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Abstract. Ovarian cancer remains a significant health problem 
for women in the world due to its diagnosis at advanced stages 
of disease and the high mortality rate of patients. To date, 
ovarian cancer is frequently treated with tumor reduction 
surgery followed by platinum/paclitaxel‑based chemotherapy; 
however, most patients eventually develop relapsed disease. 
The mRNA expression levels of interleukin-33 (IL‑33) and the 
suppressor of tumorigenicity 2 (ST2) receptor are significantly 
upregulated in ovarian cancer tissues and metastatic tumor 
lesions. In addition, IL‑33 and ST2 expression has been asso‑
ciated with a poor overall survival in patients with epithelial 
ovarian cancer. The IL‑33 receptor ST2 is expressed as both a 
membrane‑anchored receptor (ST2L) activated by IL‑33, and 
as a soluble variant that exhibits anti‑inflammatory properties. 
In the present review, the functions of the IL‑33/ST2L axis 
in cells and their aberrant expression levels in ovarian cancer 
were discussed. In addition, targeting their expression as a 
novel strategy for the control of ovarian cancer progression 
was emphasized.
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1. Introduction

Ovarian cancer is the most deadly gynecologic malignancy 
in women worldwide due to its diagnosis at advanced stages 
of disease (1). There were an estimated 22,240 new cases with 
14,070 deaths in the United States in 2018 (2). To date, most patients 
with ovarian cancer undergo tumor reduction surgery followed by 
chemotherapy with platinum/paclitaxel‑based regimens; however, 
chemoresistance often develops, resulting in treatment failure and 
a mortality rate of >90% (3). Thus, an improved understanding 
of ovarian cancer pathogenesis and the development of novel 
therapeutic strategies may help medical oncologists to clinically 
control ovarian cancer. Previous studies have shown that the 
mRNA expression levels of interleukin (IL)‑33 and the suppressor 
of tumorigenicity 2 (ST2) receptor are significantly upregulated 
in ovarian cancer tissues and tumor metastatic lesions compared 
with those of normal ovarian tissues (3,4). In addition, IL‑33 
exhibits significantly higher expression in both serous and muci‑
nous ovarian malignancies compared with in benign ones, which 
is associated with an increase in tumor grade (5). Other studies 
have reported that increased IL‑33 and ST2 expression is asso‑
ciated with a shortened survival time of patients with epithelial 
ovarian cancer (4,6). The IL‑33 receptor ST2 is expressed as both 
a membrane‑anchored receptor (ST2L) activated by IL‑33, and as 
a soluble variant (sST2) that exhibits anti‑inflammatory proper‑
ties (7). In the present review, the importance of the IL‑33/ST2L 
axis in the progression of ovarian cancer was discussed, as well 
as the therapeutic approaches to control the IL‑33/ST2L axis for 
patients with ovarian cancer.

2. Treatment approaches for ovarian cancer

The worldwide incidence and mortality rates of ovarian cancer 
have increased to 41.2% during the past decades from 1990 
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to 2010 (8). The high‑risk groups for ovarian cancer include 
women who have not given birth to children  (9), women 
with early first menstruation or late menopause (10), obesity, 
patients treated with hormone replacement therapy (11) and 
carriers of germline BRCA1 or BRCA2 mutations (12). The 
high mortality rate is mainly due to its diagnosis at advanced 
stages of the disease, with <20% of patients with ovarian 
cancer diagnosed at early stages (1).

Resection surgery, chemotherapy and radiotherapy are the 
primary options to treat ovarian cancer clinically; however, 
frequent recurrence of advanced ovarian cancer after chemo‑
radiation therapy remains a clinical challenge (13). Altered 
tumor cell metabolism has drawn much attention as one of 
the causes of cancer chemoresistance; for example, cancer 
stem cells are known to be highly chemo‑resistant and to 
maintain survival by altering key metabolic pathways (14). 
Therefore, the combination of chemotherapeutic agents 
with immune‑targeting methods is a promising approach 
for overcoming drug resistance (15). For example, patients 
with advanced ovarian cancer in remission treated with 
cyclophosphamide‑modulated vaccination had a trend towards 
improvement in survival compared with those treated with 
vaccination alone  (16). In addition, accumulated evidence 
revealed that cancer stem cells serve a role in disease relapse 
after chemotherapy  (1). Moreover, patients with ovarian 
cancer with BRCA1 or BRCA2 mutations exhibit an improved 
response rate to platinum/paclitaxel chemotherapy compared 
with non‑carriers (17,18). Furthermore, hormonal therapy and 
immunotherapy (19,20), as well as palliative care, are also 
utilized to treat ovarian cancer (21).

Epithel ia l ovar ian cancer is considered as an 
immunogenic tumor that can be recognized by the immune 
system of patients  (22). Previous studies have reported 
that tumor‑activated T lymphocytes and antibodies can be 
detected in the blood, tumor and ascite samples of patients 
with advanced‑stage ovarian cancer (23,24). The recruitment 
of regulatory T lymphocytes (Tregs) into the ovarian cancer 
microenvironment confers immunity privilege and is 
associated with a poor prognosis and a decreased survival (25). 
Additionally, high mRNA expression levels of programmed 
death‑ligand 1 are associated with a poor prognosis in epithelial 
ovarian cancer (26). These altered immune responses serve 
an important role in ovarian cancer pathogenesis and disease 
progression. Thus, new and more effective immunotherapies 
may provide a novel option to treat ovarian cancer, although 
this treatment remains to be assessed clinically (27).

3. IL‑33/ST2 axis

IL‑33 was originally identified in canine vasospastic cerebral 
arteries following subarachnoid hemorrhage (28) and subse‑
quently in human tissues in 2003 (29). In 2005, IL‑33 was 
identified as a member of the IL‑1 superfamily of cytokines 
and as a ligand of ST2 (30). The IL33 gene is localized at 
human chromosome 9p24.1, and IL‑33 cDNA encodes poly‑
peptides of 270 amino acid in humans, with a protein mass of 
30 kDa (31). IL‑33 protein is composed of two evolutionary 
conserved domains: The amino (N)‑terminal nuclear domain 
and the carboxyl (C)‑terminal IL‑1‑like cytokine domain (32). 
It has been demonstrated that the N‑terminal part of IL‑33 

is necessary for the nuclear targeting of epitope tagged 
(GFP‑fused) IL‑33 and for translocating IL‑33 (tagged with 
N‑term‑discosoma recombinant red fluorescent protein) to the 
nucleus in a mouse model (33,34). Regarding the C‑terminal 
IL‑1‑like cytokine domain of IL‑33, this has a β‑trefoil fold 
that interacts with the extracellular domain of ST2, thereby 
exerting the cytokine function of IL‑33 (35).

IL‑33 is expressed in dendritic cells, B cells, T helper (Th)1 
cells, CD8+ T cells, natural killer cells, neutrophils and macro‑
phages (36,37). IL‑33, as a member of the IL‑1 family, functions 
to induce production of Th2‑associated cytokines in Th2 
cells, mast cells, eosinophils and basophils after binding and 
activating ST2 (30,38). ST2, also called IL‑1 receptor‑like 1, 
is an interleukin‑1 receptor family glycoprotein  (39). To 
date, three isoforms of ST2 have been identified, including a 
full‑length transmembrane isoform ST2L, a soluble form sST2 
and a novel variant ST2V of undetermined localization (31,40). 
The sST2 lacks the transmembrane domain and binds to IL‑33 
as a decoy receptor, which possesses anti‑inflammatory prop‑
erties (7,41) in the human body.

IL‑33 is a dual function protein that acts intracellularly as 
a nuclear factor regulating transcription and extracellularly as 
a potent cytokine (42). Full‑length IL‑33 can target the nucleus 
to bind to histones H2A and H2B as a chromatin‑related 
nuclear factor  (32,43). In addition, IL‑33 can repress the 
expression levels of NF‑κB‑regulated genes that are necessary 
for pro‑inflammatory signaling by interacting with the 
N‑terminal domain of the p65 subunit of NF‑κB (44). A study 
in multiple sclerosis revealed that IL‑33 can activate histone 
deacetylase 3 activities, thereby affecting gene expression 
through remodeling chromatin structure and epigenetic 
mechanisms (45).

Furthermore, IL‑33 has been demonstrated to be a 
tissue‑derived nuclear cytokine and is expressed in epithelial, 
endothelial and fibroblastlike cells under both homeostatic 
and inflammatory conditions (12). Additionally, IL‑33 func‑
tions as a stress‑response protein, since it is highly expressed 
in the nucleus of endothelial and epithelial cells after damage 
or infection with a pathogen, resulting in its release from the 
nucleus to the extracellular space as an endogenous ‘danger’ 
signal to alert the immune system (46‑48). IL‑33 is widely 
expressed in various organs, including the brain, heart, liver, 
kidney, spleen and lung  (49). IL‑33 possesses pleiotropic 
activities during Th1, Th2 and regulatory immune responses, 
and serves an important role in fibrotic, infectious and chronic 
inflammatory diseases  (36). IL‑33 functions to promote 
or inhibit disease progression depending on the disease 
type (31). For example, IL‑33 mRNA expression is signifi‑
cantly increased in the inflammatory mucosa of patients with 
inflammatory bowel disease and in mice with dextran sulfate 
sodium‑induced colitis (50). In addition, previous studies have 
revealed that the IL‑33/ST2 axis demonstrates an adverse effect 
on the pathogenesis of systemic lupus erythematosus (51), 
as  well  as promoting tubular cell injury and interstitial 
fibrosis in obstructive kidney disease  (52). Moreover, the 
serum levels of IL‑33 and sST2 are elevated in patients with 
sepsis, suggesting the involvement of the IL‑33/ST2 axis in 
the pathogenesis and progression of sepsis (53‑55). Another 
study has demonstrated that IL‑33 expression is upregulated 
in the serum and synovial fluid samples of patients with 
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rheumatoid arthritis and is associated with disease progres‑
sion (56). However, IL‑33 and ST2 expression is beneficial 
in a non‑alcoholic fatty liver disease mouse model primarily 
by decreasing high‑flow dialysis‑induced hepatic steatosis 
and serum alanine aminotransferase levels, while improving 
insulin resistance and glucose tolerance (31).

In human cancer, the IL‑33/ST2 axis promotes lung 
cancer cell migration and invasion through the protein kinase 
B pathway (57). In addition, IL‑33 expression is upregulated 
in the serum of patients with gastric  (58), non‑small cell 
lung (59) and breast cancer (60). By contrast, IL‑33 possesses 
a tumor‑suppressor role in sporadic colon cancer; the 
IL‑33/ST2 axis regulates the tumor microenvironment by 
recruiting immune cells that support malignant hyperplasia 
or alter antitumor immunity (61). In addition, IL‑33/ST2L 
signals trigger the transcription of downstream inflammatory 
genes and anti‑inflammatory genes by activating various 
intracellular kinases and factors, thereby activating the 
inflammatory immune response (62). The latest data indicate 
that the IL33/ST2 axis in Tregs is an important pathway that 
allows Tregs to accumulate in the tumor microenvironment, 
suggesting that the IL33/ST2 axis may be a potential 
therapeutic target for cancer immunotherapy (63). Overall, 
the aforementioned studies demonstrate the pleiotropy of 
IL‑33 in regulating antitumor immunity or tumor growth.

4. IL‑33 in ovarian cancer

IL‑33 expression fluctuates with specific ovarian functions, 
such as ovulation and estrus cycles (64). Studies have revealed 
that IL‑33 is the most significantly upregulated immune mole‑

cule during ovulation (64,65). Numerous randomly sampled 
ovaries expressed a higher level of IL‑33 compared with other 
organs, except with ovaries sampled at IL‑33 expression peak 
in the estrous cycle and during ovulation (64). This suggests 
that some additional unknown factors may affect IL‑33 expres‑
sion. It has been revealed that IL‑33 expression is significantly 
upregulated in ovarian cancer tissues and metastatic tumor 
lesions compared with in benign ones (5). In addition, compared 
with in normal human ovarian tissue samples, upregulation of 
ST2 was detected in 66% primary ovarian tumors and 87% 
metastatic ovarian tumors, which was more marked than the 
upregulation of IL‑33 expression in 59% of primary sites 
and 76% of metastatic ovarian tumors (6). Another study has 
demonstrated that high IL‑33 and ST2 expression is closely 
associated with a poor overall survival of patients with epithe‑
lial ovarian cancer (6), indicating that the altered expression of 
the IL‑33/ST2 axis serves an important role in the progression 
of ovarian cancer and that the detection of their expression 
may be utilized as a biomarker for a poor prognosis in patients 
with ovarian cancer.

Since 70% of ovarian cancers are diagnosed at advanced 
stages of disease with metastasized tumors, it is crucial to 
assess and investigate the molecular mechanisms involved 
in the invasiveness and metastasis of ovarian cancer (66,67). 
A previous study has analyzed the microarray data from 
the Gene Expression Omnibus comprehensive database and 
found that patients with low dual‑specificity phosphatase 5 
(DUSP5) expression have significantly shorter overall survival 
than those with high expression  (68). DUSP5 is a nuclear 
ERK1/2‑selective phosphatase induced by ERK signaling 
in mammalian cells, which selectively binds and inactivates 

Figure 1. Possible role of IL‑33 signaling pathways in ovarian cancer cells. Low DUSP5 expression decreases the dephosphorylation of ERK, thereby increasing 
IL‑33 expression. IL‑33 promotes the proliferation and inhibits the apoptosis of ovarian cancer cells by downregulating p27, Fas and TRAILR1 in vitro. IL‑33, 
interleukin-33; Fas, Fas cell surface death receptor; TRAILR1, tumor necrosis factor‑related apoptosis‑inducing ligand receptor 1; DUSP5, dual‑specificity 
phosphatase 5; P, phosphoryl group; ST2, suppressor of tumorigenicity 2. 
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ERK1 and ERK2 in vivo, and is a direct transcriptional target 
of the tumor suppressor p53 (69‑71). The latest data indicate 
that silencing of DUSP5 transcription is able to increase 
the expression and secretion of IL‑33, thereby promoting 
the proliferation, migration and invasion of ovarian cancer 
cells  (68). Furthermore, a previous study has revealed 
changes in signal transduction pathways after treatment 
of epithelial ovarian cancer cells with full‑length human 
IL‑33, with increased phosphorylation of JNK and ERK 
proteins; however, after using sST2 to neutralize IL‑33, the 
phosphorylation of ERK and JNK was completely blocked (6). 
By contrast, treatment of human ovarian cancer CAOV3 
and HO8910 cells with the selective ERK inhibitor U0126 
significantly suppressed ERK phosphorylation, blocking the 
effects of IL‑33‑mediated increase in tumor cell migration and 
invasion, as well as tumor cell viability and proliferation (6). 
Additionally, the JNK pathway inhibitor SP600125 inhibited 
JNK phosphorylation in CAOV3 and HO8910 cells, but 
had no effect on IL‑33‑induced cell migration and invasion, 
even though they were able to block tumor cell viability and 
proliferation in IL‑33‑induced CAOV3 cells (6). Furthermore, 
a recent study reported that IL‑33 promoted the proliferation 
and inhibited the apoptosis of ovarian cancer cells by 
downregulating p27, Fas cell surface death receptor and tumor 
necrosis factor‑related apoptosis‑inducing ligand receptor 1 
(TRAILR1) in vitro (4). The aforementioned studies indicated 
that low DUSP5 expression decreases the dephosphorylation 
of ERK, thereby increasing IL‑33 expression, which promotes 
tumor cell invasion and metastasis through the phosphorylation 
of ERK and the other aforementioned pathways. In summary, 
low DUSP5 expression may decrease the dephosphorylation 
of ERK, thereby increasing IL‑33 expression; IL‑33 may then 
promote the proliferation of ovarian cancer cells and inhibit 
their apoptosis by downregulating p27, Fas and TRAILR1 
expression. This process may lead to the survival of patients 
with low DUSP5 expression to be shorter than those with high 
expression (Fig. 1). However, the precise underlying mechanism 
of IL‑33/ST2‑promoting tumor growth and metastasis remains 
to be determined.

In addition, fur ther investigations regarding the 
conflicting functions of IL‑33 in different types of cancer 
are required. For example, one study has revealed that IL‑33 
is a key mediator in the development of inflammation‑asso‑
ciated pancreatic cancer by upregulating the secretion of 
pro‑inflammatory IL‑6 and IL‑8  (72), whereas another 
study has reported that transgenic IL‑33 was able to acti‑
vate natural killer and CD8+ T cells to inhibit the growth 
and metastasis of melanoma and lung cancer in animal 
models  (73). However, in ovarian cancer, studies have 
demonstrated that a local intraperitoneal injection of IL‑33 
is able to delay ovarian cancer peritoneal metastases, indi‑
cating the efficacy of IL‑33 for the treatment of abdominal 
metastatic cancer (74,75).

5. Conclusion

Nearly 30 years have passed since the discovery of IL‑33, 
and numerous studies have been conducted to determine 
the molecular structure, distribution, receptor binding and 
signaling pathways of IL‑33. The knowledge regarding the 

molecular basis of IL‑33 signaling is relatively comprehensive. 
To date, the literature presents great progress in understanding 
the function of IL‑33 in ovarian cancer. However, future 
studies are required to fully understand the role of IL‑33 in 
the regulation of signaling pathways and regulatory networks 
in ovarian cancer. Targeting IL‑33 and its signaling pathways 
may function as a novel strategy to control ovarian cancer 
progression.
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