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Abstract. Breast cancer is the most prevalent cancer in 
women worldwide. Triple‑negative breast cancer (TNBC) is 
characterized by the lack of expression of estrogen receptor, 
progesterone receptor, and human epidermal growth factor 
receptor 2. It is the most aggressive subtype of breast cancer 
and accounts for 12‑20% of all breast cancer cases. TNBC is 
associated with younger age of onset, greater metastatic poten‑
tial, higher incidence of relapse, and lower overall survival 
rates. Based on molecular phenotype, TNBC has been clas‑
sified into six subtypes (BL1, BL2, M, MES, LAR, and IM). 
TNBC treatment is challenging due to its heterogeneity, highly 
invasive nature, and relatively poor therapeutics response. 
Chemotherapy and radiotherapy are conventional strategies 
for the treatment of TNBC. Recent research in TNBC and 
mechanistic understanding of disease pathogenesis using 
cutting‑edge technologies has led to the unfolding of new lines 
of therapies that have been incorporated into clinical prac‑
tice. Poly (ADP‑ribose) polymerase and immune checkpoint 
inhibitors have made their way to the current TNBC treatment 
paradigm. This review focuses on the classification, features, 
and treatment progress in TNBC. Histological subtypes 
connected to recurrence, molecular classification of TNBC, 
targeted therapy for early and advanced TNBC, and advances 
in non‑coding RNA in therapy are the key highlights in this 
review. 
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1. Introduction

Breast cancer is a heterogeneous disease with varying biolog‑
ical and clinical characteristics. It is the most common cancer 
among women worldwide, accounting for 25% of all cancer 
cases (1). According to GLOBOCAN 2020, the incidence and 
mortality of breast cancer reported worldwide were 34,65,951 
new cases and 11,21,413 deaths, respectively; in India, 1,204,532 
new cases and 436,417 deaths were recorded in 2020 (2).

Immunohistochemical analysis of breast tumors is the 
gold‑standard method used in clinics to classify them based 
on the hormone receptor expression for improved thera‑
peutic decisions. Based on this, breast cancer can be broadly 
grouped into five types, namely: i) Progesterone receptor 
(PR)‑positive, estrogen receptor (ER)‑positive and human 
epidermal growth factor 2 (Her2)‑negative (luminal A); 
ii) ER‑positive, PR‑positive/negative and Her2‑positive 
(luminal B); iii) Her2‑overexpressing, ER‑ and PR‑negative; 
iv) ER‑, PR‑ and Her2‑negative (basal‑like or triple‑negative), 
and v) normal‑like (expression status similar to luminal A and 
resemble normal breast profile) (3‑5). Additionally, molecular 
breast cancer analysis identified a distinctive phenotype with 
low claudin expression, immune receptor, and EMT markers 
expression (6). Cancer types with the claudinlow phenotype 
are highly metastatic and associated with poor prognosis (7). 
Her2‑overexpressing cancer also displays high metastasis and 
poor prognosis (8). Among ER‑positive subtypes, luminal B 
is associated with a significantly worse prognosis than 
luminal A (9,10). Patients with basal subtypes of cancer with 
BRCA1 mutations have a poor prognosis (9).
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Based on specific gene expression patterns, breast cancers 
are categorized into five intrinsic or molecular subtypes.
Among the intrinsic subtypes, basal‑like triple‑negative breast 
cancer (TNBC) accounts for 12‑20% of breast cancers (11). 
TNBC has drawn specific attention due to the lack of expres‑
sion of all three receptors (ER, PR, and Her2). Thus, it 
cannot be treated using anti‑estrogen hormonal therapies or 
trastuzumab (12). Morphologically, TNBC is characterized 
by hyperdense masses without calcification, usually occur‑
ring in women <50 years of age. Histological features 
include significant lymphocyte infiltration, central necrosis, 
pushing tumor borders, and fibrosis (13). Cytokeratins, fascin, 
epidermal growth factor receptor (EGFR), caveolin, and 
vimentin are usually expressed in basal‑like TNBC (14,15). 
TNBC is challenging to treat, as it is quite complex due to 
poor cell differentiation, molecular heterogeneity, and rapid 
metastasis, often leading to chemoresistance and recurrence 
of the disease (16). Fast relapse and invasions are common 
features of TNBC tumors and show poor prognosis (17). 
Recent advances in omics technologies have provided insight 
into the molecular mechanisms underlying TNBC (18). The 
present review focuses on the different subtypes of TNBC and 
therapeutic approaches currently employed in the treatment of 
TNBC.

2. Histology‑guided classification of TNBC

Histologically, most TNBC is categorized as no special type 
(IDC‑NST) (17). Most IDC is characterized by pleomorphic 
cells with prominent nucleoli. The cells are organized into 
diffuse sheets, cords, nests with ductal differentiation. The 
rest of the tumors are categorized into 47 specific subtypes, 
such as invasive lobular carcinoma (relatively common), 
metaplastic carcinoma, medullary carcinoma, mucinous carci‑
noma, adenoid cystic carcinoma, secretory carcinoma, acinic 
cell carcinoma, neuroendocrine tumors, as well as the rarest 
glycogen‑rich clear cell carcinoma (19,20).

Among these specific subtypes (Fig. 1), medullary breast 
carcinoma occurs in <1% of patients and shows distinctive 
features, such as high lymphoplasmacytic infiltration, overex‑
pression of BCLG (a pro‑apoptotic gene); it bears more losses 
of heterozygosity than other subtypes and is immunomodula‑
tory (21,22). It is associated with better outcomes compared 
with other TNBC subtypes (22). Metaplastic carcinoma pres‑
ents unique pathologic features, where the glandular component 
may be partially or completely replaced by a non‑glandular 
component(s), and based on their differentiation status further 
divided into i) Squamous type, tumor with keratinization and 
squamous differentiation; ii) matrix‑producing type, tumor 
with more cells in the periphery; iii) mixed type, tumor 
showing both squamous differentiation and large high‑grade 
cells with pleomorphic nuclei; and iv) spindle‑cell type, tumor 
with storiform‑like spindle cells. These metaplastic tumors 
harbor mutations in the PIK3CA, Wnt (Wingless‑Type MMTV 
Integration Site Family) signaling pathway genes and display a 
unique copy number alteration pattern (23‑25). Adenoid cystic 
carcinoma (ACC) is characterized by the presence of dividing 
epithelial cells and myoepithelial cells producing mucinous 
membrane. ACC occurs in 0.1% of patients with basal‑like 
features (26,27) and expresses markers, such as cytokeratin 

5, ‑5/6, ‑14 and ‑17 (28). Secretory carcinoma is characterized 
by microcystic, solid and tubular architecture and presence of 
vacuolated tumor cells producing intracellular and extracel‑
lular secretions. It occurs in <1% of the patients and is referred 
to as juvenile carcinoma, as it is common in adolescents and 
often reported to have favorable outcomes. It is also character‑
ized by ETV6‑NTRK3 fusion (29‑31). The rarest among all 
the subtypes is glycogen‑rich clear cell carcinoma, in which 
the tumors appear in sheets and cells are polygonal in shape, 
with a clear cytoplasm and the presence of glycogen (32). In 
these sheets, there are areas of lymphocytic infiltration and 
plasma cells. 

Among the histological subtypes, adenoid cystic carcinoma 
has a median recurrence of only 2 months, and metaplastic 
carcinoma has ~9.9 months (33), compared to IDC‑NST and 
matrix‑producing metaplastic carcinoma, which are less 
aggressive, with 34 and 31.4 months of median time to recur‑
rence, respectively (20). 

Although the histological assessments were pointing to 
the presence of WBCs in and around the TNBC subtypes, 
focus on the presence of WBCs has led to the identification of 
TILS and TAMs, which are the parameters defining prognosis 
and therapy of TNBC. The TNBCs might be immunogenic 
due to mutations that lead to aberrant protein expression 
on the cell membrane (34). Tumor‑infiltrating lymphocytes 
(TILs) are white blood cells that migrate towards the tumor 
from the bloodstream via the newly formed blood vessels 
(angiogenesis), which cancer cells use for their nutritional 
and oxygen requirements (35). They consist of a mixture of 
B cells, macrophages, natural killer cells and are dominated 
by T cells (35). TILs are present in ~20% of TNBC tumors 
and carry a pivotal prognostic and predictive value (36). 
The presence of TILs indicates a good prognosis (37). High 
number of TILs indicate that there is an equilibrium between 
the immune status and cancer (38). The ratio of cancer cells: 
TILs is tilted towards TILs after surgical removal of a tumor, 
resulting in an improved prognosis in TNBC (38). A high 
mutation load and clonal heterogeneity are associated with 
a low number of TILs, which may provide an escape route 
to tumor cells from immune surveillance (39). However, in 
addition to TILs, the tumor microenvironment components 
also influence the outcome of patients with TNBC (39). 
Relapsing patients with TNBC have been shown to have low 
levels of TILs and a high number of CD163+ tumor‑associated 
macrophages (TAMs) compared with that of patients without 
relapse (39). High levels of CD8+ T cells may reflect improved 
sensitivity to chemotherapy, whereas high levels of TAMs 
correlate with poor patient outcomes (36). Nevertheless, a 
previous study in TNBC has reported paradoxical findings, 
with high levels of CD8+ T cells in the tumor stroma leading 
to the low infiltration of the tumor epithelium, thereby indi‑
cating a poor outcome (40). Therefore, immunohistological 
assessment for TILS or TAMS will help develop immuno‑
therapies detailed in section 7. 

3. Multiomics‑guided molecular classification of TNBC

Profiling based on gene expression has led to improved 
insight into tumor heterogeneity at the molecular level and 
has generated an impartial classification (Fig. 1). The PAM50 
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microarray set of 50 genes is used to identify breast cancer 
intrinsic subtypes (41). A set of 374 TNBC samples taken 
from 14 microarray datasets was analyzed to characterize 
TNBC subtypes using PAM50. The results from this analysis 
categorized most of the TNBC as basal‑like (80.6%). The 
rest of the tumours were classified as Her2‑positive(0.2%), 
normal‑like (14.6%), luminal B (3.5%) and luminal A (1.1%) 
(Table I) (41).

Lehmann et al (42) performed gene expression profiling of 
2,188 genes from 587 patients with TNBC and classified TNBC 
into six new groups, namely, basal‑like 1 (BL1), basal‑like 2 
(BL2), immunomodulatory (IM), luminal androgen receptor 
(LAR), mesenchymal stem cell‑like (MSL) and mesenchymal 
(M). The rest was classified as an unstable type (UNS/UNC). 
Each subtype had its characteristic feature. Basal‑like was 
the most common type of TNBC (BL1, 22%; BL2, 12%) and 
was characterized by high Ki67 and DNA damage response 
levels. The IM subtype (18%) had basal‑like characteristics 
with activation of IFNα and IFNγ signaling and high cyto‑
toxic T‑lymphocyte associated protein 4 gene expression. 
Mesenchymal subtypes (M, 21%; MSL, 10%), along with 
cell differentiation pathways, showed deregulation of EGFR, 
calcium signaling, MAPK, and PI3K signaling. In the LAR 
subtype (9%), an ~10‑fold increase in androgen receptor 
(AR) expression was seen, compared with other subtypes. 
Activation of various pathways, such as steroid synthesis and 
FOXA1 and ERBB signaling, were observed in this subtype 
(Table I) (42,43). 

Burstein et al (43) used a non‑negative matrix factorization 
method to derive a panel consisting of 80 core genes that divided 
TNBC into four subtypes, luminal‑AR (LAR), mesenchymal 

(MES), basal‑like immune‑suppressed (BLIS), and basal‑like 
immune‑activated (BLIA). BLIA has the best disease‑free 
survival outcome compared to other subtypes (44). Based on 
DNA copy number, these subtypes can be placed into two 
groups, LAR or others (Table I) (31).

Liu et al (45) performed mRNA and long non‑coding 
RNA (lncRNA) expression analysis in 165 TNBC tumor 
samples at Fudan University Shanghai Cancer Centre. The 
tumor samples were categorized into four subtypes (IM, 
LAR, MES, and BLIS subtypes), consistent with the clas‑
sification by Burstein et al (43). The IM subtype comprised 
of genes related to immune functions such as CCR2, 
CXCL13, CXCL11, CD1C, CXCL10, and CCL5, along with 
ENST00000443397 long ncRNA. In contrast, the LAR 
subtype had enrichment of hormone regulation signaling 
and ENST00000447908 lncRNA (45). The MES subtype 
expressed lncRNA NR_003221 together with genes and 
pathways that promoted epithelial‑to‑mesenchymal (EMT) 
transition. Pathways and molecules such as DNA repair, 
replication, and mitosis, lncRNA TCONS_00000027 were 
enriched in the BLIS subtype (45,46). 

Genomic/transcriptomic data from a set of 997 primary 
tumors were extracted, and an integrated analysis was 
performed by Curtis et al (47). A set of 995 tumors from 
the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) cohort was used as a validation set 
that divided TNBC into ten groups, named Integrated Clusters 
(IntClust) 1‑10 (47). Basal‑like breast cancer mostly fell in 
IntClust 4 and 10 (~80%). IntClust 4 is known to have greater 
TIL counts, while IntClust 10 subtype can display genomic 
instability and chromosomal aberrations (Table I) (47‑49). 

Figure 1. Histological classification of TNBC. Among the histological subtypes, invasive ductal carcinoma is the most common. Metaplastic, adenoid 
cystic, invasive lobular, mucinous and glycogen‑rich clear cell carcinoma are rare subtypes of carcinoma. Metaplastic carcinoma can be further divided into 
matrix‑producing, squamous, mixed and spindle‑cell type, depending on the cell type (15). The permission to use this figure is licensed under a Creative 
Commons Attribution‑ShareAlike 4.0 International License with Elsevier. TNBC, triple‑negative breast cancer.
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4. Molecular aberrations in TNBC

Through whole‑exome and whole‑genome data, it is evident 
that most of the genetic alterations in TNBC are copy 
number alterations and somatic mutations (40). The BRCA1 
and BRCA2 tumor suppressor genes are required for the 
maintenance of genomic stability. These genes play a role in 
DNA repair and replication error control (50,51). A total of 
10% of patients with TNBC are known to harbor germline 
mutations in BRCA1 or BRCA2 (12,26,27). The lifetime 
risk of breast cancer becomes 60‑70% in the presence of 
such mutations (52). Gene alterations leading to homologous 
recombination (HR) defects other than germline BRCA muta‑
tions are termed ‘BRCAness’ (53). Moreover, ~35% of TNBC 
tumors show abnormalities in the HR pathway, making them 
sensitive to poly (ADP‑ribose) polymerase (PARP) inhibitors 
and DNA‑damaging agents (54). 

Other common mutations observed in TNBC patients 
include those in TP53 (50‑60%) and PIK3CA (~10%) (18,42). 
An analysis from the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database revealed that the top genes 
mutated in TNBC, apart from BRCA1/2, TP53, and PIK3CA, 
were RB1, PTEN, NOTCH1 and BRAF (Fig. 2A). Among the 
point mutations observed, 34% of them were nonsense substi‑
tutions (where a base change leads to a stop codon in the DNA 
sequence), 21% were synonymous mutations (where a change 
in a base in the exon of a coding gene does not change the 
structure of the protein) (Fig. 2B). The rest of the mutations 
were missense mutations, frameshift insertion/deletions, and 
in‑frame insertions/deletions. In the metastatic disease setting, 
genes from HR repair showed a larger frequency of biallelic 
loss‑of‑function mutations than in early TNBC (55).

Integrated analysis of The Cancer Genome Atlas (56) 
has demonstrated deletions in PTEN, DUSP4, and INPP48 
involved in the PI3K‑AKT pathway. Gene amplifications were 
seen in MYC, PIK3CA, KRAS, BRAF, FGFR, MET, and 
EGFR. Mutations in genes, such as ERBB2, AKT1, ATR, 
MAP3K1, CDKN2A, ATM, and NOTCH2 (18,42,51), were 
also observed. Based on the mutation signatures obtained 
from whole‑genome sequencing of 560 tumors, TNBC 
could be classified into four mutation subtypes, namely, 
APOBEC‑based signatures, HR deficiency‑based signature 
(signature 3), Clock‑like signatures (signatures 1 and 5), and 
mixed (no prominent signature) (56,57). These mutations 
suggest that DNA repair, the PI3K/AKT pathway, cell cycle 
checkpoints, and Notch signaling are possible druggable 
pathways in TNBC (58). 

5. Circulating tumor cells (CTCs) in TNBC

Recently, much focus has been put on bringing liquid biopsies, 
such as circulating tumor cells (CTC) and circulating tumor 
DNA (ctDNA), into the clinical setting for diagnostic and 
prognostic use (59). CTCs are nucleated cancer cells present 
in the bloodstream that can be detected using techniques, such 
as reverse transcription‑quantitative PCR, flow cytometry, and 
immunohistochemistry (60). Tumor cells that undergo necrosis 
or apoptosis release DNA fragments into the plasma are 
referred to as ctDNA (61). In breast cancer, ctDNA and CTCs 
have been studied as potential biomarkers for prognosis (60). 

Stover et al (62) performed studies in metastatic breast cancer 
patients receiving chemotherapy and identified an association 
between CTCs and ctDNA and tumor burden, indicating that 
these could be used to measure early‑treatment response in 
patients. A retrospective study in 164 patients with metastatic 
TNBC revealed that >10% of patients with ctDNA had worse 
disease‑free survival (62). A study by Bidard et al (63), with 
metastatic breast cancer, revealed that patients with CTC levels 
>5 per 7.5 ml were associated with lower progression‑free 
survival (PFS) and OS compared with patients who had CTC 
levels <5 per 7.5 ml. Cristofanilli et al (64) reported that CTC 
counts could be utilized to classify metastatic patients into two 
groups. Patients with CTCs levels >5 per 7.5 ml were catego‑
rized as aggressive stage IV and those <5 per 7.5 ml as indolent 
stage IV (64). ctDNA has been associated with chemotherapy 
in studies by Riva et al (65), in which ctDNA‑positive patients 
before and after chemotherapy experienced poor OS and 
disease‑free survival (DFS). Additionally, Radovich et al (66) 
reported that patients with early‑stage TNBC and positive 
ctDNA after chemotherapy had a higher risk of disease 
relapse. Therefore, liquid biopsies are being developed as a 
non‑invasive method to study recurrence, treatment response, 
and survival in the clinical setting. 

6. Conventional mode of treatment in TNBC

TNBC treatment involves a combination of surgery, radio‑
therapy, and chemotherapy. New methods, such as targeted 
therapy and immunotherapy, have been developed to improve 
patient survival and prognosis. Lumpectomy and mastectomy 
are the surgical procedures performed for TNBC patients and 
are usually followed by radiotherapy and chemotherapy (67). 
Neoadjuvant therapy is given before the surgery, which may 
help shrink the tumor size and avoid mastectomy (Fig. 3) (61). 
Taxanes and anthracyclines form the current standard of care 
for TNBC in both the neoadjuvant and the adjuvant settings. 
Epirubicin and doxorubicin are the most common anthracy‑
clines (anticancer antibiotics known to disrupt DNA replication 
and mitochondrial functions to activate apoptosis) (68,69). 
Taxanes block angiogenesis by inhibiting epidermal growth 
factor receptor signaling (70).

Paclitaxel and docetaxel are familiar examples of taxanes 
used in the first line of therapy (71). TNBC shows a 40% 
pathological complete response (pCR) for taxane and anthra‑
cycline‑based therapy in the neoadjuvant setting (72‑74). 
Adjuvant therapy guidelines are usually identical for all the 
subtypes of breast cancer and TNBC. Chemotherapy in the 
adjuvant setting is recommended for tumors >0.5 cm in size, 
as they exhibit increased aggressiveness, with a faster growth 
rate and metastasis (75). Anthracycline chemotherapy (cyclo‑
phosphamide and 5‑fluorouracil) in patients with metastatic 
TNBC exhibited a response to survival within 22 months (69). 
However, acute toxicity is a major concern with anthracy‑
cline‑based chemotherapy (76). Metastatic patients who 
develop resistance to anthracycline have shown sensitivity to 
capecitabine, gemcitabine and vinorelbine (77‑79). The combi‑
nation of docetaxel with capecitabine has improved the OS of 
patients with metastatic TNBC (78).

Carboplatin and cisplatin are platinum salts that are used 
in the treatment of TNBC. These generate DNA lesions, and 
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apoptosis occurs in cells unable to repair these breaks (80). 
For TNBC, carboplatin as a neoadjuvant addition increases 
the response rate from 37 to 52.1% (81). A phase‑II study of 
86 patients evaluating the efficacy of platinum monotherapy 
demonstrated a 32% overall response rate (ORR) for cisplatin 
and 19% for carboplatin in early TNBC. Patients with 
BRCA1/2 mutations showed an improved response compared 
with patients without BRCA1/2 mutations (82). Moreover, 
phase‑II trials showed an improved ORR of 72% in metastatic 
patients with BRCA mutation with neoadjuvant cisplatin mono‑
therapy (83,84). Recently, the PEARLY trial (NCT02441933) 
has explored combination therapy of taxanes and carboplatin 
in the neoadjuvant setting (85). Carboplatin with docetaxel or 
paclitaxel combination has demonstrated promising efficacy 
in patients with TNBC and brain metastasis (86). Although 
TNBC is sensitive to chemotherapy, early relapse is a major 
concern (75). Therefore, optimizing a tailored standard regime 

to address chemotherapy issues, such as toxicity, and relapse 
has led to customizing personalized therapy based on tumor 
type.

7. Emerging role of targeted therapy as a strategy to treat 
TNBC

Therapies targeted to TNBC are being developed based on the 
expression of specific pathways and genes. Targeted therapy 
focuses on customizing cancer therapy to an individual 
patient's tumor (87,88). TNBC being heterogenous, targeting 
alterations specific to the tumor would be the most effective 
treatment option. A study using genomics and transcriptomics 
has led to identifying molecular markers that could be effec‑
tively targeted in TNBC (89). PARP inhibitors, PI3K/AKT 
inhibitors, and anti‑androgen therapy are under clinical inves‑
tigation (Fig. 3) (58).

Figure 2. Mutation status of the top 20 genes in triple‑negative breast cancer identified in the Catalogue Of Somatic Mutations In Cancer. (A) Bar graph 
showing the number of samples harbouring mutations in the top 20 genes with most mutations. The blue bar indicates samples with mutations, whereas the 
red bar indicates the total number of samples. The percentage of occurrence of mutation is also shown. TP53, PI3K, BRCA1 are among the top genes in the 
panel with a high number of mutations. (B) Pie chart classifying the type of mutations observed in all genes. Most of the mutations fall under nonsense and 
synonymous type. Other mutation types, such as frameshift and in‑frame mutations, were also observed.
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PARP inhibitors for patients with a BRCA1/2 mutation. PARP 
is expressed in ample amounts as a nuclear enzyme that plays 
a critical role in DNA repair, cell proliferation, and signaling. 
It transfers ADP‑ribose to target proteins from NAD+ and 
ribosylates them (90). In response to DNA damage, PARP 
is known to activate the DNA repair process through poly 
(ADP)‑ribosylation of multiple nuclear proteins that play a 
role in chromatin architecture and DNA metabolism (91). 
Therefore, PARP inhibition leads to the accumulation of 
double‑strand breaks (DSBs) in cells undergoing replication. 
The presence of wild‑type BRCA1/2 in cells results in a 
homologous recombination mode of repair of DSBs. However, 
in the cells deficient of BRCA1/2, homologous recombination 
is disrupted, and PARP repairs the breaks (92‑94). Therefore, 
in these BRCA1/2‑deficient cases, inhibiting PARP will result 
in severe, selective toxicity called ‘synthetic lethality’ (95). 
Using PARP inhibitors in treatment sensitizes the tumor cells 
to chemotherapy and radiotherapy, causing synthetic lethality 
in patients with hereditary BRCA1/2 mutations identified in 
several TNBC subtypes (Fig. 4A) (96). 

Olaparib and talazoparib are two of the PARP inhibitors 
approved by the United States Food and Drug Administration 
(FDA) for use in patients with deficient BRCA1/2 in metastatic 
Her2‑negative breast cancer as a single agent, based on the 
phase‑III OlympiAD and EMBRACA clinical trials (86‑88). 
Patients with a germline BRCA1/2 mutation (gBRCA1/2+) with 
metastatic breast cancer were grouped into 2:1 to olaparib vs. 

chemotherapy (capecitabine, eribulin, or vinorelbine) of physi‑
cian's choice in OlympiAD trial (NCT02000622) (97,98). The 
ORR was 59.9% in the TNBC patient subgroup for olaparib 
(n=102) and 29.9% in the case of patients who underwent 
chemotherapy (n=48). Olaparib showed less toxicity in tumor‑
grade3 and 4 patients than the chemotherapy arm (98,99). In 
the EMBARCA trial (NCT01945775), gBRCA1/2+ metastatic 
patients were given 2:1 Talazoparib 1 mg daily vs. chemotherapy 
of physician's choice. The ORR was 62.6% in patients given 
with Talazoparib (n=219) and 27.2% in patients treated with 
chemotherapy (n=144) (99). Several other PARP inhibitors are 
currently under phase‑II/III clinical trials, including veliparib 
(NCT02163694) and niraparib (NCT01905592) (100‑103). 

PARP inhibitors are being investigated in combination 
with chemotherapy and immunotherapy. BrighTNess trial 
(NCT02032277) is a phase‑III trial for stage‑II and ‑III TNBC 
evaluating the combination of carboplatin with the PARP 
inhibitor veliparib followed by doxorubicin (104). The ongoing 
phase‑I/II trial (MEDIOLA trial) involves a combination of 
olaparib and anti‑PDL1 checkpoint inhibitor durvalumab (105). 
The phase‑III OlympiA trial (NCT02032823) for early TNBC 
is currently assessing patients with BRCA1/2 mutation treated 
with olaparib as monotherapy following neoadjuvant chemo‑
therapy (106). PARTNER (NCT03150576) (107) is a phase‑II/III 
trial that is currently ongoing checking the efficacy of olaparib and 
carboplatin combination in a neoadjuvant setting (107). Table II 
summarizes the clinical trials taken from clinicaltrials.gov.

Figure 3. Different modes of treatment employed in TNBC therapy. The traditional method of treating cancer (surgery and radiotherapy) is still the primary 
mode of initial treatment followed by chemotherapy. Taxanes and anthracyclines are common chemotherapeutic agents used for the treatment of TNBC along 
with platinum salts. Recently, due to the development of omics technology, targeted therapy has become a novel way of treating cancer. AR, androgen receptor; 
PARP, poly (ADP‑ribose) polymerase; PD‑L1, programmed death ligand 1; TNBC, triple‑negative breast cancer.
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PI3K/AKT inhibitors for PTEN low TNBC. PI3K/AKT 
pathway is involved in cell growth and glucose metabo‑
lism. Under normal conditions, growth factors, such as 
insulin‑activated receptor tyrosine kinases (RTKs) result in 
PI3K activation (108). This is followed by phosphorylation 
of phosphatidylinositol‑4,5‑trisphosphate (PIP2) by PI3K 
and conversion to phosphatidylinositol‑3,4,5‑trisphosphate 
(PIP3) (109). AKT binds to membrane‑bound PIP3, bringing 
AKT close to phosphoinositide‑dependent kinase 1 
(PDK1) (110). PDK1 phosphorylates AKT resulting in the 
activation of multiple downstream pathways like cell growth, 
cell cycle, and metabolic pathways. This pathway is nega‑
tively regulated by the PTEN phosphatase (108,109,111). In 
TNBC, this pathway is active in 9.6% of patients due to the 
loss of PTEN activity (110) (Fig. 4B). Therefore, studies using 
PI3K inhibitors have been conducted in patients with TNBC 
(Table II), such as the LOTUS trial (NCT02162719), which is a 
phase‑II trial evaluating ipatasertib in 124 patients (ORR in the 
PTENlow group was 48% compared with patients with PTEN 
expression) (112). The oral pan‑PI3K inhibitor buparlisib has 
also been used in combination with paclitaxel in a phase‑II 
trial (NCT01572727) involving metastatic Her2‑negative 
patients; the ORR was 22.6% compared with placebo and 
paclitaxel (113). 

Capivasertib and AZD5363 are AKT inhibitors that 
are currently being investigated for PFS in patients with 

metastatic TNBC in the CAPItello‑290 (NCT03997123) and 
PAKT (NCT02423603) trials, respectively (114,115). In the 
Phase‑II trial under neoadjuvant setting, mTOR inhibitor 
and chemotherapy combined did not show any effect in early 
TNBC treatment (116). The mTOR inhibitors temsirolimus or 
everolimus in combination with doxorubicin and bevacizumab 
displayed an objective response rate of 21% in mesenchymal 
subtype of TNBC (117). 

AR inhibitors for AR‑overexpressing TNBC. AR belongs to 
the nuclear steroid hormone family of receptors, is highly 
expressed in the LAR subtype of TNBC (118). AR antago‑
nists have shown an effect in vitro and in vivo in the LAR 
type (Fig. 4C). Gucalp et al (119) used the AR inhibitor 
bicalutamide in a phase‑II trial involving 424 AR‑positive 
patients, which showed a clinical benefit rate of 19% and a 
median progression‑free survival of 12 weeks (119). Among 
the ongoing clinical trials, Bicalutamide treatment response 
is being compared to standard chemotherapy in patients with 
metastatic TNBC in an ongoing phase‑III as the first line 
of therapy (NCT03055312). Enzalutamide is another AR 
antagonist with which a phase‑II trial (NCT01889238) was 
conducted in AR‑positive patients with advanced TNBC, 
in which a clinical benefit of 25% was observed (120). 
Androgen‑driven gene expression signature (Dx‑signature) 
stratified patients into a Dx‑positive and a Dx‑negative group. 

Figure 4. Targeted therapies currently explored for TNBC. (A) PARP inhibitors, such as olaparib and veliparib are currently under clinical trials to bring about 
synthetic lethality in homologous recombination‑deficient TNBC harbouring BRCA1 mutations. (B) PI3K‑activated TNBC with loss of PTEN can be treated 
with buparlisib or ipatasertib, which inhibit the PI3K enzyme. (C) In the LAR subtype of cancers, where the expression of AR is very high, AR blockers like 
bicalutamide and enzalutamide have made their way. (D) Antibody‑drug conjugates are specific to cell‑surface molecules and linked to a potent cytotoxic 
agent that kills the cancer cell. (E) PD‑L1 blockade using atezolizumab has shown positive results in a clinical trial on patients with TNBC. AR, androgen 
receptor; DSBR, double‑strand break; MHC, major histocompatibility complex; PARP, poly (ADP‑ribose) polymerase; PD‑1, programmed death‑1; PD‑L1, PD 
ligand 1; SSBR, single‑strand break; TCR, T cell receptor; TNBC, triple‑negative breast cancer; LAR, luminal androgen receptor; ATM, ataxia telangiectasia 
mutated; ATR, ataxia telangiectasia and rad3‑related protein; HR, homologous recombination; ADC, antibody‑drug conjugates; TROP‑2, tumour associated 
calcium signal transducer 2.
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Dx‑positive patients had an improved response to enzalu‑
tamide compared with Dx‑negative patients (120,121). In 
AR‑positive patients with early‑stage TNBC, enzalutamide 
is currently under investigation both as a monotherapy 
(NCT02750358) and in combination with paclitaxel 
(NCT02689427). Around 40% of AR‑positive TNBC patients 
show activation of the PI3K‑AKT pathway (122). Therefore, 
the combined effect of enzalutamide and the PI3K inhibitor 
taselisib was evaluated in the TBRC032 trial(NCT02457910) 
where CBR was 35.7% (123). Further details are provided in 
Table II.

Antibody‑drug conjugates targeting surface antigens. 
Antibody‑drug conjugates (ADC) are made up of a linker, an 
inhibitor, and an antibody. The antibody is selected to be specific 
to cell surface molecules of cancer cells and not normal cells. 
The payload of cytotoxic agents must be potent to kill the cancer 
cell. Usually, a stable molecule is used as a linker that will bind 
strongly to the inhibitor (124,125) (Fig. 4D). Elevated expres‑
sion of tumor‑associated calcium‑linked signal‑transducer two 
cell surface glycoprotein (Trop‑2) has been reported in TNBC 
and often correlated with poor prognosis (126). Sacituzumab 
Govitecan (IMMU‑132) is an ADC used to target Trop‑2 that 
delivers a topoisomerase‑I inhibiting payload resulting in DSBs. 
Bardia et al (127) conducted a phase‑I/II study involving patients 
with advanced‑stage TNBC who had previously received two 
lines of treatment, and the ORR was 33.33%. A phase‑III study 
(NCT02574455) of sacituzumab govitecan in relapsed patients 
with TNBC is ongoing.SKB264 is another anti‑Trop2 currently 
under investigation in the NCT04152499 phase‑I trial with 
metastatic TNBC patients (128). Another ADC, ladiratuzumab 
vedotin, an immunoglobulin G1 antibody with a microtubule 
inhibitor (MMAE), has shown an ORR of 25% of patients with 
TNBC (129). 

Inhibitors targeting other signaling pathways. In addition 
to PARP and PI3K inhibitors, inhibitors of other molecular 
targets are being investigated in TNBC. HDAC inhibitors are 
currently being investigated as monotherapy (NCT02623751) 
and in combination with cisplatin (NCT02393794). Various 
Ataxia Telangiectasia and Rad3‑Related Protein (ATR) and 
Wee inhibitors are also in clinical trials for TNBC (1). MEK 
inhibitors and inhibitors of cell cycle‑regulating agents, such 
as Aurora kinase, showed antitumor effects in animal xeno‑
grafts (130,131). Palbociclib, a cyclin‑dependent kinase 4/6 
inhibitor, was used in a phase‑I study along with paclitaxel 
in patients with metastatic TNBC (n=9). Clinical benefit was 
experienced in one‑third of the patients (132). BCL2 inhibitors 
in TNBC cell lines have shown to decrease cell prolifera‑
tion (133). In TNBC cells, BCL2 expression is high (134). 
Therefore, BCL2 inhibitors should be further investigated for 
their impact as monotherapy and in combination.

Immunotherapy as monotherapy and combination therapy 
for TNBC. In the last decade, substantial evidence has been 
generated describing the immune system's role in guiding 
the disease progression of TNBC (135). It is one of the 
rapidly progressing areas of breast cancer research. The T 
cell receptor (TCR) recognizes antigen presented on major 
histocompatibility complex molecules by cancer cells (136). 
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It is followed by signaling from co‑stimulatory factors such 
as CD28, modulated by immune‑checkpoint (co‑inhibitory) 
molecules (137). In TNBC, programmed death‑ligand 1 
(PD‑L1) functions as a critical mediator of the balance and 
escape stages of cancer immunoediting (138‑140). Around 
20% of TNBC tumors express PD‑L1, which is associated with 
poor prognostic features, such as higher grade, HER2‑positive 
status, ER‑negative status and large tumor size (141). 
Quantification of PD‑L1 can be carried out on immune cells 
or tumor cells using immunohistochemistry (141‑143). Studies 
have suggested that PD‑L1 expression varies depending on 
the stage of TNBC and cell type (141‑143). Expression of 
PD‑L1 in TNBC has been associated with improved pCR 
(50% vs. 21%) (39,144). Along with PD‑L1, TILs are also 
high in number in TNBC (144,145). TILs are considered to 
be a good prognostic marker in TNBC (146). Inhibitors of 
PD‑1/PD‑L1 block the interaction between PD‑1 and PD‑L1, 
thereby initiating a positive immune response that results 
in tumor killing (123). Over the last few years, immune 
checkpoint inhibitors (CPIs) have been in the limelight due 
to improved efficacy shown during clinical trials (Fig. 4E). 
Pembrolizumab (NCT04191135 and NCT01042379), 
nivolumab (NCT03818685 and NCT03414684), atezoli‑
zumab (NCT03281954 and NCT03498716) and durvalumab 
(NCT03167619 and NCT03616886) are some of the CPIs 
currently used in ongoing clinical trials for TNBC (147). 
The IMpassion130 trial (NCT02425891) evaluated the use 
of atezolizumab with paclitaxel as the first line of therapy 
for patients with metastatic TNBC (n=901), showing PD‑L1 
positivity. Atezolizumab is a PD‑LA inhibitor that blocks the 
interaction between PD‑L1 and PD‑1, thereby promoting T cell 

activity. It is now an FDA‑approved drug for PD‑L1‑positive 
patients with TNBC (148). The KEYNOTE‑119 phase‑III 
clinical trial (149) evaluated pembrolizumab's effect as mono‑
therapy in patients with metastatic TNBC vs. physician's 
choice chemotherapy (capecitabine, vinorelbine, gemcitabine, 
or eribulin). The OS of this study was not encouraging (149). 
In the recent tr ial KEYNOTE‑355 (NCT02819518), 
PD‑L1‑positive patients with metastatic TNBC showed 
improved PFS when pembrolizumab was given in combina‑
tion with chemotherapy, in comparison with patients given 
chemotherapy alone (150). Currently, two trials, IMpassion131 
(NCT03125902) and IMpassion132 (NCT03371017), are 
being carried out: The former is investigating the outcomes 
for paclitaxel and atezolizumab in untreated metastatic 
patients who are PD‑L1 positive, while the latter is for atezoli‑
zumab along with chemotherapy (gemcitabine, capecitabine 
and carboplatin) in early relapsing recurrent patients with 
TNBC (PD‑L1 positive). For early‑stage breast cancer, the 
KEYNOTE‑173 phase‑Ib trial evaluated pembrolizumab 
along with taxane and anthracycline neoadjuvant therapy, 
which resulted in an ORR of 100% (151). The ISPY‑2 trial was 
a phase‑III trial evaluating pembrolizumab in combination 
with chemotherapy (vs. placebo) in patients with stage‑II/III 
TNBC, which demonstrated an ORR of 60 and 20%, respec‑
tively (152). The SWOG S1418 (NCT02954874) trial is 
investigating anti‑PD‑1/‑PD‑L1 in the adjuvant setting for a 
year in order to determine whether there is an improvement in 
DFS. The NSABP B‑59 (NCT03281954) and IMpassion030 
(NCT03498716) trials are addressing whether the combina‑
tion of neoadjuvant/adjuvant chemotherapy and atezolizumab 
might improve DFS compared with chemotherapy alone (153).

Table III. Role of miRNA and lncRNA expressed in triple negative breast cancer.

A, miRNA   

First author, year Names Role in TNBC (Refs.)

Gorur et al, 2021; Pang et al, 2018; miR‑22 and miR‑200 family Epithelial‑to‑mesenchymal transition (159,160)
Lyng et al, 2012 miR‑190a, miR‑136‑5p,  Tumorigenesis (158)
 miR‑126‑5p, miR‑135b‑5p, 
 miR‑182‑5p
Huang et al, 2013; Tormo et al, 2019 miR‑95, miR‑449, and Drug resistance (161,162)
 miR15a/16

B, lncRNA   

First author, year Names Role in TNBC (Refs.)

Lin et al, 2016 LINKA Glycolysis and tumorigenesis (170)
Jiang et al, 2018; Ke et al, 2016 NEAT1 Migration, invasion and apoptosis (172,173)
Yang et al, 2019 POU3F3 Inhibits apoptosis (171)
Sha et al, 2017 DANCR Inhibits apoptosis (177)

miR/miRNA, microRNA; TNBC, triple‑negative breast cancer; LINKA, long intergenic non‑coding RNA for kinase activation; NEAT1, 
nuclear paraspeckle assembly transcript 1; POU3F3, POU domain class 3 transcription factor 3; differentiation antagonizing non‑protein 
coding RNA; DANCR, differentiation antagonizing nonprotein coding RNA. 
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8. Non‑coding RNA as therapy

Sequencing of all the RNA species in a given cell using 
RNA‑seq identified several RNA species, including mRNA. 
The two major classes of non‑coding RNA studied in TNBC 
development and treatment are miRNA and Long non‑coding 
RNA.

MicroRNA (miRNA/miR) is a small non‑coding RNA, 
usually 20‑22 nucleotides in length, regulating gene expres‑
sion. miRNA is known to bind to the 3'untranslated region 
of mRNA. This binding either degrades mRNA or represses 
translation (154). miRNA is a key player in tumorigenesis, 
stemness, and drug resistance in TNBC (155‑157). For instance, 
tumour suppressor miRNAs, involved in tumour develop‑
ment, miR‑190a, miR‑136‑5p, miR‑126‑5p, miR‑135b‑5p and 
miR‑182‑5p are downregulated in TNBC (158). miR‑22 is 
downregulation in TNBC, is associated with migration and 
metastasis. miR‑22 exerts its effect through eukaryotic elonga‑
tion factor 2 kinase (eEF2K) expression, which activates PI3K 
signaling pathway (159). Also, oncosuppressor, miR‑200b, acti‑
vate target genes like SRY‑box transcription factor 2 (SOX2), 
CD133, and zinc finger E‑box binding homeobox 1 (ZEB1), 
aiding in migration and invasion and stemness (157,160). 
High expression of miR‑95 in TNBC indicates radiotherapy 
resistance that occurs by targeting sphingosine‑1‑phosphate 
signaling (161). Downregulated miR‑449 upregulates CDK2, 
CCNE2 causing doxorubicin resistancein TNBC (162,163) 
(Table III). Multiple studies also show that miRNAs are 
expressed in different stages of TNBC Multiple studies 
also show that miRNAs are expressed in different stages of 
TNBC (164‑166). These studies give hope for miRNA‑based 
therapies, as the use of miRNA mimics or inhibitor oligonucle‑
otides could serve as a therapeutic approach for TNBC (167). 
A study conducted by Shu et al (168) used miR‑21 combined 
with aptamer targeting EGFR, blocking tumor growth in 
murine models. Yin et al (169) designed an RNA aptamer 
bound to CD133 with a sequence complementary to miR‑21 
carried by a three‑way junction motif scaffold that reduced 
cell migration in TNBC cells (169). Non‑coding RNA is being 
pursued as one of the TNBC therapy.

lncRNA (long non‑coding RNA), ~200 nucleotides in 
length, regulates gene expression at the epigenetic, transcription, 
post‑transcription levels, and post‑translation modification (16). 
The long intergenic non‑coding RNA for kinase activation 
activates HIF‑1α by phosphorylating it via leucine‑rich repeat 
kinase 2to promote glycolysis and tumorigenesis in TNBC (170). 
Yang et al (171) demonstrated the involvement of POU domain 
class 3 transcription factor 3 (POU3F3) in inhibiting apoptosis 
and promoting proliferation in TNBC (171). Nuclear paraspeckle 
assembly transcript 1 (NEAT1) plays a role in TNBC metas‑
tasis (172‑174). Some lncRNAs (HOTAIR, LncRNA‑ATB, 
LincRNA‑ROR) are known to be co‑expressed with tran‑
scription factors involved in EMT and proliferation (175). 
Vaidya et al (176) demonstrated that nanoparticle‑mediated 
transfer of RNA interference molecules targeting differentia‑
tion antagonizing non‑protein coding RNA, a lncRNA that is 
enriched in TNBC, showed some efficacy in a murine xenograft 
model of TNBC (Table III). These studies have shed light on the 
use of antisense oligonucleotides against oncogenic lncRNA as 
a potential approach to TNBC therapy. 

9. Conclusions

TNBC is associated with poor prognosis compared to other 
breast cancer subtypes, and its treatment remains challenging. 
New technology and tools have provided insight into the 
molecular mechanism of the disease. This knowledge has led 
to the identification of druggable targets and the development of 
biomarker‑driven therapy. The FDA‑approved drugs for TNBC 
to date include PARP inhibitors for patients with BRCA1/2 
mutations and atezolizumab for PD‑L1+ tumors. Emerging 
targeted therapies have given hope for the treatment of TNBC. 
The inclusion of immunotherapy has shown promising results. 
Additionally, attempts to identify combinations that work 
effectively against TNBC are ongoing. A combination of the 
molecular profiles, including non‑coding RNA and histology, 
has improved the prognosis and guided the treatment for TNBC. 
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