performed. The TF binding motifs 
(TFBMs) of related TFs, as well as the TF binding sites of 
related target genes, were identified using the JASPAR 2020 
database (22).

Correlation analysis between TFs and drug sensitivity. Data 
were extracted from the Genomics of Drug Sensitivity of 
Cancer database (GDSC; https://www.cancerrxgene.org), 
in which numerous anticancer drugs were screened using 
various cancer cell lineages to determine their sensitivity. 
Gene expression profiles in 990 cancer cell lines and a drug 
screening IC50 dataset, covering 265 compounds across 19 
BLCA cell lines, was downloaded from the GDSC database. 
The Pearson's correlation values between the gene expressions 

of prognostic TFs and IC50 values of each compound was 
investigated.

Reagents and kits. The small molecule inhibitor TW‑37 
(MCE; category no. HY‑12020) was purchased from 
MedChemExpress and stored as 10 mM solution using 
DMSO as a solvent. Primary antibodies were against FOSL1 
(Cell Signaling Technology, Inc; cat. no. 5281) and GAPDH 
(Wanlei Bio, http://www.wanleibio.cn; cat. no. WL01114) 
were diluted 1,000 times using Tris‑HCL buffer solution 
(cat. no. WLA098, Wanlei Bio, http://www.wanleibio.cn). 
Secondary antibodies were anti‑rabbit and anti‑mouse IgGs 
(Cell Signaling Technology, Inc; cat. nos. 7074 and 7076) were 
diluted 3,000 times using Tris‑HCL buffer solution. Negative 
control fluorescein (FAM) and FOSL1 siRNAs were designed 
by Shanghai GenePharma Co., Ltd.

Cell culture and viability analysis. T24 bladder cancer cells 
were obtained from The Cell Bank of Type Culture Collection 
of The Chinese Academy of Sciences. Cells were cultured 
using Dulbecco's modified Eagle medium (DMEM) supple‑
mented with 10% fetal bovine serum (FBS) (both Gibco; 
Thermo Fisher Scientific, Inc.) and incubated at 37˚C in an 
atmosphere of 5% CO2. Cell viability was assessed using an 
MTS Assay kit (cat. no. ab197010; Abcam). Absorbance at a 
wavelength of 450 nm was measured using a BioTek ELISA 
reader.

Immunoblotting. T24 cells were collected from 12‑well plates 
and lysed with RIPA buffer (Cell Signaling Technology, Inc.) 
for 20 mins at 4˚C. Whole cell lysates were then centrifuged 
at 12,000 x g at 4˚C for 15 mins, and respective supernatants 
were denatured at 100˚C for 15 mins after addition of loading 
buffer. Protein samples were quantified by protein electro‑
phoresis method, using the SDS‑PAGE kit (cat. no. WLA013, 
Wanlei Bio, http://www.wanleibio.cn). The bicinchoninic 
acid method was used to determine the protein content in 
each sample. Protein (50 ug/lane) were separated via 12% 
SDS‑PAGE. The separated proteins were subsequently 
transferred onto nitrocellulose membranes (EMD Millipore) 
and blocked with 20% skimmed milk tris buffered saline 
(TBS) for 30 min at room temperature. The membranes were 
incubated with primary antibodies at 4˚C for 8 h. Subsequently, 
the nitrocellulose membranes were washed with Tris‑Hcl 
solution for 10 min, and ECL chemiluminescent substrate 
(Yeasen, Shanghai, China, http://www.yeasen.com) was used 
to visualize the protein bands.

Transfection protocol. In total, ~10,000 T24 cells were seeded 
into each well of the 12‑well plate, and incubated with 10% 
fetal bovine serum in DMEM for 24 h. After removing the cell 
culturing medium, 300 ng siRNAs with 3 µl Lipofectamine® 
2000 (Invitrogen; Thermo Fisher Scientific, Inc.) in 250 µl 
DMEM as the transfection mixture was added to each well. 
The transfection mixture and extra 250 µl DMEM were added 
into each well of the 12‑well plate.  The gene sequence of nega‑
tive control siRNA was: 5'‑UUC UUC GAA CGU GUC ACG 
UTT‑3', the gene sequence of FOSL1 targeted siRNA was: 
5'‑UUA UGA AUG AAA AGU UCU CGG‑3'. After incubation at 
room temperature for 20 min, 500 µl pre‑warmed 20% fetal 
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bovine serum DMEM was added per well. After cultivating 
the transfected T24 cells at 37˚C for 48 h, cells were collected 
for detection of the silencing efficiency.

Statistical analysis. Statistical analyses and data visu‑
alization were performed using GraphPad Prism 8.0 or 
R software 3.6.3. P<0.05 was considered to indicate a statis‑
tically significant difference. The Kruskal‑Wallis followed 
by Dunn's or the Mann‑Whitney U tests were performed 
to determine the significance of the median value between 
different groups. The two‑tailed unpaired Student's t‑test 
was applied to define the significance when comparing mean 
values of two unpaired groups with different characteristics. 
ANOVA and Tukey's post hoc test was used to analyze 
data with more than two groups. Kaplan‑Meier survival 
curves were plotted to illustrate the distinct OS between the 
groups. A log‑rank test was used to determine the statistical 
significance between survival curves. Each in vitro assay 
was performed three times and data are presented as the 
mean ± standard deviations.. For the cell viability assays, 
the two‑tailed unpaired Student's t‑test was used to compare 
differences between two groups.

Results

Immune response phenotype and enrichment score landscape 
of the TME from BLCA samples. Infiltrated immune cells 
in the TME control a series of immune‑related processes 
that can frequently lead to antitumor activities (23). The 
ssGSEA of the BLCA gene expression data revealed 
quantified enrichment scores of the immunological signature 
gene set (obtained from the MSIGDB) that corresponded to 
29 IRG subsets. Enrichment scores of the identified normal‑
ized gene set were higher for genes related to i) associate 
dendritic cells (aDCs), ii) antigen‑presenting cells (APC) 
co‑inhibition, iii) APC co‑stimulation, iv) B cells, v) CCR, 
vi) CD8+ T Cells, vii) immune check‑point, viii) cytolytic 
activity, ix) DCs (dendritic cells), x) HLA genes, 
xi) interdigitating (i) DCs, xii) inflammation‑ promoting, 
xiii) macrophages, xiv) masT Cells, xv) MHC class I, 
xvi) neutrophils, xvii) natural k i l ler (NK) cel ls, 
xviii) para‑inflammation, xix) pDCs, xx) T Cell co‑inhibition, 
xxi) T Cell co‑stimulation, xxii) T follicular helper cells 
(Tfh), xxiii) T helper 1 (Th1) cells, xxiv) Th2 cells, 
xxv) TIL, xxvi) Treg cells, xxvii) type I IFN response and 
xxviii) type II IFN response (Fig. 1E). According to the 
ssGSEA enrichment scores, BLCA samples were divided 
into high (154 samples), median (168 samples) and low 
(92 samples) immune response subgroups. Furthermore, the 
stromal, immune and ESTIMATE scores were calculated as 
well as the tumor purity of 414 BLCA samples. The violin plot 
indicated that BLCA samples clustered in the low immune 
response subgroup had the highest tumor purity but lower 
stromal, immune and ESTIMATE scores compared with 
those included into the medium or high immune response 
subgroups (Fig. 1A‑D). The enrichment scores of each IRG 
set were also lower in the low immune response group when 
compared with the high immune response group (Fig. 1E). The 
BLCA samples were classified into three subgroups for further 
investigation using the ssGSEA method, and the clinical 

characteristics of patients with bladder cancer from TCGA 
database are listed in Table I.

Enrichment scores of gene subsets related to CD8+ T Cells 
may predict BLCA prognosis. The clinical data of patients with 
BLCA and their corresponding immunological signatures were 
combined. Kaplan‑Meier survival analysis was performed to 
further search potential prognostic factors that could show 
that the survival curve of the high immune response group 
had a trend toward improved prognosis compared with the 
low immune response group. However, these changes were 
not statistically significant (P=0.50; Fig. 2A). Moreover, it was 
verified that higher enrichment scores (scores ≥ mean values) 
of CD8+ T Cell‑related genes predicted an improved BLCA 
prognosis (Fig. 2B). The 5‑year survival rate of the low score 
CD8+ T Cell group was 35.9±5.09%, with a 95% confidential 
interval from 0.272 to 0.474, while the rate was 55.8±5.65%, 
with a 95% confidential interval from 0.457 to 0.680, in the 
high‑score CD8+ T Cell group (P=0.022). Thus, the increased 
infiltration rate of CD8+ T Cells may benefit the long‑term OS 
of patients with BLCA.

Landscape of immune cell inf iltration in the BLCA 
microenvironment. In order to estimate the immune cell infil‑
tration in each individual BLCA sample, the ‘CIBERSORT’ 
R package was applied to the BLCA‑specific gene expression 
profile data matrix. We found 22 types of infiltrated immune 
cells were identified (Fig. 3A). A higher abundance of resting 
DCs and M2 macrophages was observed in the high immune 
response group compared with the low response group. At 
the same time, activated DCs and naive CD4+ T Cells were 
decreased in the high immune response group (Fig. 3B). In 
order to validate the prognostic effect of the amount of CD8+ 
T Cell infiltration in patients with BLCA, Kaplan‑Meier 
curves and log‑rank tests were implemented according to the 
CIBERSORT results (Fig. 3C). Although the changes were not 
statistically significant (P=0.061), there was a trend toward an 
improved BLCA prognosis in the high CD8+ T Cell infiltration 
group compared with the low infiltration group. The 5‑year 
survival rate of the low CD8+ T Cell infiltration group was 
35.6±8.16%, with a 95% confidential interval from 0.227 to 
0.558, while the rate was 58.4±7.03%, with a 95% confidential 
interval from 0.461 to 0.739, in the high infiltration group. 
Thus, according to the results of ssGSEA and CIBERSORT 
analyses, higher infiltration of CD8+ T Cells in the TME can 
improve the OS of patients with BLCA.

Assessment of signaling pathway activities in low and high 
immune response groups. To evaluate the distinct signaling 
pathway activities between the low and high immune response 
groups, a GSVA of hallmark gene sets was implemented based 
on the gene expression profiles of BLCA samples. Based on 
this comparative analysis, it was demonstrated that there were 
46 activated signaling pathways in high immune response 
group. Both a volcano plot and heatmap were constructed 
to show the landscape of most activated and/or suppressed 
signaling pathways (Fig. 4A). In addition, biological process, 
cellular component, molecular function and KEGG enrich‑
ment analysis were performed using the GSEA approach. 
This analysis was performed according to gene expression 
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profile of identified IRG sets that were positively enriched 
in the high immune response group (Fig. 4B‑E). In the high 
immune response group,  immune related signaling pathways, 
including JAK‑STAT, NF‑κB and PD‑L1 expression, and 

PD‑1 checkpoint pathway in cancer, antigen processing 
and presentation via MHC class Ib, and T Cell receptor 
signaling pathway were enriched according to GO and KEGG 
enrichment analyses.

Figure 1. Quantified assessment scores of tumor purity, stromal cell percentage, immune cell percentage and IRG sets of BLCA samples. (A‑D) Violin plots 
of the (A) tumor purity scores, (B) stromal scores, (C) immune scores and (D) ESTIMATE scores among the low, medium and high immune response groups. 
Differences between the two groups were compared using the Kruskal‑Wallis test followed by the Dunn's post hoc test. (E) Landscape of quantified scores 
of each IRG subset in BLCA samples. ***P<0.001. BLCA, bladder cancer; DCs, dendritic cells; Th, T helper; pDCs; TIL; APC, antigen presenting cell; aDCs; 
Treg, regulatory T Cell; iDCs; NK, natural killer; IRG, immune‑related gene.
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Differentially expressed tumor‑related IRGs and TFs in low 
and high immune response groups. Among the 2,498 IRGs 

retrieved from the ImmPort database, 50 downregulated and 
351 upregulated genes, were identified as the differential 
expressed IRGs. A heatmap was designed to illustrate the 
expression level of 50 random immune‑related DEGs, while 
a volcano plot shows the whole content of immune‑related 
DEGs identified (n=401) (Fig. 5A). The top 20 most significant 
immune‑related DEGs, identified in the comparison between 
low and high immune response groups, are listed in Table II. 
Moreover, 318 tumor‑related TFs were obtained from the 
Cistrome database. In total, 44 differentially expressed TFs 
were detected, of which 14 were downregulated and 30 were 
upregulated in the high immune response group. A heatmap 
and a volcano plot were designed to illustrate the expression 
landscape of differentially expressed TFs by comparing the 
low and high immune response groups (Fig. 5B). 

Construction of a BLCA prognostic model based on differential 
expressed IRGs and TFs. In order to identify the potential 
associations between immune‑related DEGs, differentially 
expressed TFs and BLCA prognosis, univariate Cox regres‑
sion analysis was implemented based on gene expression and 
clinical information. Results from this regression analysis 
indicated that 54 IRGs were associated with the OS of patients 
with BLCA. Moreover, the HR values of five distinct genes, 
including microtubule‑associated protein tau (MAPT), 
prostaglandin E2 receptor EP3 subtype (PTGER3), β nerve 
growth factor, IL31RA and proepiregulin (EREG), were >1, 
while 49 prognosis‑associated immune genes had HR values 
<1. Moreover, seven TFs were identified as putative prognostic 
factors (Fig. 6A). The LASSO method was applied to further 
streamline potential prognostic genes originated from the 
univariate Cox regression analysis. Hence, 15 genes were 
selected with an optimal penalty parameter log (λ) value=‑3 
(Fig. 6B and C). Thereafter, a multivariate Cox regression 
model was established based on the gene expression value of 
the candidate genes (n=15). As a result, an immune‑related 
signature composed of nine candidate genes, was defined for 
the OS prediction of patients with BLCA. The risk score of 
this prognostic model was calculated as the following: Risk 
Score=CXCL13 expression x (‑0.128) + prepronociceptin 
expression x (‑0.129) + MAPT expression x (0.248) + major 
histocompatibility class (MHC) I polypeptide‑related 
sequence B (MICB) expression x (‑0.268) + PTGER3 
expression x (0.192) + IL20RA expression x (‑0.186) + EREG 
expression x (0.0734) + early growth response protein 1 
(EGR1) expression x (0.162) + FOSL1 expression x (0.213). 
Patients with BLCA were divided into low and high‑risk groups 
according to the median value of the risk score of each sample. 
The Kaplan‑Meier curves indicated that the low‑risk group had 
prolonged OS compared with the high‑risk group (Fig. 6D). 
The 5‑year OS for the high‑risk group was 23.4±5.95%, with 
a 95% confidential interval from 0.142 to 0.385, while the 
5‑year OS for the low risk group was 71.7±4.27%, with a 95% 
confidential interval from 0.740 to 0.907 (P<0.05).

Prediction accuracy of the prognostic IRG model. 
Time‑dependent receiver operating characteristic (ROC) 
curves were applied to examine the prediction accuracy of 
the OS prognostic model over the 1‑, 3‑ and 5‑year period. 
The values of area under the ROC (AUC) for the prognostic 

Table I. Clinical characteristics of 391 patients (239 alive 
and 152 dead) with bladder cancer acquired from The Cancer 
Genome Atlas database.

 Patient status
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable Alive, n (%) Dead, n (%) Overall

Sex   
  Female 58 (24.3) 42 (27.6) 100 (25.6)
  Male 181 (75.7) 110 (72.4) 291 (74.4)
Age, years   
  ≥65 131 (53.0) 116 (47.0) 247 (63.2)
  <65 108 (75.0) 36 (25.0) 144 (36.8)
Grade   
  High 216 (90.4) 152 (100) 368 (94.1)
  Low 21 (8.8) 0 (0) 21 (5.4)
  Unknown 2 (0.8) 0 (0) 2 (0.5)
Clinical Stage   
  I 2 (0.8) 0 (0) 2 (0.5)
  II 98 (41.0) 26 (17.1) 124 (31.7)
  III 85 (35.6) 47 (30.9) 132 (33.8)
  IV 54 (22.6) 78 (51.3) 132 (33.8)
  Unknown 0 (0) 1 (0.7) 1 (0.3)
T stage   
  0 1 (0.4) 0 (0) 1 (0.3)
  1 3 (1.3) 0 (0) 3 (0.8)
  2 30 (12.6) 8 (5.3) 38 (9.7)
  2a 21 (8.8) 2 (1.3) 23 (5.9)
  2b 35 (14.6) 17 (11.2) 52 (13.3)
  3 27 (11.3) 13 (8.6) 40 (10.2)
  3a 36 (15.1) 32 (21.1) 68 (17.4)
  3b 37 (15.5) 41 (27.0) 78 (19.9)
  4 5 (2.1) 6 (3.9) 11 (2.8)
  4a 23 (9.6) 18 (11.0) 41 (10.5)
  4b 1 (0.4) 3 (2.0) 4 (1.0)
  Unknown 20 (8.4) 11 (7.2) 31 (7.9)
  X 0 (0) 1 (0.7) 1 (0.3)
N stage   
  0 165 (69.0) 60 (39.5) 225 (57.5)
  1 20 (8.4) 24 (15.8) 44 (11.3)
  2 29 (12.1) 45 (29.6) 74 (18.9)
  3 3 (1.3) 5 (3.3) 8 (2.0)
  X 19 (7.9) 16 (10.5) 35 (9.0)
  Unknown 3 (1.3) 2 (1.3) 5 (1.3)
M stage   
  0 125 (52.3) 59 (38.8) 184 (47.1)
  1 4 (1.7) 6 (3.9) 10 (2.6)
  X 109 (45.6) 86 (56.6) 195 (49.9)
  Unknown 1 (0.4) 1 (0.7) 2 (0.5)

T, tumor; N, node; M, metastasis; X, for the Tx, Nx or Mx stage.
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model were 0.73, 0.82, and 0.83 at 1‑, 3‑ and 5‑year period, 
respectively (Fig. 7A). Thereafter, the risk score of each patient 
was sorted into a descending order. The survival status of 
each patient was marked accordingly on the dot plots. It was 
observed that patients with low risk scores had an improved 
OS rate compared with patients with high risk scores (Fig. 7B 
and C). The heatmap shows the expression levels of nine genes 
from the prognostic model (Fig. 7D). According to the results 
of the present study, the differentially expressed IRGs and TFs 
based gene model exhibited good predictive performance.

A robust prognostic gene model for BLCA. Cox regression 
analyses were performed to evaluate whether our prognostic 
model acted as an independent prognostic factor among 
other clinical traits, including age, sex, and pathological and 
T/N stages. Univariate analysis indicated that risk score, 

pathological stage, MAPT, EGR1 and/or FOSL1 expression 
may affect the prognosis of patients with BLCA (Fig. 8A). 
Multivariate Cox regression results revealed that both patho‑
logical stage and risk score served as independent prognostic 
factors for BLCA (Fig. 8B). The AUCs of the time dependent 
ROC curves for pathological stage during the 1‑, 3‑ and 5‑year 
periods were 0.59, 0.67 and 0.62, respectively (Fig. 8C). 
The comparison between the AUCs for risk score and those 
for pathological stage indicated that the present model had 
improved predictive accuracy (P=0.0029) of patient OS 
compared with the pathological stage (Fig. 8D).

Clinical application of a novel nomogram incorporating 
the IRG model. According to the results of Cox regression 
analyses, which were based on the clinical traits and the risk 
score of the prognostic model, a nomogram was constructed 

Figure 2. Survival analysis of patients with BLCA from specific subgroups. Kaplan‑Meier curve of (A) the high and low immune response group and (B) the 
high and low enrichment score of CD8+ T Cell related gene set group. BLCA, bladder cancer.
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that combined other factors, including age, sex, pathological 
and T/N stages, as well as the IRG model to provide a more 
quantitative method for clinicians to assess the 1‑, 3‑ and 
5‑year OS of patients with BLCA (Fig. 9A). In this manner, 
every patient received a quantifiable point for each prognostic 
measuring parameter. The calibration plots illustrated that, in 
comparison with an ideal model, the current nomogram had a 
stable predictive performance for 1‑ and 3‑year OS (Fig. 9B).

Construction of a prognostic TF‑ and IRG‑based regulatory 
network. The correlation between the nine selected IRGs, 
used to implement the prognostic model, and corresponding 
risk scores was further established (Fig. 10A and B). Thus, 
Pearson's correlation analysis was performed between the 
prognostic TFs and IRGs. The cut‑off thresholds presently 
defined were |Pearson correlation coefficient value|>0.5 and 
P<0.01. All prognostic IRGs (n=45) were positively regulated 

Figure 3. Immune cell infiltration differences of the low and high immune response group and survival analysis of CD8+ T Cell infiltration of patients 
with BLCA based on CIBERSORT results. (A) Landscape of the infiltrated cell population of diverse immune cells in the tumor microenvironment and 
(B) differential infiltrated immune cells between high and low immune response group of BLCA samples. Differences between the median values of two 
groups were compared using the Mann‑Whitney U test. (C) Kaplan‑Meier curves of the overall survival between low and high CD8+ T Cell infiltration. *P<0.05, 
**P<0.01, ***P<0.001. BLCA, bladder cancer.
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by prognostic TFs, where EREG acted as a high‑risk IRG 
that was positively regulated by FOSL1 (Fig. 10C). A Sankey 
map illustrated the association between the expression level 
of the nine selected IRGs and the infiltration of immune cell 
subtypes (Fig. 10D). According to the correlation analysis 
results, FOSL1 and ERG1 were identified as two TFs capable 
of performing pivotal transcriptional regulation processes 
within tumor cells.

Analysis of TF binding motifs and binding sites in targeted 
IRGs. According to the prognostic gene signature and 
correlation analysis results, the specific TFBMs of FOSL1 
and ERG1 were analyzed using the JASPAR 2020 database. 
The predicted matrix IDs of TFBMs for EGR1 and FOSL1 
were MA0162.2 and MA0477.1, respectively (Fig. 11A and B). 
According to the results of gene expression correlation 
analysis, it was reported that MICB and EREG were positively 

Figure 4. Activity variations of signaling pathways and GO functions compared between low and high immune response group. (A) Heatmap and volcano plot 
of suppressed and activated signaling pathways in low and high immune response group. (B) GO analysis of top five enriched biological processes. (C) GO 
analysis of top five enriched cellular components. (D) GO analysis of top five enriched molecular functions. (E) Enriched and activated Kyoto Encyclopedia of 
Genes and Genomes pathways in high immune response group via GSEA. GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis.
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regulated by EGR1 and FOSL1, respectively. Therefore, 
potential specific TFBSs for EGR1 and FOSL1 were identified 
within the TSSs of MICB and EREG genes (Table III). Thus, 
blocking these potential TFBSs may interfere the transcription 
process of related target genes by inhibiting TF binding to 
respective TSS along the gene sequences.

Correlation between modeled gene expression and sensitivity 
to targeted therapeutics. To examine the correlation between 

all gene expressions integrated into our prognostic model and 
targeted drug sensitivity, experimental drug sensitivity data 
covering 265 therapeutic compounds across 19 BLCA cell 
lines were retrieved from the GDSC database. According to 
the expression profiles of the present model genes, the top 10 
correlated drugs were identified, using a cut‑off threshold of 
|Pearson correlation coefficient| >0.5 and a P<0.025 (Table IV). 
A Pearson correlation coefficient curve suggested that the IC50 
values of ‘AS601245’ and ‘PI‑103’ were proportional to EGR1 

Figure 5. Differentially expressed IRGs and TFs were observed based on the comparison of the low and high immune response groups of bladder cancer 
samples. (A) Heatmap and volcano plot of (A) 50 randomly chosen differentially expressed IRGs and (B) differentially expressed TFs. TFs, transcription 
factors; IRGs, immune‑related genes; L, low; H, high.

Table II. Top 10 differentially expressed immune‑related genes.

Gene ID logFC Average expression P‑value Adjusted P‑value

CRH ‑3.909 0.3965 3.82x10‑14 4.01x10‑11

FAM3B ‑2.658 2.9128 4.70x10‑10 4.49x10‑07

FAM3D ‑2.626 1.7495 4.59x10‑11 4.51x10‑08

BMP3 ‑2.670 1.6009 5.20x10‑10 4.96x10‑07

CHP2 ‑2.370 1.0492 5.19x10‑9 4.80x10‑06

IDO1 4.6126 3.1194 3.63x10‑41 4.48x10‑38

CCL18 4.6353 3.8358 4.51x10‑40 5.54x10‑37

CXCL10 4.7112 5.5732 1.64x10‑49 2.06x10‑46

CXCL13 4.7314 3.5218 8.75x10‑44 1.09x10‑40

CXCL9 5.3525 4.2464 1.84x10‑59 2.36x10‑56

FC, fold‑change.
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Figure 6. Construction of a prognostic model based on candidate prognostic IRGs and TFs screened from the univariate Cox analysis. (A) Forest plot of patients 
with bladder cancer with high and low expression levels of candidate prognostic TFs. (B) LASSO regression coefficient profiles of 58 candidate prognostic 
genes, including seven TFs and 51 IRGs. (C) Final selected genes which were used to construct the prognostic model determined by the λ value using LASSO 
methods. (D) Kaplan‑Meier curves of the overall survival of patients with high‑risk scores and patients with low‑risk scores assessed using our prognostic 
model. TFs, transcription factors; LASSO, Least Absolute Shrinkage and Selection Operator; IRGs, immune‑related genes.
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expression levels. At the same time, the IC50 values of ‘TW 37’ 
and ‘STF‑62247’ were inversely correlated to the expression 
of FOSL1 (Fig. 11C).

Verification of the predicted correlation between TW‑37 and 
FOSL1. To further validate the predicted relationship between 
the expression levels of FOSL1 and the IC50 value of potential 
drugs, in vitro studies were performed using T24 BLCA 
cells. Upon cell treatment, it was observed that the TW‑37 
significantly impaired the viability of T24 cells at the concen‑
tration of 600 nM (Fig. 11D). However, the cytotoxicity of 
TW‑37 was attenuated after knockdown of FOSL1 (Fig. 11E). 
Cell viability was 61.76±3.66% when T24 cells without 
knockdown of FOSL1 were treated with 600 nM TW‑37 for 
36 h. After depletion of FOSL1 in T24 cells, cell viability 
increased to 83.06±3.57%. Thus, increased FOSL1 expression 
may improve the drug resistance of TW‑37 in T24 cells.

Discussion

BLCA is considered a complex malignancy with high 
morbidity and mortality rates, which have caused a severe 
social‑economic burden worldwide. So far, in 2020, a total 

of 17,980 estimated deaths in the USA have been related to 
BLCA (1). Advances in the trans‑urethral resection of bladder 
tumor, as well as in the application of bladder instillation 
therapy, have been able to control tumor progression in patients 
with early BLCA (24). Still, approximately half of patients 
with MIBC suffer from recurrence or distant metastasis after 
radical cystectomy, which frequently results in a significant 
decrease on the survival rate and makes the management of 
advanced BLCA more challenging (25).

Recent progress on the field of immunotherapy have 
provided opportunities for precision management and treat‑
ment of BLCA. In the past decade, therapeutic approaches 
that target PD1 and PDL1 have already been applied to treat 
patients with BCLA (26). Since high‑throughput sequencing 
technologies and bioinformatics analyses have become more 
conventionally applied into biological studies, oncologists can 
now implement such technologies to explore potential factors 
that may predict prognostic outcomes and, consequently, 
affect the efficacy of distinct cancer immunotherapies (27). 
Thus, identifying novel IRG signatures is important to guide 
decision‑making on immune therapeutics.

Previous research on TME alterations has been mostly 
related to infiltrating immune cells, based on the deconvolution 

Figure 7. Immune‑related gene signature predicts the OS of patients with BLCA. (A) Receiver operating characteristic curves evaluating accuracy of the 
prognostic model for predicting the OS of patients from The Cancer Genome Atlas BLCA database in 1, 3 and 5 years. (B) Risk score of each patient assessed 
by the prognostic model. (C) Distribution of survival status scatters for patients according to the risk scores. (D) Heatmap of gene expression levels of risk genes 
in the prognostic model. BLCA, bladder cancer; OS, overall survival; AUC, area under the curve; EREG, proepiregulin; PNOC, prepronociceptin; MAPT, 
microtubule‑associated protein tau; PTGER3, prostaglandin E2 receptor EP3 subtype; EGR1, early growth response protein 1; FOSL1, FOS‑related antigen 1; 
MICB, major histocompatibility class I polypeptide‑related sequence B.
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of bulk gene expression profiles (28,29). In the current 
study, a subset of BLCA samples were classified into three 
categories (high, intermediate and low immune response 
groups) according to the enrichment scores of 29 IRG sets 
via ssGSEA. Estimated results of tumor purity indicated that 
the low immune response group had a significantly higher 
tumor purity compared with the high immune response 
group, implying that the population of stromal and immune 
cells were decreased in samples originated from low immune 
response tumors. Notably, it was reported that high enrich‑
ment scores of genes related to CD8+ T Cell infiltrates were 
correlated with improved prognostic outcomes. Based on the 
CIBERSORT analysis, similar findings validated that a high 
infiltration of CD8+ T Cells could improve the 5‑year OS of 
patients with BCLA. CD8+ T Cells are typically considered 
anticancer cells in the TME (27). Upon interaction with T Cell 

antigen receptors, these cells bind peptide MHCs, expressed 
on the antigen‑presenting cell surface, to kill tumor cells (30). 
However, after infiltrating into tumor tissues, CD8+ T Cells 
gradually become dysfunctional, which may disable their 
antitumor activity (31). Identifying novel genes associated with 
T Cell exhaustion, as well as therapies that could restore the 
cell killing ability of CD8+ T Cells, should be focused on in 
future immunological studies.

In the high immune response group, GSVA results suggested 
that multiple classic pathways were activated, including those 
related to apoptosis, antigen processing and presentation, 
T Cell and B cell receptors, NK cell mediated cytotoxicity, 
JAK‑STAT, RIG‑I‑like, NOD‑like receptor and TOLL‑like 
receptor (TLR) signaling cascades. Specifically, GSEA results 
based on the KEGG database indicated that the NF‑κB, PD‑L1 
and PD‑1 checkpoint pathways were enriched in the high 

Figure 8. Identification of an independent prognostic model from other clinical characteristics based on nine immune‑related genes. (A) Forest plot showing 
hazard ratios values and 95% confidence intervals of prognostic genes and clinical characteristics of patients with BLCA. (B) Forest plot of potential indepen‑
dent prognostic factors of BLCA patients. (C) ROC curves evaluating accuracy of the pathological stage for predicting the overall survival of TCGA‑BLCA 
patients in 1, 3 and 5 years. (D) Comparison of ROC curves evaluating accuracy of our prognostic model (with a cut‑off risk score=1.0) and pathological stage 
of the patients in 1 year. BLCA, bladder cancer; ROC, receiver operating characteristic; AUC, area under the curve; MAPT, microtubule‑associated protein 
tau; EGR1, early growth response protein 1; FOSL1, FOS‑related antigen 1.
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immune response group. These signaling pathways have been 
reported to be related to human immune response process, 
and for decades they have been studied in the area of onco‑ 
immunology (6,32). Pathways related to apoptosis activation, 
antigen processing and presentation, cancer‑associated macro‑
phages, T and B cell receptors, as well as NK cell‑mediated 
cytotoxicity, may suggest thaT Cellular immunity is activated 
in the high immune response group. RIG‑I‑like receptor, 
NOD‑like receptor and TLR signaling pathways are pattern 
recognition receptors that play a pivotal role in initiating the 
innate immune response (33). TLR stimulation has been shown 
to rescue activated Th1 cells from exhaustion. Particularly, 
TLR2 engagement in CD8+ T Cells appears to be capable of 
augmenting antitumor activity in vivo (6). Relevant evidence 
has also revealed that the rescue of chronically activated CD8+ 
T Cells by blockage of checkpoint regulators (for example 
PD‑1 and cytotoxic T lymphocyte protein 4) is a successful 
platform cancer immunotherapy (34). Accumulating evidence 

also supports the possibility of manipulating TLR signaling 
to further modulate the expression of immune checkpoint 
molecules (35).

In the current study, a prognostic model was constructed 
based on differentially expressed IRGs and TFs identified in 
high and low immune response groups of BLCA samples. 
EGR1 and FOSL1 are risk TFs, detected in the present model, 
which may decrease the OS of patients. Some reports have 
claimed that reactive oxygen species can induce the chromatin 
remodeling of effector T Cells and their conversion into 
exhausted T Cells, further attenuating host antitumor immu‑
nity (36). The FOSL1 transcription factor is a major effector 
of RAS‑ERK1/2 pathway and FOSL1 can enhance pancreatic 
cancer metastasis by activating the EMT pathway (37,38). 
Such evidence suggests that the underlying mechanisms of 
EGR1 and FOSL1 as oncogenes may promote tumorigenesis 
and metastasis, resulting in impaired prognosis of patients with 
BLCA. Rodriguez‑Aguayo et al (39) reported that silencing of 

Figure 9. Construction of a clinical applicable nomogram to predict the OS of patients with BLCA. (A) Nomogram for predicting the 1, 3 and 5‑year OS time 
in patients. (B) Calibration curves for the prediction of 1 and 3‑year OS. BLCA, bladder cancer; OS, overall survival.
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PTGER3 expression in ovarian cancer cells is associated with 
decreased cell proliferation and attenuated invasiveness, while 
higher PTGER3 expression is associated with a shorter patient 
survival. The MAPT gene encodes the microtubule‑associated 

protein Tau (40). Studies have suggested that increased levels 
of cytoplasmic and nuclear Tau, before intravesical chemo‑
therapy, are significantly associated with decreased patients' 
recurrence‑free survival (41). The EREG gene encodes 

Figure 10. Correlation analysis of the risk score and gene expression level of the prognostic model and establishing a gene regulatory network of the prognostic 
TFs and IRGs. (A and B) Correlation coefficients and P‑values of among model genes and the risk score of the BLCA patients using Pearson's correlation 
method. (C) Gene regulation network of the prognostic TFs (the triangle nodes) and IRGs (flat ellipse nodes). (D) Correlations of immune cells infiltration 
and model genes were shown in the form of a Sankey map. IRG, immune‑related gene; TF, transcription factor; MAPT, microtubule‑associated protein tau; 
PNOC, prepronociceptin; PTGER3, prostaglandin E2 receptor EP3 subtype; EGR1, early growth response protein 1; MICB, major histocompatibility class I 
polypeptide‑related sequence B; FOSL1, FOS‑related antigen 1; EREG, proepiregulin.

Table III. Transcription factor binding site matching results of target genes.

Matrix ID Name Score Relative score Start End Predicted sequence

MA0162.2 EGR1 16.342 0.9551 315 328 TCCCCTCCCCCACC
MA0162.2 EGR1 13.424 0.9239 277 290 AGCCCTCCCCCTCC
MA0162.2 EGR1 11.547 0.9038 928 941 CCTCCTCCCCCATT
MA0477.1 FOSL1 5.9175 0.8508 1809 1819 AATGAGTTAGG
MA0477.1 FOSL1 4.3821 0.8295 1677 1687 TGTGAATAACC
MA0477.1 FOSL1 4.1961 0.8269 467 477 TGTGAGTCTGT

EGR1, early growth response protein 1; FOSL1, FOS‑related antigen 1.
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epiregulin, an epidermal growth factor receptor ligand, which 
contributes to inflammation, angiogenesis, vascular remod‑
eling and cell proliferation (42). In the present prognostic 

model, these aforementioned genes were recognized as risk 
factors for the decreased OS of patients with BLCA, serving 
as promising targets in a therapeutic intervention.

Figure 11. Predictive analyses of model genes and potential therapeutics and in vitro validation. (A) Predicted ERG1 binding motif site sequence from the 
JASPAR 2020 database and its binding site on the TSS of the major histocompatibility class I polypeptide‑related sequence B DNA sequence. (B) Predicted 
transcription factor binding motif sequence of FOSL1 and its binding site on the TSS of EREG DNA sequence. (C) Correlations of model gene's expression 
level and drug sensitivities. (D) T24 cell situations and cell viabilities treated with DMSO or 100, 300 and 600 nM TW‑37 for 36 h. (E) Transfection efficiency 
of si‑control or si‑FOSL1in T24 cells and cell viabilities treated with DMSO or 600 nM TW‑37 for 36 h. Differences between the mean ± standard deviation 
values of two groups were compared using the one‑way ANOVA followed by Tukey's post hoc test. **P<0.01, ***P<0.001. ERG1, early growth response 
protein 1; TSS; FOSL1, FOS‑related antigen 1; EREG, proepiregulin; si, small interfering; ns, not significant.

Table IV. Results of model gene and IC50 value of therapeutics using the Pearson's correlation analysis based on Genomics of 
Drug Sensitivity in Cancer bladder cancer cells data.

Gene Drug Correlation P‑value Target Pathway

EGR1 AS601245 0.572 0.0171 JNK JNK and p38 signaling
EGR1 PI‑103 0.550 0.0218 PI3K α, DNAPK PI3K signaling
FOSL1 QL‑XI‑92 ‑0.559 0.0201 DDR1 RTK signaling
FOSL1 GSK269962A ‑0.56 0.0198 ROCK1, ROCK2 Cytoskeleton
FOSL1 Bicalutamide ‑0.581 0.0156 Androgen receptor Other
FOSL1 MLN4924 ‑0.584 0.0151 NEDD8‑activating enzyme Other
FOSL1 Olaparib ‑0.585 0.0149 PARP1, PARP2 Genome integrity
FOSL1 T0901317 ‑0.596 0.0131 LXR Other
FOSL1 STF‑62247 ‑0.598 0.0128 Autophagy Other
FOSL1 TW 37 ‑0.605 0.0118 BCL‑2, BCL‑XL Apoptosis regulation

EGR1, early growth response protein 1; FOSL1, FOS‑related antigen 1.
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Previous studies have established gene models for prognosis 
prediction in patients with BLCA using bioinformatic analysis. 
Cao et al (43) identified seven EMT‑related genes as a signa‑
ture for the prognosis of MIBC. Jiang et al (11) constructed an 
IRG signature (TIM signature), which partially explains the 
complicated relationships between immune cell infiltration of 
TME and the survival. Furthermore, due to the wide use of the 
high throughput sequencing technologies and bioinformatic 
analysis, researchers have reported that differentially expressed 
non‑coding RNAs also possess important roles in the regula‑
tion of gene expression, as well as putative predictors of patient 
survival in multiple types of cancer (44,45). The present study 
implemented comprehensive bioinformatics mining and then 
performed in vitro tests for further validation, thus providing 
novel insights for targeted therapies of BLCA in the near future. 
The time‑dependent ROC curve of OS exhibited an improved 
predictive ability compared with pathological stage of patients 
with BLCA. A gene regulatory network was established to 
depict the relationship between the prognostic TFs and IRGs. 
The application of a nomogram, based on our model, provided 
a reference tool for clinical work. Hence, clinical oncologists 
may comprehensively assess the prognostic risk of each patient 
with BLCA. Of note, the present study proposed a prognostic 
model based on TFs and IRGs. Moreover, upon analysis of 
drug sensitivity datasets (GDSC database), it was observed 
that the expression of FOSL1 was negatively associated with 
the drug sensitivity of eight distinct therapeutic agents. In vitro 
experiments using T24 cells further demonstrated that silencing 
FOSL1 expression may enhance the drug resistance due to 
TW‑37. These results provide supporting experimental evidence 
for our theoretical hypothesis based on bioinformatics analysis.

Inevitably, the current study had some limitations. 
Data from TCGA database was used to assess the immune 
response based on bioinformatics methods, the present study 
was unable to collect substantial clinical data from multiple 
medical centers to further confirm our current perspectives. 
Experimental assays using patient‑derived tumor tissues are 
required to validate the present results. Additionally, the 
mechanisms of how non‑coding RNAs could impact BLCA 
development should be further investigated. 

In summary, the present study implemented a comprehen‑
sive way to assess the immune landscape of BLCA samples 
from TCGA database by constructing a novel prognostic 
model based on IRGs. The study also established a regulatory 
network of BLCA prognostic TFs and IRGs, thus identifying 
potential effective therapeutics which could target our model 
genes. The current study identified novel predictive gene 
signatures of BLCA, and it may also guide the development of 
drug combination strategies which may benefit patients with 
BLCA in the future.
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