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Abstract. A gastrointestinal stromal tumor (GIST) is the most 
common mesenchymal tumor of the human gastrointestinal 
tract, with an estimated incidence of 10‑15 per  1 million 
per year. While preparing holistic care for patients with GIST 
diagnosis, scientists might face several difficulties - insuf‑
ficient risk stratification, acquired or secondary resistance to 
imatinib, or the need for an exceptional therapy method asso‑
ciated with wild‑type tumors. This review summarizes recent 
advances associated with GIST biology that might enhance 
diagnostic and therapeutic strategies. New molecules might 
be incorporated into risk stratification schemes due to their 
proven association with outcomes; however, further research is 
required. Therapies based on the significant role of angiogen‑
esis, immunology, and neural origin in the GIST biology could 
become a valuable enhancement of currently implemented 
treatment schemes. Generating miRNA networks that would 
predict miRNA regulatory functions is a promising approach 
that might help in better selection of potential biomarkers and 
therapeutical targets in cancer, including GISTs.
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1. Introduction

A gastrointestinal stromal tumor (GIST) is the most common 
mesenchymal tumor of the human gastrointestinal tract, with 
an estimated incidence of 10‑15 per 1 million per year (1‑5). 
Approximately 90% of GISTs are located in the stomach and 
small intestine, with gastric lesions being the most preva‑
lent  (~60%) (1,3,6,7). GIST occurs with similar frequency 
in males and females (6,8); nevertheless, some studies claim 
slight predominance in males (1). Patients might be diagnosed 
with GISTs at any age, yet they rarely occur (0.5%) in indi‑
viduals younger than 20 years. The median age of detection is 
estimated to be 65 years of age (1,2,6,8).

Generally, patients presenting with GIST are asymptom‑
atic; nevertheless, some demonstrate non‑specific symptoms 
such as abdominal distension, pain, nausea or vomiting (1,8). 
The median tumor size at diagnosis is ~6 cm; however, it 
may reach 20  cm  (8). Although nodal metastases rarely 
follow a primary tumor, distant metastasis encompassing the 
abdominal cavity or the liver concern ~20% of patients at 
diagnosis (8,9). The leading treatment for GIST cases remains 
surgical resection (10). Standard first‑line therapy for inoper‑
able, metastatic or recurrent issues is the tyrosine‑kinase 
inhibitor imatinib (11).

Some of the most critical GIST carcinogenesis mutations 
occur in the tyrosine kinase family (KIT) or platelet‑derived 
growth factor receptor  A (PDGFRA) gene. Only a small 
proportion of GISTs seems to be associated with neither KIT 
nor PDGFR sporadic mutations and is assigned to the wild‑type 
(WT) group (5). KIT and PDGFRA mutation types might 
predict advanced or metastatic GIST response to imatinib (12). 
GISTs with KIT exon 11 mutations are the most sensitive to 
imatinib treatment, whereas KIT exon 9 mutations require 
a higher dosage of this inhibitor. On the other hand, cases 
with PDGRA D842V mutation are imatinib‑resistant (7,12). 
Despite the significant improvement in disease control and 
overall survival (OS) in advanced GIST cases associated with 
imatinib usage, patients frequently suffer from acquired or 
secondary resistance. Therefore, it appears essential to identify 
the mechanism underlying the resistance to develop an inter‑
vention that might be applied in this group of patients (13,14).

Risk stratification of GISTs attempts to evaluate the risk 
of an unfavorable outcome and select patients who may 
benefit from adjuvant therapy (15). Various risk stratification 
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systems have evolved over the years, but none is proved 
superior to the other  (6). The first risk stratification was 
proposed by Schaefer et al (12), predicting GIST malignant 
behavior by classification into very low, low, intermediate 
and high‑risk categories based on tumor size and mitotic rate. 
One of the widely used classification, Armed Force Institute 
of Pathology (AFIP) risk classification, is based on primary 
tumor site (extra‑gastric location has worse predicted outcome), 
mitotic count and primary tumor size (16). Notwithstanding 
this, all risk assessments present one common drawback 
concerning the non‑linear continuous character of variables 
such as tumor size and mitotic count (17). Moreover, behaviors 
of specific GIST subgroups [for example, succinate dehy‑
drogenase (SDH) deficiency] are less well predicted by all 
systems (18).

All things considered, while preparing holistic care for 
patients with GIST diagnosis, scientists might face several 
difficulties: Insufficient risk stratification, acquired or 
secondary resistance to imatinib or the need for an exceptional 
therapy method associated with wild‑type tumors. The present 
review summarizes recent advances associated with GIST 
biology that might enhance diagnostic and therapeutic strate‑
gies. The described area embraces angiogenesis, immunology, 
epithelial‑to‑mesenchymal transition, origin from Cajal cells, 
microRNAs, and Raf kinase inhibitory proteins. According to 
the authors' best knowledge, similar reviews encompassing the 
described area have not been published yet.

2. Angiogenic markers

Angiogenesis is proved to be one of the principal processes 
in tumor growth and metastasis promotion. It is regulated by 
a balance of angiogenic and anti‑angiogenic cytokines  (19). 
Anti‑angiogenic strategies are an area of great interest throughout 
the scientific world. They might be categorized into three groups: 
i)  Protein‑based immunotherapeutics directly neutralizing 
vascular endothelial growth factor (VEGF) (Bevacizumab); 
ii) receptor tyrosine kinase inhibitors (Sunitinib); and iii) antago‑
nists of the mammalian target of rapamycin (Everolimus) (20).

Anti‑angiogenic therapies eradicate the existing tumor 
vessels and obstruct the formation of new ones and conse‑
quently avert the tumor cell's nutrition. Moreover, such 
strategies decrease the degree of malignancy and increase 
the efficiency of conventional treatment. Notwithstanding 
this, single inhibition of VEGF receptors or tyrosine kinase 
receptors is insufficient for hindering the entire angiogenesis 
process and might develop an adaptive resistance towards 
treatment, partly due to changes in the immune microenviron‑
ment of the tumor (21). Despite their defects, anti‑angiogenic 
therapies present high potential and need further research, 
encompassing specific molecules that may contribute to estab‑
lishing highly effective personalized oncological treatment.

As far as GIST is concerned, the enormous role of angio‑
genesis in tumor progression is verified by the high efficiency 
of second‑line Sunitinib. The primary mechanism of Sunitinib 
targets multiple receptor tyrosine kinases, including these for 
VEGF‑critical mediators of angiogenesis (13).

VEGF expression is frequently increased in GIST‑ 
accounted positively for 60‑80% of all studied cases (22‑24). 
Null or weak expression of VEGF is associated with better 

prognosis [higher progression‑free survival (PFS) and OS], 
independently of the tumor genotype. Moreover, low VEGF 
expression is associated with a high therapeutic response 
to imatinib mesylate (13,24). In general, GIST cells do not 
express VEGF‑C, playing a critical role in node metastasis 
via lymphangiogenesis (25). The lack of VEGF‑C expression 
could be one of the pivotal mechanisms explaining the rare 
occurrence of lymph node metastases among patients with 
GIST diagnosis (26).

Among other angiogenic factors, endoglin (CD105) and 
platelet endothelial cell adhesion molecule (PECAM‑1) are 
considered to be associated with patients outcomes (24). In 
GISTs, the association between the strong immunohistochem‑
ical staining of CD105 with various morphological criteria is 
associated with a worse prognosis, encompassing a mitotic 
index above 5 mitoses per 50 high‑power fields and a high 
degree of risk (27). Moreover, the average value for the CD105 
and PECAM‑1 expression is significantly higher in patients 
with poor prognosis compared with the group of patients who 
are presented without recurrence (24,28).

Fibroblast growth factors (FGFs) and their receptors 
(FGFRs) are known as the potent regulators of angiogen‑
esis  (29). Massive secretion of the multiple chemokines, 
including FGF‑2, was discovered to be induced by the imatinib 
c‑KIT inhibition. Increased production of FGF‑2 by GIST cells 
treated with imatinib activates the FGF‑2/FGFR autocrine 
loop that presents a negative impact on the disease progression 
and might become one of the most important mechanisms 
underlying imatinib‑resistance among some patients with 
GIST (30). Inhibition of FGF‑signaling in imatinib‑resistant 
patients was proved to restore their sensitivity to the applied 
treatment (31). Moreover, the combined inhibition of KIT and 
FGFR signaling increases growth inhibition in GIST cells 
both in vitro and in vivo (32).

Collagen and calcium‑binding EGF domain‑containing 
protein 1 (CCBE1) is suggested to function as an independent 
regulator of budding and migration of lymphangioblasts, and as 
a result, to promote lymphangiogenesis (33). Notwithstanding 
this, in the study conducted on GIST tissues, CCBE1 was 
proved to be specifically located in the vessel wall with 
co‑localization of a marker of vascular endothelial cells ‑ 
CD31  (34). Higher levels of CCBE1 were associated with 
higher risk groups of GIST, lower survival and were suspected 
of counteracting the anti‑tumor effects of imatinib  (34). 
However, studies conducted on ovarian and breast cancers 
presented contradictory findings - higher CCBE1 expression 
was associated with better survival rates (35). In conclusion, 
CCBE1 action seems to be contextually based upon tumor 
origin ‑ epithelial or mesenchymal.

3. Origin from Cajal cells

Hirota et al  (36) found in 1998 that GISTs originate from 
interstitial cells of Cajal (ICCs) in the myenteric plexus of the 
alimentary tract. Pacemaker potentials of ICCs suggest that 
mutations in genes required for synapse and neural develop‑
ment might underlie some GIST behaviors (37). Moreover, the 
neuroendocrine phenotype of GIST was proved by the presence 
of synaptic‑like micro‑vesicle proteins, ghrelin, and peptide 
hormone receptors in the analyzed GIST specimens (38).
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ICCs requires the principal signaling regulator-KIT, and a 
lineage‑specific master transcription factor-ETS translocation 
variant 1 (ETV1), for lineage specification and survival (39). 
ETV1 is a master regulator of an ICC‑GIST‑specific transcrip‑
tion network predominantly through enhancer‑binding (40). 
The transcription of KIT and ETV1 is directly regulated by 
the forkhead family member, FOXF1, that co‑localizes with 
ETV1 at enhancers (39). Mutant KIT and ETV1 form a positive 
feedback loop, in which KIT excessively activates downstream 
mitogen‑activated protein kinase (MAPK) signaling that 
stabilizes ETV1. In turn, ETV1 consolidates mutant KIT overex‑
pression (39,40). In GIST xenografts, the treatment combination 
of imatinib and MEK162 (a MEK inhibitor) resulted in a prac‑
tically complete response with rapid inhibition of the MAPK 
activity, loss of ETV1 protein, and downregulation of ETV1 
target genes. This therapy represents a significantly more effec‑
tive treatment strategy than imatinib alone and might prevent 
the development of imatinib‑resistance (41). Another therapeutic 
option includes the inhibition of PDGFRA by crenolanib, a novel 
potent pharmacological inhibitor of wild‑type and oncogenic 
type of receptor tyrosine kinase III with high selectivity for 
PDGFRA relative to KIT. The inhibition of PDGFRA disturbs a 
KIT‑EKR‑ETV1‑KIT signaling loop and promotes proteasomal 
degradation of ETV1 through decreased ERK‑MAPK phos‑
phorylation (42). The protein level not significantly affected by 
the KIT or MARP pathways perturbations is FOXF1. Notably, 
FOXF1 loss results in decreased ETV1 protein expression and 
global loss of ETV1 chromatin binding. It creates a unique ther‑
apeutic opportunity to target the cellular context for all GIST 
cases, including those that do not pose drug‑sensitive mutations, 
such as SDH‑deficient ones (Fig. 1) (39).

Contrary to all the aforementioned findings concerning 
ETV1, in the study by Sakamaki et al  (43), ETV1 mRNA 
expression was negatively associated with malignancy, with 
detected attenuation in aggressive and malignant cases of 
GIST. Patients with low ETV1 expression experienced shorter 
relapse‑free survival (RFS) compared with patients with a 
higher one. Notwithstanding this, the findings aforementioned 
concerned only ETV1 mRNA, being different from the 
protein, and a negative feedback system regulating mRNA by 
the level of ETV1 protein might try to explain the results (43).

Cell adhesion molecules, including Slitrk3 (ST3), are 
essential for establishing and regulating the synaptic connec‑
tions  (44). The function of ST3 in carcinogenesis remains 
unclear; however, its expression was detected in GIST tissues 
in accordance with clinicopathological features  (37). ST3 
expression was correlated with decreased OS and disease‑free 
survival (DFS) and was proposed as a new enhancement for 
widely applied AFIP risk stratification classification (37,45).

Cell adhesion molecule L1‑like protein (CHL1) is a 
multidomain type 1 membrane glycoprotein of the immuno‑
globulin superfamily playing various functions in developing 
the neuronal system. Its role in cancer cell growth, invasion 
and migration was demonstrated in numerous studies encom‑
passing different types of malignancies (46). GIST expresses 
CHL1 on mRNA as well as on protein level. Moreover, 
systemic CHL1 levels are increased in patients with GIST 
and is associated with a shortened RFS, regardless of other 
clinicopathological parameters (47).

Phosphodiesterase 3A (PDE3A) is identified as an ICCs 
marker playing an influential role in their development; 
however, not essential for their occurrence (48). PDE3A is 
found in most GIST samples, regardless of their histological 
type, and thus, might be suggested as a prospective novel 
marker for the patient prognosis (49).

4. MicroRNAs

MicroRNAs (miRNAs) are small endogenous RNAs that 
regulate post‑transcriptional silencing of target genes (50). 
Deregulated expression of various miRNAs confers the malig‑
nant cells tumorigenic potential. Considering the complexity 
of miRNAs connections involved in carcinogenesis, focusing 
on a single miRNA molecule represents a limited clinical 
approach  (51). Emerging evidence highlights that miRNA 
dysregulation is an essential component in GIST expansion; 
nevertheless, the entire mechanism remains unclear (52). Some 
miRNAs (miR‑148b‑3p, miR‑494, miR‑218) negatively regu‑
late KIT protein expression and inhibit GIST cell proliferation 
and invasion (53‑55).

On the other hand, miR‑218 might improve GIST cells' 
sensitivity to imatinib through PI3K/AKT signaling 

Figure 1. A simplified scheme of dependencies between molecules associated with interstitial cells of Cajal and genes.
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pathway (56). As far as prognosis is concerned, overexpression 
of miR‑196a and low expression of miR‑186 are associated 
with poorer prognosis in patients with GIST  (57,58). As 
previously mentioned, focusing on a single miRNA brings 
limited evaluation; however, undoubtedly, miRNAs present 
an enormous impact on GIST biology. miRNA is suspected 
of building regulatory networks controlling various cellular 
functions  (59). Generating miRNA networks that would 
predict miRNAs' regulatory functions is a promising approach 
that might help select potential biomarkers and therapeutical 
targets in cancer, including GISTs (51).

Due to the involvement of miRNA in carcinogenesis, 
therapeutics based on these molecules represent one of the 
significant areas of scientists' interest. Various candidates 
have been identified as potential therapeutic applications; 
nevertheless, there is still much to learn about transforming 
them into effective, targeted drug delivery systems  (60). 
Commonly, miRNA‑based therapeutics are tolerated well in 
humans in various ongoing cancer‑associated clinical trials. 
The treatment strategy is based mainly on the anti‑miRNAs 
that inhibit the mature miRNAs from binding to their targets 
and consequently block the participation of these miRNAs 
in cancer development  (61). Leading barriers associated 
with this therapy are specific delivery platforms to reach the 
targeted cell or miRNA. Suggested areas that can be used 
to formulate miRNAs delivery effectively are virus‑based 
carriers (lentiviruses, adenoviruses or adeno‑associated 
viruses), biocompatible and biodegradable liposomes, or 
nanoparticles (62). Extensive research on the mechanism of 
pharmacological miRNA targeting and the optimization of 
application methods might enable the future implementation 
of miRNA‑based therapeutics into the oncological schemes, 
including those for patients with GIST diagnosis.

5. Immune system

Imatinib prolongs patients' survival not only by its direct effect 
on tumor cells but also by indirect immunostimulatory effects 
on T and NK cells; thus, appropriate complementary immu‑
notherapy might further improve the patients' outcomes (63). 
GIST microenvironment presents a suppressed immune 
system, due to the high infiltration of tumor‑associated 
macrophages  (TAMs) that promote tumor development by 
suppressing Th1‑mediated inflammation and stimulating 
angiogenesis (64).

In a GIST animal model, imatinib increases the activa‑
tion, proliferation and frequency of intratumoral CD8+T cells 
and, on the other hand, results in the apoptosis of regula‑
tory T  cells (Tregs)  (65). The mechanism underlying this 
phenomenon might be associated with the overexpression of 
the enzyme indoleamine 2,3‑dioxygenase (IDO) in malig‑
nant cells. IDO functions as one of the primary regulators 
in the biological progression of malignancies by suppressing 
T and natural killer (NK) cells, generating and activating 
Treg cells. Imatinib was proved to decrease IDO expression, 
leading to CD8+T cells activation and Tregs apoptosis (66). 
Moreover, IDO inhibition by imatinib partially accounts for 
the anti‑tumor efficacy of complementary programmed death 
receptor 1 (PD‑1)/programmed cell death 1 ligand 1 (PD‑L1) 
blockade. PD-L1 expression, triggered by interferon‑γ (INF‑γ) 

has been proven to be an independent factor of poor prog‑
nosis in GIST (67,68). Both in vivo and in vitro, anti‑PD‑1 
and anti‑PD‑L1 had no efficacy when used alone. Still, 
they enhanced the effectiveness of imatinib by increasing 
T  cell effector function in the presence of KIT and IDO 
inhibition (67,69). The primary resistance to PD‑1 might be 
associated with the residence of GIST‑associated macrophages 
expressing IDO1 leading to the immune‑suppressive pheno‑
type of malignancy cells (70).

Chemokines are a class of chemotactic cytokines with 
low molecular mass involved in cancer progression (71). 
CC chemokine receptor type 8 (CCR8) is one of the most 
critical chemokine receptors, mainly expressed in Tregs. Its 
ligand, CCL1, enhances Treg immunosuppressive activity 
through CCR8 recruitment, with a positive feedback 
loop (72). In GIST specimens, low expression of CCR8 was 
positively associated with the patients' survival (10). CCR8 
recruits FOXP3+ Treg cells to reveal an immunosuppressive 
function, which results in a decreased proportion of CD8+ 
T cells/Tregs and leads to a poor prognosis in solid malig‑
nancies  (73,74). Interaction between another chemokine 
receptor, CXC chemokine receptor (CXCR) 4 and its ligand 
CXC chemokine ligand (CXCL) 12, is one of the postulated 
mechanisms leading to the increased organ‑specific metas‑
tasis development  (75). One of the most repeated GIST 
mutations, KIT exon 11 557‑558 deletion, enhances ETV1 
and increases CXCR4 expression in GIST cells. Typically, 
GIST metastases occur in the liver. CXCL12 expressed by 
hepatic cells attracts GIST  cells harboring upregulated 
expression of CXCR4 (8,71).

6. Raf kinase inhibitory protein (RKIP)

Raf kinase inhibitory protein (RKIP) is a highly conserved 
kinase inhibitor functioning as a metastasis suppressor in 
various malignancies; thus, its downregulation is proved to 
be a frequent occurrence in metastatic tumors (76). The high 
possibility of negative RKIP expression in GISTs is corre‑
lated with larger tumor size, despite no association with the 
number of mitotic figures (77). The lack of RKIP expression 
restrains the MAPK signaling pathway regulating the cell 
cycle, resulting in increased proliferation of tumor cells (78). 
Patients with higher RKIP expression are suspected of having 
an improved prognosis with higher survival rates; however, it 
cannot be an independent prognostic factor in GIST (77,79).

7. Epithelial‑to‑mesenchymal transition (EMT)

EMT is a reversible cellular program that transiently changes 
epithelial cells into a mesenchymal phenotype characterized 
by loss of apical‑basal polarity, reorganization of their cyto‑
skeleton and increased cellular motility. EMT enables cancer 
cells to fulfill the invasion‑metastasis cascade, encompassing 
local invasion, intravasation and extravasation. On the other 
hand, to efficiently form macroscopic metastases, carcinoma 
cells need to revert to a more epithelial phenotype by under‑
going mesenchymal‑epithelial transition (MET). Pathologists 
might use the detection of many of the EMT‑associated 
protein markers as highly specific indicators of high‑grade 
malignancy (80,81).
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Osteopontin (OPN) plays a predominant regulatory role in 
expressing many well‑known EMT activators, thus being recog‑
nized as a critical regulator of the entire process. Moreover, OPN 
can modify the tissue and tumor microenvironment to support 
EMT by generating cancer‑associated fibroblasts (82,83). The 
clinical significance of OPN as a biomarker for poor prognosis 
has been reported in GISTs; increased OPN expression was 
significantly associated with higher mitosis rate, poor recur‑
rence prognosis, high‑risk status and worse DFS (84). OPN, 
upon its interaction and upregulating effect on CD44 surface 
expression, was proved to contribute to tumor cell prolif‑
eration. CD44 is an OPN receptor highly expressed in the vast 
majority of malignancies and promotes processes involved in 
metastases via interaction with appropriate extracellular matrix 
ligands (85). High OPN expression and its interaction with 
CD44 is correlated with elevated mitosis rate in GIST tissues, 
possibly through subsequent downstream signaling contrib‑
uting to the enhanced proliferation (84). Moreover, OPN elicits 
an anti‑apoptotic effect through β‑catenin‑mediated upregula‑
tion of anti‑apoptotic protein‑induced myeloid leukemia cell 
differentiation protein (Mcl‑1), and as a result, attenuates 
imatinib‑induced apoptosis in GIST in vitro. The discussed 
mechanism might underly drug resistance to imatinib among 
some patients with GIST (14).

Another molecule affecting EMT and being studied in 
GIST is long non‑coding RNA (lncRNA) AOC4P. AOC4P 
regulates EMT by affecting the production of vimentin, one 
of the EMT and metastasis markers. The expression of various 
EMT markers, including vimentin, transforming growth 
factor‑β1, ZEB1 and Snail, was significantly higher in GIST 
tissues compared with normal ones. In contrast, the expres‑
sion of E‑cadherin was found to be lower. This association 
was particularly significant in high‑risk GIST cases. The 
downregulation of E‑cadherin is the hallmark of the EMT in 
cancer. The decrease in E‑cadherin leads to the exacerbation 
of GIST development, conversion of cytokeratin into vimentin, 
and consequently, EMT acceleration. The EMT process might 
be inhibited by AOC4P silencing that induces the increase 
in E‑cadherin and the decrease in vimentin in carcinoma 
cells (86‑88).

Slug, a member of the SNAIL family, is the most thor‑
oughly investigated EMT regulator. Overexpression of Slug 
suppresses the expression of E‑cadherin and increases the 
cancer cells' invasiveness (87). Approximately 90% of GIST 
cases might display SLUG overexpression. Nuclear positivity 
for SLUG is observed in GIST cases with distant metastasis, 
especially strong in extra‑gastrointestinal ones (89). SLUG 
acts as a nuclear transcription factor and is more commonly 
expressed by large GISTs with pleomorphic nuclei and a 
high mitotic index. SLUG is described as an indicator of 
patients' unfavorable RFS. Downregulation of this member 
of the SNAIL family inhibits cell proliferation, induces cell 
death, and sensitizes GIST cells to the lower concentrations of 
imatinib (90). The molecules involved in the EMT are summa‑
rized in the Table I.

8. Conclusion

Broadened knowledge considering GIST biology is a 
promising window for developing improved diagnostic and 

therapeutic strategies. Mutations in genes required for synapse 
and neural development may underlie some GIST behaviors, 
while miRNA dysregulation is an essential component in 
GIST expansion. On the other hand, resistance to imatinib 
may be associated with epithelial‑mesenchymal transition. 
New molecules might be incorporated into risk stratifica‑
tion schemes due to their proven association with outcomes; 
however, further research is required. Therapies based on the 
significant role of angiogenesis, immunology and neural origin 
in the GIST biology could become a valuable enhancement of 
currently implemented treatment schemes. Although multiple 
obstacles must be defeated, developing an understanding of 
GIST carcinogenesis presents a promising future.
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