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Abstract. Cancer cells undergo metabolic reprogramming, 
including increased glucose metabolism, fatty acid synthesis 
and glutamine metabolic rates. These enhancements to 
three major metabolic pathways are closely associated with 
glycolysis, which is considered the central component of 
cancer cell metabolism. Increasing evidence suggests that 
dysfunctional glycolysis is commonly associated with drug 
resistance in cancer treatment, and aberrant glycolysis plays 
a significant role in drug‑resistant cancer cells. Studies on the 
development of drugs targeting these abnormalities have led to 
improvements in the efficacy of tumor treatment. The present 
review discusses the changes in glycolysis targets that cause 
drug resistance in cancer cells, including hexokinase, pyruvate 
kinase, pyruvate dehydrogenase complex, glucose transporters, 
and lactate, as well the underlying molecular mechanisms and 
corresponding novel therapeutic strategies. In addition, the 
association between increased oxidative phosphorylation and 
drug resistance is introduced, which is caused by metabolic 
plasticity. Given that aberrant glycolysis has been identified 
as a common metabolic feature of drug‑resistant tumor cells, 
targeting glycolysis may be a novel strategy to develop new 
drugs to benefit patients with drug‑resistance.
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1. Introduction

Metabolic disorders, particularly those concerning glucose 
metabolism, play an important role in the proliferation and 
development of tumors (1). In normal cells, the energy provided 
for cell biological activity is predominantly dependent on 
changes in glucose metabolism that can transform glucose 
into pyruvate after several steps. Subsequently, pyruvate is 
converted to oxaloacetate, resulting in the production of citrate 
in the mitochondrial tricarboxylic acid cycle (TCA cycle). The 
process of glucose metabolism and the mitochondrial TCA 
cycle can generate energy in the form of adenosine triphos‑
phate (ATP) and other forms, such as NADPH and FADH2 (1). 
NADPH and FADH2 are subsequently committed to the elec‑
tron transport chain complexes to yield ATP, which is known 
as oxidative phosphorylation (OXPHOS) (2,3).

There are significant differences between normal cells 
and tumor cells regarding glucose metabolism. Warburg 
suggested that glycolysis is the predominant metabolic 
mechanism that produces the most ATP in cancer cells, 
which means that pyruvate derived from glucose is converted 
to lactate to exert its effects instead of being incorporated 
into the TCA cycle (2), and this is known as ‘the Warburg 
effect’. Subsequently, the ‘reverse Warburg effect’ proposed 
that tumor‑associated fibroblasts can produce large amounts 
of lactic acid via aerobic glycolysis, which is provided to 
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adjacent cells in a paracrine manner, causing the activation 
of mitochondria, increasing OXPHOS in adjacent cells and 
promoting tumor activity (3). Generally, ‘the Warburg effect’ 
and ‘reverse Warburg effect’ play an essential role in the 
development of cancer.

The incidence and mortality rates associated with 
cancer remain high, and despite the vast array of treatments 
available, chemotherapy resistance remains a significant 
challenge (4). There are several mechanisms of resistance, 
such as the mutation on binding sites, the activation of 
downstream effectors and the participation of alternative 
survival pathways to bypass target inhibition (5). In addi‑
tion, cancer cells are resistant to immunotherapy via the 
Wnt‑β‑catenin signaling pathway, mitogen‑activated protein 
kinase signaling pathways, cell cycle regulation signaling 
pathways and pathways activated based on the absence of the 
tumor suppressor phosphoinositide phosphatase, PTEN (6). 
Extensive research has been performed on glycolysis, which 
is considered a core process in tumor biological activity. 
Currently, increasing evidence suggests that that increased 
aerobic glycolysis is closely associated with chemotherapy 
resistance, even under O2‑rich conditions (7). For example, 
lapatinib and tamoxifen can induce resistance in breast 
cancer cells by promoting glycolysis (8‑10). However, the 
clinical application of glycolysis inhibition through medical 
approaches is limited. Thus, it is essential to re‑emphasize 
glycolysis in cancer cells to overcome therapy resistance. 
The present review summarizes some of the most common 
targets in drug‑resistant tumor cells, investigates their 
role in the acquisition of drug resistance, and summarizes 
corresponding drugs against these targets to suppress chemo‑
therapy resistance in tumor cells.

2. Glycolysis‑related enzymes contribute to chemotherapy 
resistance in cancer cells

Increasing evidence suggests that glycolysis in cancer is 
associated with drug resistance (11,12). Aberrant expression 
of glycolysis‑related enzymes, as regulators of glycolysis, 
induces glycolysis dysregulation, which contributes to 
tumorigenesis, tumor development and tumor therapy resis‑
tance (13).

Hexokinase (HK2). HK2 is a critical enzyme that promotes 
breast cancer progression and resistance via tumor 
glycolysis (14). HK2 blocks apoptosis by binding to the 
voltage‑dependent anion channel (VDAC), which contributes 
to chemoresistance (15). Upregulation of HK2 expression can 
also induce chemotherapy resistance. Liu et al (14) demon‑
strated that by suppressing the mTOR‑S6K signaling pathway, 
upregulation of HK2 promotes autophagy, subsequently 
conferring tamoxifen resistance to MCF‑7 breast cancer cells.

In addition to upregulation of HK2 expression, its phos‑
phorylation on Thr473 can also induce drug resistance. 
Proviral insertion in murine lymphomas 2 increases HK2 
enzyme activity and enhances glycolysis by phosphorylating 
HK2 on Thr473, contributing to paclitaxel resistance (16). 
Conversely, SMI‑4a can re‑sensitize paclitaxel‑resistant 
cells by dephosphorylating HK2 on Thr473 (17). In addition, 
an increase in HK2 dimers can also promote gemcitabine 

resistance. Fan et al (18) reported that in pancreatic cancer, 
reactive oxygen species (ROS) derived from gemcitabine 
promote HK2 dimerization and bind to VDAC, which 
inhibits apoptosis by suppressing the formation of mitochon‑
drial permeability transition pores, ultimately resulting in 
gemcitabine resistance (15,18).

Given the vital role of HK2 in tumor resistance, it can 
be used as a valuable target in investigating chemoresis‑
tance inhibition. HK2 inhibitor 3‑bromopyruvate facilitates 
the dissociation of HK2 from the mitochondrial complex, 
potentiating daunorubicin‑induced apoptosis and promoting 
leukemia cell sensitivity to daunorubicin (19) (Fig. 1). 
Furthermore, in ovarian cancer, the tyrosine analog, NK007, 
can overcome taxol resistance by degrading HK2 (20). In 
breast cancer, curcumin overcomes resistance to 4‑hydroxy‑
tamoxifen by inhibiting snail family transcriptional repressor 
2 (SLUG or SNAI 2) and subsequently downregulating 
HK2 expression (21). In a clinical study, the combination 
of docetaxel and curcumin for the treatment of patients 
with metastatic castration tolerant prostate cancer resulted 
in a high response rate, good tolerance and patient accept‑
ability (22) (Table I). In another clinical study, lonidamine 
(LND), which inhibits aerobic glycolytic activity by influ‑
encing HK2 (23), was used with high dose epidoxorubicin 
for refractory epithelial ovarian cancer. The results indicated 
that this therapeutic strategy had an excellent second‑line 
therapeutic activity for patients (23). Furthermore, the addi‑
tion of LND to the carboplatin/cisplatin‑paclitaxel standard 
regimen for advanced ovarian cancer was demonstrated to 
overcome cisplatin resistance in patients (24).

Phosphoglycerate mutase (PGAM1). PGAM1 facilitates the 
transformation of 3‑phosphoglycerate to 2‑phosphoglycerate 
in glycolysis. Its metabolic activity facilitates cancer metabo‑
lism and chemotherapy resistance (25). Previous studies have 
reported that PGAM1 is upregulated in different types of 
cancer, such as hepatocellular carcinoma (26), colorectal 
cancer (27,28) and lung cancer (29). The allosteric regula‑
tion of PGAM1 is an important mechanism to change the 
activity of PGAM1 (25). HKB99, a novel allosteric inhibitor 
of PGAM1, overcomes erlotinib resistance in non‑small cell 
lung cancer (NSCLC) by enhancing oxidative stress and 
altering several signaling pathways, including JNK/c‑jun 
activation, and AKT and ERK inhibition (25) (Fig. 1). 
However, Chen et al (30) discovered that the protein and 
mRNA expression levels of PGAM1 are downregulated in 
methotrexate‑resistant cells. This phenomenon indicated that 
aberrant expression of PGAM1 may be associated with multi‑
drug resistance (MDR) in breast cancer. Further studies are 
required to determine the molecular mechanism underlying 
drug resistance caused by PGAM1. In addition, few clinical 
studies have emphasized on exploiting the effect of PGAM1 
inhibitors on tumor resistance.

Pyruvate kinase (PKM2). As a gatekeeper of pyruvate flux (1), 
PKM2 plays an important role in inducing chemotherapy 
resistance in different types of cancer. In prostate cancer, it 
has been demonstrated that PKM2 expression is upregulated 
in enzalutamide‑resistant cells (31). Enhancer of zeste 2 
polycomb repressive complex 2 subunit inhibitors or lysine 
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demethylase 8 knockdown decrease PKM2 expression and 
result in prostate cancer cell sensitivity to enzalutamide (31). 
PKM2 also promotes chemotherapy resistance in ER+ breast 
cancer by enhancing aerobic glycolysis (32). In MCF‑7 and 
T47D cells, upregulation of PKM2 hinders sensitivity to 
adriamycin amycin by enhancing glycolysis (32). Consistent 
with this result, 2‑deoxy‑D‑glucose (2‑DG), a PKM2 inhibitor, 
can inhibit glycolysis and restore the sensitivity to adriamycin 
amycin in MCF‑7 and T47D cells (32). In addition, PKM2 is 
positively associated with chemotherapy resistance in pancre‑
atic cancer (33), osteosarcoma (34), colorectal cancer (35) and 
gastric cancer (36).

PKM2 can translocate to the nucleus where it serves as 
a transcription coactivator, and this process can induce 
chemotherapy resistance (37). Ge et al (37) assessed PKM2 
expression from nuclear and cytoplasmic extracts in breast 
cancer. The results demonstrated that PKM2 protein accumu‑
lated in the nucleus instead of the cytoplasm in response to 
overexpression of nicotinamide phosphoribosyl transferase, 
and induced resistance against tamoxifen in breast cancer 
cells. Furthermore, PKM2 translocation to the nucleus also 
leads to resistance to sorafenib and enzalutamide in liver 
and prostate cancers, respectively (31,34). Polypyrimidine 
tract‑binding protein (PTBP1) is the primary regulator that 
affects PKM2 expression, and it can influence drug resistance 
in tumor cells by regulating PKM2 expression (35,38). In 
colon cancer, PTBP1 knockdown decreases PKM2 expression, 
inhibits glycolysis and increases cell sensitivity to vincristine 
and oxaliplatin (35). In addition, upregulation of PTBP1 
expression in pancreatic ductal adenocarcinoma cells induces 

PKM alternative splicing, which leads to resistance against 
gemcitabine (38).

It has been demonstrated that a series of drugs combined 
with chemotherapy drugs can increase the effectiveness of 
chemotherapy. Shikonin, an inhibitor of PKM2, combined 
with cisplatin exhibits a more significant cytotoxic effect 
by inducing necroptosis and ROS production compared 
with when either one is used alone (39). In osteosarcoma, 
treatment combined with metformin leads to the inhibition 
of glucose uptake, lactate production and ATP production 
by downregulating PKM2 expression. It can also diminish 
cisplatin resistance in osteosarcoma cancer stem cells (36,40) 
(Fig. 1). Metformin increases the antitumor effect of 
other chemotherapy drugs on osteosarcoma stem cells, 
such as adriamycin and 5‑fluorouracil (36). Furthermore, 
high expression of the ATP binding cassette subfamily B 
member 1 (ABCB1) gene in patients with acute lympho‑
blastic leukemia (ALL) is associated with drug resistance 
and affects prognosis (41). In a clinical study, metformin 
combined with chemotherapy was particularly effective in 
patients with elevated ABCB1 expression (clinicaltrials.gov, 
NCT03118128) (41). In addition, ROS derived from NADPH 
oxidase 4 (NOX4) can suppress the P300/CBP‑associated 
factor‑dependent acetylation and lysosomal degradation of 
PKM2, leading to an increase in PKM2 expression and the 
occurrence of chemotherapy resistance (42).

Pyruvate dehydrogenase (PDH) complex. The PDH complex 
is composed of three enzymes that serve catalytic functions, 
named E1, E2 and E3. PDH is an E1 enzyme that can catalyze 
pyruvate conversion to acetyl coenzyme A in a rate‑limiting 
reaction (43). Pyruvate dehydrogenase kinase (PDK) and 
pyruvate dehydrogenase phosphatase mainly regulate PDH 
activity (43). PDK can inhibit PDH activity by phosphorylating 
PDH, whereas pyruvate dehydrogenase phosphatase can acti‑
vate PDH by reversing the phosphorylation of this protein (43) 
(Fig. 1).

There are four subtypes of PDKs that participate in 
glycolysis and exert their effects on chemoresistance in 
tumor response, including PDK1‑4 (43). In ovarian cancer 
cells, overexpression of PDK1 promotes cisplatin resis‑
tance (44). Overexpression of PDK1 increases epidermal 
growth factor receptor (EGFR) phosphorylation and 
promotes chemotherapy resistance in ovarian cancer (44). 
Through the transcriptional regulation of cyclin and CBS 
domain divalent metal cation transporter 3, PDK2 promotes 
lung adenocarcinoma cell proliferation and cisplatin 
resistance (45). Several studies have demonstrated that 
hypoxia‑inducible factor (HIF)‑1α regulates the expres‑
sion of pyruvate dehydrogenase kinase 3 (PDK3) and 
further induces chemotherapy resistance under hypoxic 
conditions (43,46). Nucleus accumbens‑1 mediates the 
inhibition of mitochondrial function via HIF‑1α‑mediated 
PDK3 overexpression, the inhibition of pyruvate dehy‑
drogenase function and the repression of mitochondrial 
respiration (47). This process can protect cancer cells from 
apoptosis under hypoxic conditions (47). Upregulation of 
PDK4 increases resistance to chemotherapy in hepatocytes 
and colon cancer cells (48). In addition, PDK4 expression 
increases in tamoxifen‑resistant MCF‑7 cells, resulting in 

Figure 1. Process of glycolysis inside and outside the cell. G‑6‑P, 
glucose‑6‑phosphate; PEP, phosphoenol pyruvate; HK, hexokinase; PGAM, 
phosphoglycerate mutase; PKM2, pyruvate kinase; PDH, pyruvate dehydro‑
genase; LDH, lactate dehydrogenase; MCT4, monocarboxylate transporter 4; 
OXPHOS, oxidative phosphorylation; 3‑bp, 3‑bromopyruvate; PDK, pyru‑
vate dehydrogenase kinase; MCT, monocarboxylic transporters; GLUT1, 
glucose transporters 1; AngII, angiotensin II; HISLA, HIF‑1α‑stabilizing 
long non‑coding RNA.
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augmented PDH activity and resistance to tamoxifen medi‑
ated by the phosphorylation of PDH (49).

Dichloroacetate (DCA) is a small molecule that promotes 
the entry of pyruvate into the mitochondria (50). By decreasing 
the expression of EGFR, DCA can sensitize MCF7 breast 
cancer cells to cell death induced by tamoxifen (51). The 
primary molecular mechanism underlying the antitumor effect 
of DCA involves the conversion of glycolysis into the oxidative 
metabolism of glucose, which decreases lactic acid production, 
promotes the production of cytotoxic reactive oxygen inter‑
mediates (52) and stimulates the Krebs cycle, and results in 
chemoresistance and radiotherapy resistance (53). Currently, 
several studies have combined DCA with some chemotherapy 
drugs and achieved remarkable results. For example, DCA 
plus cetuximab notably promotes tumor regression, whereas 
the use of either drug alone does not induce tumor regres‑
sion (54). In addition, DCA combined with erlotinib or gefitinib 
significantly decreases EGFR activity and decreases resis‑
tance against tamoxifen (55). Other antitumor drugs have been 
developed based on the role of DCA. Mitaplatin, a synthetic 
drug based on cisplatin and DCA, not only destroys nuclear 
DNA through the action of cisplatin but also attacks mito‑
chondria based on DCA in cancer cells. Under the influence of 
mitaplatin, the mitochondrial membrane gradient potential is 
altered in cancer cells, resulting in the release of cytochrome c, 
translocation of apoptosis‑inducing factors from the mitochon‑
dria to the nucleus, and apoptosis (56). Due to these properties, 
mitaplatin can selectively kill tumor cells that are cultured 
with normal fibroblasts and partially overcome the resistance 
to cisplatin (56). 2,2‑Dichloro‑1‑(4‑isopropoxy‑3‑nitrophenyl)
ethan‑1‑one(Cpd64) is a novel PDK1 inhibitor that is more 
efficient and specific than DCA and enhances the anticancer 
effect of EGFR‑TKi (57). In a phase III clinical trial, devi‑
mistat (CPI‑613), a PDH inhibitor, was combined with large 
doses of cytarabine and mitoxantrone to treat refractory acute 
myeloid leukemia and this combination achieved more favor‑
able results (clinicaltrials.gov, NCT03504410) (58).

Lactate dehydrogenase (LDH). LDH controls the conversion 
and production of pyruvate and lactic acid (59). Previous 
studies have demonstrated that LDH is upregulated in several 
drug‑resistant cells (60). Elevated LDH levels can mediate 
prostate cancer cell resistance to docetaxel (61), colorectal 
cancer cell resistance to cetuximab (62), oral cancer and 
breast cancer cell resistance to paclitaxel (60,63), and cartilage 
sarcoma cell resistance to doxorubicin (DOX) (64).

Several factors can change the expression of LDHA and 
therefore affect drug resistance. When cancer cells are in 
an anoxic environment, LDH plays a considerable part in 
anaerobic metabolism, which is inseparable from HIF‑1α (65). 
It has been reported that LDH‑5, an isozyme of LDH‑1, can 
be induced by hypoxia, and the transcription of LDH‑5 is 
directly regulated by HIF1 (65). Through the upregulation of 
LDHA, HIF‑1α‑overexpressing mutants (HIF‑1α/∆ODD) are 
resistant to G1 phase cell cycle arrest induced by cetuximab, 
and acquire cetuximab resistance in head and neck squamous 
cell carcinoma cell (66). ATP‑binding cassette, subfamily C, 
member 3 (ABCC3), a member of the ATP‑binding cassette 
(ABC) transporter family, is another factor that can alter 
LDHA levels (67). In human urinary bladder cancer (UBC) 

cells that lack ABCC3, the blockade of LDHA signaling 
increases the sensitivity of UBC cells to cis‑diamminedichlo‑
roplatinum (67).

Due to the critical role of LDHA in drug resistance, a 
combination of the LDHA inhibitor oxalate and paclitaxel 
can provide a synergistic inhibitory effect and clinical 
benefit against paclitaxel‑resistant breast cancer due to the 
enhancement of apoptosis (60) (Fig. 1). Recently, galloflavin 
was identified as a novel LDH inhibitor that induces human 
breast cancer cell death by blocking different glycolytic 
pathways (68).

3. Glycolysis related substrates and products play roles in 
chemotherapy resistance

Glucose and glucose transporters (GLUTs). Changes in 
glucose can significantly affect the rate of glycolysis, leading 
to the occurrence of multiple drug resistance (69). Several 
studies have demonstrated that high glucose intake can induce 
cisplatin resistance in ovarian and bladder cancer cells, DOX 
resistance in breast cancer cells, and gemcitabine resistance in 
pancreatic cancer cells (18,70,71).

In terms of the molecular mechanism, when glucose is 
severely deficient, glucose regulated protein 78 (GRP78) 
expression is induced, leading to etoposide resistance and 
cisplatin susceptibility (71,72). GRP78 and B‑cell lymphoma 
2 (Bcl‑2) competitively associate with Bcl‑2 interacting killer 
(BIK), and upregulated GRP78 expression decreased the 
association between BIK and Bcl‑2, subsequently inhibiting 
apoptosis and promoting drug resistance in breast cancer 
cells (73). Lee et al (72) performed a retrospective study 
and demonstrated a significant association between GRP78 
and recurrence time in patients, suggesting that GRP78, 
which can predict chemotherapy outcomes, deserves further 
investigation. In a high glucose microenvironment, glucose 
promotes growth factor receptor signaling through the 
acetylation of acetyl‑CoA‑dependent Rictor, which activates 
rapamycin complex 2 to facilitate resistance to EGFR‑, PI3K‑ 
or AKT‑targeted therapy in glioblastoma (74). Furthermore, 
2‑DG combined with 5‑fluorouracil can significantly improve 
its therapeutic effect in a high glucose microenvironment (75). 
18F‑fluorodeoxyglucose positron emission tomography 
(18F‑FDG PET) is a metabolic imaging tool used to detect 
lesions with increased glycolysis based on the glucose 
analog, fluorine‑18 fluorodeoxyglucose (76). 18F‑FDG PET 
can predict overall tumor behavior and sensitivity to treat‑
ment. In a clinical study, researchers successfully predicted 
the sensitivity to preoperative chemotherapy in patients with 
gastroesophageal cancer (77). Another clinical study demon‑
strated that 18F‑FDG PET can predict treatment outcomes 
for 103/108 (95%) patients following two courses of conven‑
tional standard‑dose chemotherapy for advanced Hodgkin's 
disease (78).

Glucose transports GLUTs primarily regulate glucose 
flux (79). Glucose transporters are mainly required for glucose 
uptake in cancer cells to promote cancer cell survival and 
resistance under hypoxic conditions. Currently, 14 GLUTs 
have been identified, which exhibit different substrate 
specificities and tissue expression patterns. Among these, 
GLUT1 is the most widely expressed transporter, and glucose 
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enters cells via glucose transporters to regulate the rate of 
glycolysis. Thus, GLUT1 dysfunction is associated with 
resistance (80). In different types of cancer, upregulation of 
GLUT1 is associated with poor prognosis (81). In NSCLC, 
activation of GLUT1‑mediated glucose metabolism can 
cause cells to acquire gefitinib and erlotinib resistance (82). 
Furthermore, in colorectal cancer cells, overexpression of 
GLUT1 causes chemoresistance (83). In glioma cells, GLUT1 
overexpression in paclitaxel‑resistant cells restores glucose 
metabolism, resulting in paclitaxel resistance (84). In addition, 
in arginine deiminase‑resistant cells, GLUT1 expression is 
increased, consistent with an increase in glycolytic pathway 
activation (85).

GLUT1 affects tumor cell resistance though several 
pathways. Activation of the yes‑associated protein 1/TEA 
domain transcription factor 1 pathway may result in increased 
GLUT1 expression, thereby increasing cell viability in cispl‑
atin‑treated cancer cells, decreasing cell death and causing 
cisplatin resistance (86). The role of GLUT1 in chemotherapy 
resistance is associated with HIF‑1α. Altered expression of 
GLUT‑1 induced by HIF‑1α is associated with augmented 
proliferation, chemotherapy resistance and metastasis (87). 
Genistein, a natural isoflavone, can re‑sensitize aerobic 
glycolytic hepatocellular carcinoma cells to apoptosis by 
downregulating HIF‑1α expression, inactivating GLUT1 and 
inhibiting aerobic glycolysis, resulting in decreased resis‑
tance to sorafenib (87).

Given the important role of GLUT1 in drug resistance, 
researchers have demonstrated several ways to overcome 
chemotherapy resistance by inhibiting this protein. In colorectal 
cancer cells, Wy14,643, a PPARα agonist, inhibits GLUT1 
transcriptional activity, decreases glucose uptake and blocks 
the mTOR pathway, which in turn decrease tumor growth and 
chemoresistance (88). GLUT1 can also react with other metab‑
olites to potentiate anti‑drug resistance. AG‑PEG‑SS‑PLA, an 
aminoglucose (AG)‑conjugated, redox‑responsive nanomicelle 
from a single disulfide bond‑bridged block polymer of poly‑
ethylene glycol and polylactic acid, can be formed by GLUT‑1 
and glutathione polymerization (89). Paclitaxel‑loaded 
AG‑PEG‑SS‑PLA nanomicelles activate the caspase‑9 and 
caspase‑3 cascade by upregulating pro‑apoptotic proteins, 
such as Bcl2 associated X and BH3 interacting domain 
death agonist, and inhibiting Bcl‑2, leading to apoptosis and 
improvement in MDR (89). 

Lactate and acidic microenvironment. The Warburg effect 
implies that the main mechanism of glucose metabolism in 
cancer cells is aerobic glycolysis, whereas mitochondrial 
OXPHOS is inhibited, which enhances lactic acid production 
and consequently promotes the occurrence of drug resis‑
tance (60,90‑92). Apicella et al (12) demonstrated that MET‑ or 
EGFR‑addicted cancer cells exhibit increased glycolysis and 
lactic acid production following long‑term utilization of tyro‑
sine kinase inhibitors (TKIs). In cancer cells, lactic acid can 
promote the production of hepatocyte growth factor (HGF), 
in a nuclear factor kb‑dependent manner. Overexpression 
of HGF upregulates MET expression by promoting signal 
transduction, which results in continuous resistance to TKIs. 
Decreased lactate production attenuates TKI resistance by 
inducing alterations to HGF and MET activity. In cervical 

cancer, chemotherapy resistance may be associated with the 
presence of L‑ and D‑lactic acid in the cervix (93).

When the production of lactic acid increases, the acidic 
microenvironment changes. Cancer cells express several 
families of plasma membrane pH regulators to protect them 
and maintain normal physiological activities; these families 
are co‑expressed and redundant on the plasma membrane, 
including carbonic anhydrase IX (CAIX), sodium‑hydrogen 
antiporter 1 (NHE1) and the monocarboxylic transporters 
(MCT), particularly MCT1 and MCT4. These families can 
cause acidic by‑products to be leaked from the cytoplasm, 
resulting in the dysregulation of pH in the tumor microen‑
vironment, that is, alkalized intracellular fluid and acidified 
extracellular fluid (94). It has been reported that this form 
of metabolism can enhance resistance to radiation and 
chemotherapy (94‑102).

The monocarboxylic transporters, MCT1 and MCT4, are 
mainly involved in the transport of lactic acid (Fig. 1). MCT1 
is the most common monocarboxylic transporter expressed 
in p53‑deficient tumors (103), whereas MCT4 expression is 
upregulated under hypoxic conditions and elevates with HIF 
induction (104). MCT1 is responsible for lactic acid uptake 
via oxidative cells, and MCT4 is responsible for the release 
of lactic acid from hypoxic cells (105). Abnormal expres‑
sion of the MCT family is associated with drug resistance. 
Apicella et al (12) demonstrated that intratumoral lactic acid 
increases caused by high MCT1 expression are associated 
with poor prognosis. In addition, MCT1 is a major transporter 
that assists 3‑bromopyruvate (3‑BrPA) (106). Overexpression 
of MCT1 in cancer cells can sensitize tumor xenografts in 
response to 3‑BrPA treatment in vivo (106). Conversely, down‑
regulation of MCT4 can overcome anti‑angiogenic therapy 
resistance (107). Based on the effects of MCT1 and MCT4, 
it is reasonable that the monocarboxylate transporter MCT1 
and MCT4 dual inhibitor MD‑1 can significantly inhibit oral 
squamous cell carcinoma, an invasive and therapeutic‑resistant 
malignancy (108) (Fig. 1).

Carbonic anhydrase IX (CAIX or CA9) is a tumor‑related 
metalloenzyme that can convert H2O and CO2 to HCO3

− and 
H+ ions reversibly, and is also induced by HIF (109). It has been 
reported that transient and long‑term exposure to an extracel‑
lular acidic microenvironment (pH 6.7±0.1) increases CAIX 
expression in melanoma, breast cancer and colorectal cancer 
cells (109). Extracellular acidosis can cause chemotherapy 
resistance, which indicates that there may be an association 
between CAIX and chemotherapy resistance (110,111). Based 
on carbonic anhydrase CAIX staining in 188 microarray 
tumors, it was demonstrated that this protein is upregulated 
in basal cell‑like breast tumors and is associated with chemo‑
therapy resistance (110). Simultaneously, overexpression 
of CAIX in tongue cancer cells can promote chemotherapy 
resistance (111). SLC‑0111, which inhibits CAIX, enhances 
the toxic effect of temozolomide and dacarbazine, and is 
currently being used for the treatment of advanced melanoma. 
SLC‑0111 also increases the response of breast cancer cells to 
DOX and enhances the inhibitory effects of 5‑fluorouracil on 
colon cancer (109).

NHE‑1 is a plasma membrane glycoprotein composed 
of 815 amino acids, and it is a member of the elevated Na/H 
exchanger gene family, and is also known as a PH regulator. 
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Abnormal NHE‑1 expression has been associated with drug 
resistance (112,113). For example, increased NHE1 expression 
can promote T cell‑ALL resistance to DOX (113). In addition, 
cariporide, a NHE1 inhibitor, significantly increases breast 
cancer cell sensitivity to adriamycin by inducing apoptosis, 
promoting intracellular DOX accumulation and blocking 
the G0/G1 phase (114). Recently, cariporide, zoniporide and 
eniporide, which are effective and selective NHE‑1 inhibitors, 
were demonstrated to be well tolerated in humans. However, 
only a few clinical trials have been performed in the field of 
oncology (115).

Due to the high rate of glycolysis, glucose levels within 
the tumor are deficient, and additional energy is in demand 
for normal physiological cancer cell activity (116); thus, other 
sources of energy are required. Excess pyruvate and lactate 
produced by glycolysis in cancer‑associated fibroblasts can be 
delivered to adjacent cancer cells to enhance the mitochondrial 
activity, resulting in cancer cell resistance to many clinically 
used drugs, such as tamoxifen, used in endocrine therapy, 
Herceptin, used in Her‑2‑targeted therapy, and ebithromycin, 
used in chemotherapy (117). In breast cancer cells, this process 
can assist cancer cell survival in the presence of a lack of 
glucose for a long time, leading to PI3K/mTOR inhibitor 
resistance (116).

4. Glycolysis is associated with immunotherapy resistance

Recently, immunotherapy has been considered a milestone 
for cancer therapy. Programmed cell death 1 (PD1), PD1 
ligand 1 (PD‑L1), and checkpoint molecules, such as cytotoxic 
T lymphocyte antigen 4, have been identified, and drugs 
targeting them have been used on patients (118). Cancer immu‑
notherapy has achieved significant breakthroughs and success. 
However, drug resistance has deterred clinical progression for 
several years. With a deeper understanding of immune mecha‑
nisms and immunotherapy efficacy, previous studies have 
acknowledged that tumors are resistant to immunotherapy 
via interferon (IFN) signaling and antigen presentation, the 
PI3K‑AKT‑mTOR axis, Wnt‑β‑catenin signaling, and deletion 
of the tumor suppressor phosphoinositide phosphatase, PTEN, 
which can activate different pathways (118‑121).

Interferon binds IRF1 and the PD‑L1 promoter via the 
Janus kinase 1 (JAK1)/JAK2‑signal transducer and activators 
of transcription 1 (STAT1)/STAT2/STAT3‑interferon regula‑
tory factor 1 (IRF1) axis, thereby regulating the expression of 
PD‑L1 and causing resistance to immune checkpoint inhibi‑
tors (119). The loss of copies of IFN‑γ‑mediated genes, such as 
IFNGR1, IRF‑1, JAK2 and IFNGR2 can cause metastatic mela‑
noma resistance to ipilimumab (anti‑CTLA‑4 therapy) (122). 
The loss of JAK1 and JAK2, IFN‑γ pathway genes, is 
associated with resistance to PD‑1 therapy (122). Notably, 
the IFN signaling pathway can also alter glycolysis to cause 
chemotherapy resistance. Sustained STAT1 signaling causes 
chemotherapy resistance by increasing the expression of genes 
associated with glycolysis and OXPHOS (123) (Table II). 
STAT3 induces chemotherapy resistance by protecting 
mitochondrial oxidative phosphorylation and controlling the 
opening of mitochondrial permeability transition pores (124). 
In addition, IFN‑γ signaling is downregulated in highly glyco‑
lytic tumor cells, and the disruption of tumor IFN‑γ signaling 

is an essential cause of tumor immunotherapy resistance (125). 
In clinical studies, the chimeric anti‑CD20 antibody rituximab 
and IFN‑alpha 2a combined immunotherapy has been proven 
effective (126,127). In another clinical study, the combina‑
tion of interleukin‑2 and α‑IFN, based on a dose‑increasing 
experiment, resulted in an increased response rate (128). These 
results indicate that the IFN signaling pathway is a good 
potential target for combination therapy (Fig. 2).

The metabolic reprogramming of tumor cells consumes a 
lot of energy and nutrients, which means that immune cells 
are in a state of nutrient depletion. The immune response to 
the tumor also has a significant negative effect (129). There 
is considerable evidence that the Wnt‑β‑catenin signaling 
pathway connects glycolysis to the immune response to the 
tumor. First, Wnt‑β‑catenin signaling is closely associated 
with glycolysis (130). The Wnt‑β‑catenin target gene, c‑Myc, 
regulates and controls cancer cell metabolism (130). Wnt5B, 
a Wnt ligand, has been demonstrated to inhibit mitochon‑
drial functions in triple negative breast cancer cells through 
c‑Myc (131). Secondly, Wnt‑β‑catenin signaling is also associ‑
ated with immunity. The Wnt ligand increases the expression 

Figure 2. Glycolysis in tumor and tumor microenvironment is associated 
with immunotherapy resistance. STAT1 mediates tumor resistance to 
immunotherapy in the tumor microenvironment. Interferon regulates PD‑L1 
expression via the JAK1/JAK2‑STAT1/STAT2/STAT3‑IRF1 axis in tumor 
cells. STAT1 increases the expression of genes associated with glycolysis 
and oxidative phosphorylation. Wnt ligand inhibits mitochondrial func‑
tion via the Wnt‑β‑catenin target gene, c‑myc. However, PTEN loss can 
induce abnormal accumulation of β‑catenin, and subsequently activate the 
Wnt‑β‑catenin signaling pathway. AKT also plays key roles in regulating 
immunotherapy resistance by decreasing PGC1α expression in tumor infil‑
trating lymphocytes and upregulating membrane localization of GLUT1. 
During the lactate producing process, PTEN‑loss acts as an activator in 
tumor cells, and increased lactate induces an extracellular acid environ‑
ment that inhibits MCT‑1, which disturbs the metabolism in T‑cells. STAT, 
signal transducer and activators of transcription; PD‑L1, programmed cell 
death‑ligand 1; PGC1α, peroxisome proliferator‑activated receptor gamma 
coactivator 1‑α; GLUT, glucose and glucose transporters; MCT, monocar‑
boxylic transporters; OXPHOS, oxidative phosphorylation; IRF1, interferon 
regulatory factor 1.
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of β‑catenin in dendritic cells, and subsequently, the functions 
of Tregs and CD8+ T cells are activated, and antitumor immu‑
nity is suppressed (120). Thus, targeting the Wnt‑β‑catenin 
signaling pathway has become a strategy that can both 
target glycolysis and decrease immune resistance. Upon Wnt 
inhibition, the Wnt‑β‑catenin‑target gene, MCT1, is also down‑
regulated, leading to a reduction in tumor microenvironment 
acidity, maintaining antitumor immunity, and preventing cell 
migration and metastasis (132). Accordingly, there is evidence 
that a combination of PD‑1 and Wnt inhibitors can increase 
PD‑1 inhibitor efficacy (133) (Fig. 2).

Overactivation of the pathological PI3K‑AKT‑mTOR 
pathway is the primary mechanism underlying immune check‑
point inhibitor resistance (134). AKT plays a vital role in the 
tumor microenvironment, whereby it decreases the expression 
of peroxisome proliferator‑activated receptor gamma coacti‑
vator 1‑α (PGC1α) in tumor‑infiltrating lymphocytes (TILs) 
within the tumor microenvironment. PGC1α can also regulate 
the biological function of mitochondria. Thus, a lack of this 
protein can cause TIL energy exhaustion and decrease anti‑
tumor immunity in the tumor microenvironment (135). Based 
on in vitro experiments, the addition of PGC1 inhibits tumor 
growth and increases overall survival (135) (Fig. 2).

AKT can promote glucose uptake by increasing the 
membrane localization of facilitative GLUT1 and GLUT4. 
AKT also contributes to the phosphorylation of HK‑2 and stim‑
ulates its translocation to the mitochondria (135). All of these 
changes can affect glycolysis and induce chemotherapy resis‑
tance (135). Accordingly, PI3K‑AKT inhibitors have become 
a focus of research because of their dual anti‑chemotherapy 
and immunotherapy resistance effects (136). In phase I 
clinical studies, the AKT inhibitor afuresertib combined with 
carboplatin and paclitaxel exhibited promising results for the 
treatment of recurrent platinum‑resistant ovarian cancer (137). 
However, clinical trials of AKT inhibitors for the immuno‑
therapy‑resistant disease remain to be performed (Fig. 2).

Glycolysis is also associated with immunotherapy resis‑
tance through PTEN‑deficiency. The abnormal accumulation 
of β‑catenin, caused by tumor‑specific mutations, such as the 
specific loss of PTEN from melanocytes in lung cancer, leads to 
activation of the Wnt‑β‑catenin signaling pathway (138) (Fig. 2). 
PTEN‑deficiency‑associated and activated pathways can cause 
immune resistance. PTEN deficiency facilitates the immune 
escape of melanoma by restricting T cell access to tumor cells 
and preventing T cells from killing cancer cells (121). PI3Kβ 

inhibitors can effectively reverse the immunotherapy resis‑
tance caused by the loss of PTEN (121). In PTEN‑deficient 
melanoma cells, some substrates upregulation of glycolysis, 
such as pyruvate and lactate, provoke overactivation, which is 
characterized by adoptive T cell therapy resistance (125). A 
clinical study has demonstrated that in PTEN‑deficient tumors, 
following treatment of metastatic castration‑resistant prostate 
cancer with the Akt inhibitor ipatasertib coupled with the 
CYP17 inhibitor abiraterone, radiographic progression‑free 
survival was extended compared with tumors without PTEN 
deficiency (139). This study further demonstrated that AKT 
inhibitors combined with antitumor drugs can play an impor‑
tant role in treating PTEN‑deficient tumors.

Lactic acid levels are also associated with immune resis‑
tance. Lactic acid can be derived from tumor‑associated 
glycolysis and from activated immune cells and macro‑
phages (140). Lactate release in tumor cells also increases the 
expression of a myeloid‑specific lncRNA, HIF‑1α‑stabilizing 
long non‑coding RNA (HISLA) in macrophages, and 
elevated HISLA expression promotes aerobic glycolysis in 
tumor‑associated macrophages through extracellular vesicles 
(EV) transport, which forms a pre‑feedback loop (141) (Fig. 1). 
Blocking EV‑mediated HISLA in vivo has been demonstrated 
to inhibit glycolysis and drug resistance in breast cancer (141). 
Furthermore, the excessive accumulation of lactic acid can 
cause immunosuppression, leading to resistance to immu‑
notherapy. First, hypoxic tumor cells produce angiotensin II 
(AngII) through an anoxia‑lactic acid‑chymase‑dependent 
mechanism (142). In the tumor microenvironment, local AngII 
is associated with cancer cell evasion of immune surveil‑
lance (143). In addition, the inhibition of AngII signaling may 
enhance tumor sensitivity to checkpoint immunotherapy (143) 
(Fig. 2). Secondly, lactic acid can impair the cytotoxic func‑
tion of T cells. The activation of T cells uses glycolysis and 
relies on lactic acid secretion. The accumulation of intracel‑
lular lactic acid in the tumor cell causes an extracellular acidic 
environment, leading to the inhibition of MCT‑1 (144). T cells 
cannot effectively secret lactate, and under these conditions, 
their metabolism is disordered, contributing to a significant 
reduction in cytotoxic activity, which severely affects T 
cell functionality (144) (Fig. 2). In addition, lactic acid can 
increase L‑arginine‑metabolizing enzyme arginase‑1 (ARG1) 
expression in macrophages and inhibit the antitumor immune 
response (145). Following treatment with DCA, the declined 
ARG1 mRNA expression can effectively reactivate the 

Table I. Overview of the clinical studies on the efficacy of glycolysis inhibitions in combination with chemotherapeutics.

Glycolysis  Glycolysis
inhibition Chemotherapeutics target Cancer (Refs.)

Metformin Cisplatin PKM2 Osteosarcoma (36)
CPI‑613 Cytarabine/Mitoxantrone PDH Acute myeloid leukemia (58)
Lonidamine Epidoxorubicin HK2 Refractory epithelial ovarian cancer (23)
 Cisplatin HK2 Ovarian cancer (24)
Curcumin Docetaxel HK2 Prostate cancer/Breast cancer (22)

PKM2, pyruvate kinase; PDH, pyruvate dehydrogenase; HK, hexokinase.
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immune state regulated by lactic acid and improve antitumor 
immunotherapy benefits (145). 

5. Transition of glycolysis to OXPHOS enhances drug 
resistance

The Warburg effect indicates that tumor cells tend to undergo 
glycolysis regardless of aerobic and anaerobic conditions, 
which implies that mitochondrial dysfunction is a feature of 
tumor cells (146). However, recently, this statement has been 
challenged (147). Several tumor cells have been reported to 
have metabolic plasticity, indicating a transformation from 
glycolysis to mitochondrial OXPHOS, leading to the produc‑
tion of vast amounts of energy and resistance to drugs (148). 
Recent evidence suggests that cancer cells can obtain glycol‑
ysis/OXPHOS mixed phenotypes, in which the ATP production 
is an outcome from both glycolysis and OXPHOS to support 
physiological activity of cells (149). In addition, cells with this 
characteristic are more likely to acquire drug resistance (150). 
When lactic acid increases, it can be used as an energy source 
by adjacent cancer cells to activate mitochondria and stimulate 
OXPHOS (151) (Fig. 1).

Such changes in OXPHOS can affect the drug resistance 
of tumor cells. Following chemotherapy, Farge et al (150) 
described a new method to identify and study acute myeloid 
leukemia (AML) cells remaining in the bone marrow. The 
results demonstrated that OXPHOS is increased in AML cells 
remaining in the bone marrow of mice following cytarabine 
therapy, and that the inhibition of OXPHOS can re‑sensitize 
AML cells to cytarabine. In epithelial ovarian cancer, the 
oxygen consumption rate, mitochondrial respiration and 

oxidative phosphorylation in cisplatin‑resistant cells were 
higher than those in cisplatin‑sensitive cells (152). The 
activation of OXPHOS is a typical feature of hepatocellular 
carcinoma cell resistance to DOX (153). Generally, increased 
OXPHOS can promote the occurrence of chemotherapy 
resistance (150).

OXPHOS affects the treatment of tumors in several ways. 
As it results in the production of a large amount of ATP, 
this is bound to stimulate the activity of some transporters, 
one of which is drug transporters. In breast cancer cells, the 
continuous supply of ATP derived from OXPHOS is utilized 
by ABC transporters, leading to the outflow of DOX and the 
induction of an MDR phenotype (148). Tumor stem cells are 
also associated with drug resistance caused by OXPHOS. 
Increased OXPHOS mediated by mitochondria can stimulate 
tumor stem cells to expand, conferring resistance to tumor 
cells (154). Furthermore, NANOG, a stem cell marker, inhibits 
mitochondrial OXPHOS genes and promotes sorafenib 
resistance (155).

Several drugs inhibit the occurrence and development of 
tumors, and they can also affect OXPHOS. Some drugs, like 
cytarabine, 5‑fluorouracil, TKIs, MAPKi and BRAFi can 
promote OXPHOS activity and increase drug resistance in the 
mitochondria, whereas others, such as anthracyclines, etopo‑
side, sorafenib, paclitaxel and staurosporine, significantly 
decrease OXPHOS activity in the mitochondria (147). For 
those drugs that promote OXPHOS activity in mitochondria, 
it is necessary to find a better way to solve the associated drug 
resistance. Metformin is a type of mitochondrial inhibitor and 
combining it with cisplatin can attenuate cisplatin resistance 
in epithelial ovarian cancer cells (152). Metformin can also 

Table II. Association between glycolysis and immune drug resistance.

Immunotherapy Glycolysis
resistance target target Cancer  Correlation (Refs.)

IFN/STAT1 ENO1 Squamous cell carcinoma STAT1 increases the expression of ENO1 (123)
 LDHA Squamous cell carcinoma STAT1 increases the expression of LDHA (123)
 PKM2 Squamous cell carcinoma STAT1 increases the expression of PKM2 (123)
 OXPHOS Mouse embryonal fibroblasts STAT3 protects OXPHOS (124)
Wnt‑β‑catenin PDK1 Colon cancer cells Blocking β‑catenin decreases PDK1 level (130)
 OXPHOS TNBC Knockdown of WNT5B attenuates (131)
   mitochondrial biogenesis and OXPHOS
PI3K‑AKT‑mTOR GLUT1/4 Mouse embryonal fibroblasts AKT increases the membrane localization (135)
pathway   of facilitative GLUT1 and GLUT4
 HK‑2 Mouse embryonal fibroblasts AKT contributes to the phosphorylation (135)
   of HK‑2 and stimulates its translocation 
   to the mitochondria
PTEN‑deficiency Pyruvate/lactate Melanoma In PTEN‑deficient melanoma cells,  (125)
   some glycolysis substrates are upregulated, 
   such as pyruvate and lactate, which is 
   characterized by adoptive T cell therapy 
   resistance

IFN, interferon; STAT, signal transducer and activators of transcription; LDH, lactate dehydrogenase; PKM2, pyruvate kinase; OXPHOS, 
oxidative phosphorylation; GLUT1, glucose transporters 1; HK, hexokinase.
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be combined with TKIs to overcome tumor chemotherapy 
resistance (147). In addition, targeting mitochondrial respira‑
tion and HIF‑1α may reverse tumor cell chemotherapeutic 
resistance (154). When the anoxic environment is destroyed 
and the HIF1α pathway is blocked, sex‑determining region Y 
(SRY)‑Box2 drives OXPHOS reprogramming, which helps 
tumor cells obtain an invasive oxidative tumor phenotype 
and enhance drug resistance and metastatic ability (156).

6. Conclusions

Changes in glycolysis, particularly increases in key enzymes 
and intermediates of this pathway, can affect the sensitivity 
of tumors to chemotherapeutic reagents, resulting in an 
increase in ATP production, and providing sufficient energy 
for the biological activity of tumor cells (14,69). This process 
enhances the repair of DNA damage, increases the phosphory‑
lation, translocation into the nucleus, and autophagy‑associated 
activity of enzymes, and causes drug resistance (157). In addi‑
tion, several clinical trials have been performed to investigate 
the therapeutic effect of glycolysis‑targeting therapy combined 
with clinical first‑and second‑line chemotherapeutic drugs on 
tumors (Table I).

Recently, several studies have demonstrated that the role of 
mitochondria in tumor metabolism is becoming essential. The 
reverse Warburg effect emerged, indicating that the increase in 
lactic acid as an energy material can be converted into pyruvate 
in the mitochondria and enhance mitochondrial activity and 
OXPHOS in adjacent cells (117). In addition, tumor cells also 
have metabolic plasticity. Glycolysis can be moderately trans‑
formed into OXPHOS when the external environment changes 
or there is plenty of oxygen around the tumor cells. This trans‑
formation is closely associated with chemotherapy (118,148). 
Increased mitochondrial activity and OXPHOS results in the 
production of higher levels of ATP and NADPH. High levels 
of ATP provide a vast amount of energy to tumor cells, and 
NADPH is a key antioxidant that can decrease ROS damage 
to tumor cells (158).

With an increase in studies on tumor immunity, immune 
checkpoint inhibitors have been developed for clinical appli‑
cations (149). However, immunotherapy resistance is remains 
a major challenge. Based on a broadened understanding of 
tumor immunity, it is apparent that immunotherapy resistance 
is closely associated with glucose metabolism (125). The 
PI3K‑AKT‑mTOR axis, PTEN deficiency, IFN signaling and 
the Wnt‑β‑catenin signaling pathway can affect corresponding 
enzymes involved in glycolysis and enhance immunotherapy 
resistance (123,125,131,135). Conversely, the release of lactic 
acid, a glycolysis intermediate metabolite, can promote the 
occurrence of immunotherapy resistance. The interaction 
between glucose metabolism and immunotherapy resistance 
forms a positive feedback pathway and constitutes an impor‑
tant factor in tumor drug resistance (141). Currently, there are a 
few studies on the effect of the PI3K‑AKT‑mTOR axis, PTEN 
deficiency, IFN signaling, Wnt‑β‑catenin signaling pathway 
targeting agents on immunotherapy drug resistance, and 
chemotherapy resistance. The interdisciplinary study on tumor 
glycolysis and immunotherapy resistance should endeavor to 
receive more attention to proceed to understand the molecular 
mechanisms involved.

7. Future direction and perspectives

Regarding these glucose metabolic processes, targeted inhibi‑
tors may be used in combination with chemotherapy reagents 
or immune checkpoint inhibitors in the future. However, due 
to the lack of tumor drug resistance markers, targeted inhibitor 
prognostic indexes, and the specificity of these inhibitors, their 
clinical application is profoundly limited. In general, altered 
glycolysis, as a ubiquitous feature of drug‑resistant tumor cells, 
represents a promising target, and novel strategy to overcome 
drug resistance clinically.
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