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Abstract. The overall prognosis of advanced/metastatic 
gastric cancer (GC) remains poor despite the development of 
pharmacotherapy. Therefore, other treatment options, such as 
complementary and alternative medicine, should be considered 
to overcome this aggressive malignancy. Andrographis, which 
is a generally unharmful botanical compound, has gained 
increasing interest for its anticancer effects in multiple malig‑
nancies via the regulation of cancer progression‑associated 
signaling pathways. In the present study, a series of in vitro 
experiments (cell proliferation, colony formation and apop‑
tosis assays) was designed to elucidate the antitumor potential 
and mechanism of Andrographis in GC cells. The present 
study demonstrated that Andrographis exerted antitumor 
effects in GC cell lines (MKN74 and NUGC4) by inhibiting 
proliferation, reducing colony formation and enhancing 
apoptotic activity. Furthermore, it was demonstrated that 
the expression levels of the ferroptosis‑associated genes 

heme oxygenase‑1, glutamate‑cysteine ligase catalytic and 
glutamate‑cysteine ligase modifier were significantly upregu‑
lated after Andrographis treatment in both GC cell lines in 
reverse transcription‑quantitative PCR experiments (P<0.05); 
this finding was further confirmed by immunoblotting assays 
(P<0.05). In conclusion, to the best of our knowledge, the 
present study was the first to demonstrate that Andrographis 
possessed antitumor properties by altering the expression 
levels of ferroptosis‑associated genes, thereby providing novel 
insights into the potential of Andrographis as an adjunctive 
treatment option for patients with metastatic GC.

Introduction

Gastric cancer (GC) is the fifth most common cancer and 
the third leading cause of cancer‑related death worldwide (1). 
Although significant advancements in therapeutic strategies 
have been achieved, and several chemotherapeutic drugs, such 
as fluoropyrimidines (5‑fluorouracil, S‑1, and capecitabine), 
cisplatin, oxaliplatin, taxanes, and irinotecan, and molecular 
targeted drugs (trastuzumab or ramucirumab), have improved 
the treatment of metastatic GC patients (2‑5), the overall prog‑
nosis of advanced/metastatic GC remains dismal (6,7), and the 
management of this disease is challenging.

In this context, complementary and alternative medicine, 
especially dietary compounds, has gained economic and 
sociological importance because of its cost‑effectiveness 
and reduced toxicity (8‑10). Over the past three decades, 
nearly 100 natural products or direct derivatives from 
natural remedies have been highlighted in the area of cancer 
therapy (11). Interestingly, most of these dietary botanicals 
function by targeting multiple cancer‑associated pathways 
to exert anti‑tumorigenic effects on cancer progression (11). 
Andrographolide is a C20 diterpenoid lactone, which is an 
active ingredient derived from the traditional Chinese herbal 
medicine Andrographis paniculate (12‑14). Because of its 
ability to circulate in the bloodstream (15‑17), Andrographis 
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exhibits diverse biological activities, such as anti‑inflammatory, 
antiviral, and immunomodulatory effects (18,19). Furthermore, 
accumulating evidence has shown that Andrographis has 
anti‑tumorigenic properties in multiple malignancies, such as 
melanoma, leukemia, glioblastoma, breast, lung, esophageal, 
colorectal, bladder, pancreatic, and liver cancer (14,20‑29). 
Its various underlying mechanisms include the regulation of 
oxidative stress, apoptosis, necrosis, autophagy, inhibition 
of cell adhesion, proliferation, migration, invasion, and 
angiogenesis (13,14,30,31). Moreover, Andrographis influences 
several cancer‑associated and angiogenesis signaling pathways, 
such as PI3K/AKT/mTOR (20,24), SRC/MAPKs/AP‑1 (25), 
TLR4/NF‑κB/MMP‑9 (26), and VEGF/VEGFR2/AKT (29).

A previous study showed that Andrographis enhanced 
tumor necrosis factor‑related apoptosis‑inducing ligand 
(TRAIL)‑mediated apoptosis in GC cells (32). However, other 
mechanistic pathways of anti‑tumorigenic events induced by 
Andrographis have not been fully elucidated in GC. Therefore, 
in this study, we conducted a series of experiments in GC cells 
and demonstrated that Andrographis exerts its anti‑tumori‑
genic effects via a novel mechanism. Our study indicates that 
Andrographis may be a potential therapeutic or adjunct option 
for GC patients.

Materials and methods

Cell culture and materials. The GC cell lines MKN74 and 
NUGC4 were provided by the Cell Resource Center of 
Biomedical Research, Institute of Development, Aging and 
Cancer (Tohoku University, Sendai, Japan). All cell lines 
were authenticated using a panel of genetic and epigenetic 
markers and tested for mycoplasma regularly. The cells were 
cultured in RPMI‑1640 medium (Nacalai Tesque) supple‑
mented with 10% fetal bovine serum (FBS; Biowest) and an 
antibiotic‑antimycotic mixed stock solution (Nacalai Tesque) 
and maintained at 37˚C in a humidified incubator at 5% CO2. 
Andrographis (EP80 Andrographis extract standardized to 
80% andrographolide content, dissolved in DMSO) was puri‑
fied by EuroPharma‑USA and kindly provided by Professor 
Ajay Goel at the City of Hope Comprehensive Cancer Center. 
Andrographis was diluted to appropriate experimental concen‑
trations in culture medium.

Cell viability and proliferation assays. For WST assays, 
cells were plated in 96‑well tissue culture plates (TPP 
Techno Plastic Products AG) at a density of 5,000 cells/well 
in RPMI‑1640 medium supplemented with 10% FBS and 
antibiotics and allowed to adhere overnight. First, we treated 
GC cells with various doses of Andrographis (10, 20, 40, 60, 
80 and 100 µg/ml) for 72 h to evaluate its cytotoxic effects 
and then measured cell proliferation using WST‑8 (Dojindo 
Laboratories) in accordance with the manufacturer's instruc‑
tions. Subsequently, based on the IC50 concept (33), we 
evaluated cell proliferation after treatment with 40 µg/ml 
Andrographis for 24, 48 and 72 h. The absorbance in each well 
was measured at a wavelength of 450 nm using SoftMax Pro 
(Molecular Devices).

Cell colony formation assays. Colony formation activity was 
measured according to established procedures (34). Briefly, 

2x103 MKN74 cells/well and 5x103 NUGC4 cells/well were 
seeded in 6‑well tissue culture plates (TPP Techno Plastic 
Products AG) in the same culture medium as described above 
and incubated for 24 h in Andrographis‑free culture medium. 
We then added 20 µg/ml Andrographis to the culture medium 
and incubated the cells for 72 h. Subsequently, the medium 
was replaced with Andrographis‑free culture medium, and the 
cells were maintained at 37˚C/5% CO2 for 5 days in a humidi‑
fied atmosphere. The number of colonies was counted using 
Image J software ver.1.52 (NIH) (35) and compared between 
Control and Andrographis treatment groups.

Cell apoptosis assays. Apoptosis assays were conducted using 
PI/Annexin V double staining and flow cytometry. Cells were 
plated in a 6‑well plate (MKN74: 1.2x105/well; NUGC4: 
1.5x105/well) for 24 h, followed by treatment with 40 µg/ml 
Andrographis for 48 h. The apoptotic cells were harvested 
and measured using a Muse® Annexin V and Dead Cell Assay 
(Luminex) on a Muse™ Cell Analyzer (Millipore) in accor‑
dance with the manufacturer's instructions.

Quantitative mRNA expression analysis. For the quantifica‑
tion of mRNA expression, cells were plated in 6‑well dishes 
(MKN74: 2.5x105/well; NUGC4: 2.0x105/well), incubated for 
24 h, and then treated with 40 µg/ml Andrographis or DMSO. 
Total RNA from cells in the treatment and control groups was 
extracted using an RNA extraction miRNeasy Mini kit 
(Qiagen). cDNA was synthesized from 5.0 ng total RNA using 
a Reverse Transcription kit (Toyobo), and RT‑qPCR was 
performed using the Power SYBR® Green PCR Master Mix 
(Life Technology). Quantitative real‑time reverse transcription 
(RT)‑PCR analysis was conducted using the StepOne™ 
Real‑time PCR System (Applied BiosystemsA). The primer 
sequences were as follows: heme oxygenase‑1 (HMOX1): 
forward, 5'‑AAGACTGCGTTCCTGCTCAAC‑3' and reverse, 
5'‑AAAGCCCTACAGCAACTGTCG‑3'; glutamate‑cysteine 
ligase catalytic (GCLC): forward, 5'‑AGGCCAACATGCGAA 
AAC‑3' and reverse, 5'‑CGGATATTTCTTGTTAAGGTA 
CTGG‑3'; glutamate‑cysteine ligase modifier (GCLM ): 
forward, 5'‑GGGGAACCTGCTGAACTG‑3' and reverse, 
5'‑AGATACAGTGCATTCCAAGACATC‑3'; and β‑actin 
(ACTB): forward, 5'‑CATGTACGTTGCTATCCAGGC‑3' and 
reverse, 5'‑CTCCTTAATGTCACGCACGAT‑3'. The relative 
expression of target genes was calculated using the 2‑ΔΔCq 

method (36) and normalized against the housekeeping gene 
ACTB.

Western immunoblotting. For western immunoblotting experi‑
ments, cells (MKN74: 3.5x105/well; NUGC4: 2.5x105/well) 
were treated with 40 µg/ml Andrographis (treatment group) 
or DMSO (control group) for 48 h, followed by cell lysis using 
RIPA buffer (BioDynamics) supplemented with a proteinase 
inhibitor cocktail (Sigma‑Aldrich; Merck KGaA). The protein 
concentration of cells in each group was measured using 
a BCA Protein Assay kit (Thermo Fisher Scientific, Inc.). 
The proteins were mixed with loading buffer and boiled 
for 5 min. Then, they were subjected to electrophoresis 
on 5%‑20% gradient e‑PAGEL HRMINI gels (ATTO) for 
85 min for protein separation and transferred to Clear Blot 
Membrane‑P plus (ATTO) using an EB RAPID for 10 min. 
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The membranes were blocked in 5% milk at room temperature 
and then incubated with the indicated primary antibody at 
room temperature for 30 min. The detailed information and 
dilutions of primary antibodies were as follows: mouse mono‑
clonal anti‑HMOX1 (sc‑136960; Santa Cruz Biotechnology, 
Inc.; 1:500), mouse monoclonal anti‑γ‑GCLM (sc‑55586; 
Santa Cruz Biotechnology, Inc.; 1:1,000), and rabbit polyclonal 
anti‑GCLC (ab53179; Abcam; 1:2,000). The membranes were 
then washed with cold PBS three times and incubated with 
anti‑mouse IgG (W4028; Promega; 1:5,000) and anti‑rabbit 
IgG (W4018; Promega; 1:10,000) secondary antibodies at room 
temperature for 30 min. A mouse monoclonal β‑actin antibody 
(691001, 691002; MP Biomedicals) was used as the loading 
control. Chemiluminescence detection was performed using 
Immobilon® Western (Millipore), and protein signals were 
detected using a chemiluminescent imaging system (ATTO). 
Band intensity was quantified using Image J software ver.1.52 
(NIH) (35) and shown as a ratio of the B‑actin band intensity.

Statistical analysis. All experiments were repeated in triplicate. 
The data were expressed as the mean ± SD. Statistical compari‑
sons were determined by a two‑tailed unpaired Student's t‑test. 
P‑values less than 0.05 were considered statistically significant. 
Statistical analyses were performed using MedCalc Statistical 
Software version 19.1.2 (MedCalc Software bv) and GraphPad 
Prism Ver.7.0 (GraphPad Software, Inc.).

Results

Andrographis exhibits antiproliferative effects in GC cells. To 
evaluate the potential antiproliferative effects of Andrographis 
in GC cells, we first treated two GC cell lines (MKN74 and 

NUGC4) with Andrographis at concentrations of 10, 20, 40, 
60, 80 and 100 µg/ml. As expected, Andrographis suppressed 
the proliferation of MKN74 and NUGC4 cell lines in a 
dose‑dependent manner (Fig. 1A). Next, we treated GC cells 
with 40 µg/ml Andrographis for 24, 48 and 72 h and compared 
the proliferative ability of the Andrographis treatment group 
with that of the control group. Intriguingly, the results showed 
that Andrographis treatment significantly inhibited the growth 
of both cell lines (MKN74: 24 h, P<0.0001; 48 h, P<0.0001; 
72 h, P<0.0001 and NUGC4: 24 h, P=0.03; 48 h, P<0.0001; 
72 h, P<0.0001) (Fig. 1B).

Andrographis inhibits the colony formation activity of GC 
cells. We next investigated the colony forming ability of two 
GC cell lines. After treatment of MKN74 and NUGC4 cells 
with Andrographis, we observed a significant reduction in 
the size and number of colonies compared with the corre‑
sponding controls (Fig. 2A). These results also indicated that 
Andrographis exhibits anti‑tumorigenic effects on the pheno‑
type of GC cells.

Andrographis treatment enhances the apoptosis of GC 
cells. To verify and strengthen the results of previous studies 
showing the apoptosis‑enhancing activity of Andrographis in 
GC (32,37,38), we next investigated whether Andrographis 
treatment influences apoptosis in MKN74 and NUGC4 
cells via an Annexin V binding assay. Apoptosis was clearly 
enhanced in the Andrographis‑treated group compared with 
the control group in both cell lines (Fig. 2B). More specifically, 
compared with the control group, the percentage of apoptotic 
cells in the Andrographis‑treated group significantly increased 
to 5.45±0.95% for MKN74 cells (P=0.001) and 6.18±1.6% for 

Figure 1. Antiproliferative effects of Andrographis in gastric cancer cells. (A) WST assay results revealing the dose‑dependent effects of Andrographis on cell 
viability in MKN74 and NUGC4 cell lines. (B) WST assay results demonstrating the effects on cell viability following treatment with 40 µg/ml Andrographis 
in MKN74 and NUGC4 cell lines. *P<0.05 and ***P<0.001 (two‑tailed Student's t‑test; control group vs. Andrographis treatment group). OD, optical density; 
WST, water‑soluble tetrazolium salts.
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NUGC4 cells (P=0.002), and Andrographis treatment signifi‑
cantly reduced the percentage of live cells to 19.43±1.13% 
for MKN74 cells (P=0.0001) and 15.42±0.65% for NUGC4 
cells (P<0.0001) (Fig. 2C). Together, our results confirmed 
the previous finding that Andrographis exhibits anti‑cancer 
potential through the enhancement of apoptosis using MKN74 
and NUGC4 cells.

Andrographis mediates its anti‑cancer activity by activating 
ferroptosis‑associated genes. Because previous evidence 
revealed that Andrographolide induces the upregulation of 
ferroptosis‑associated genes, such as HMOX1, GCLC, and 

GCLM, in both non‑cancer (39‑43) and cancer cells (44‑46), 
we investigated whether this finding applies to GC by 
performing RT‑qPCR and western blot assays. Intriguingly, 
the RT‑qPCR results demonstrated that all target genes were 
significantly upregulated (P<0.0001) at the mRNA level 
following Andrographis treatment compared with the corre‑
sponding control in both cell lines (Fig. 3A). Furthermore, 
western blot experiments confirmed a substantial increase in 
the expression of HMOX‑1 (P<0.05), GCLC (P<0.05), and 
GCLM (P<0.05) at the protein level in both cell lines after 
Andrographis treatment compared with the corresponding 
control (Fig. 3B and C). Collectively, these results suggested 

Figure 2. Inhibition of colony formation and enhancement of apoptotic activity induced by Andrographis in gastric cancer cells. (A) Colony formation assay 
to assess clonogenicity in MKN74 and NUGC4 cells following treatment with Andrographis. (B) Representative images illustrating the percentage of MKN74 
and NUGC4 cells undergoing apoptosis, as indicated by positive staining for Annexin V. (C) Bar graphs showing the percentage of live and apoptotic cells in 
each treatment group in the apoptosis assay. **P<0.01 and ***P<0.001 (two‑tailed Student's t‑test). Andro, Andrographis treatment group; Ctrl, Control group; 
Apop, apoptosis.
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that the alteration of ferroptosis‑associated genes may be one 
of the possible mechanisms by which Andrographis exerts its 
anti‑tumorigenic potential in GC cells.

Discussion

Accumulating evidence has shown that dietary botanical 
compounds, such as herbal medicines, have increasingly 
important roles in the field of cancer treatment, both as 
therapeutic agents and adjunctive treatments to traditional 
therapies (10,47). Andrographolide is a C20 labdane diter‑
penoid derived from the traditional Chinese medicine 
Andrographis paniculate (12‑14), which has been found to 
have cytotoxic/anti‑tumorigenic potential in various malig‑
nancies (14,20,22,24‑26,28). Intriguingly, Andrographolide 
was demonstrated to alter multiple cancer‑associated signaling 
pathways, such as BAX‑dependent apoptotic signaling in 
breast cancer (22), PI3K/AKT/mTOR‑dependent signaling in 
leukemia (20) and glioblastoma (24), p38 signaling in mela‑
noma (14), STAT3/AKT activation in pancreatic cancer (28), 
and the Src/MAPKs/AP‑1 axis (25) and TLR4/NF‑kB/MMP‑9 

pathway (32) in colorectal cancer. Moreover, Andrographolide 
modulates chemosensitization in multiple tumors (28,46,48). 
In this study, we demonstrated that Andrographis exerts 
anti‑tumorigenic effects by suppressing cell proliferation 
and colony formation and enhancing apoptotic activity in 
MKN74 and NUGC4 GC cells. Intriguingly, we also revealed 
that Andrographis treatment altered the expression of 
ferroptosis‑associated genes, including HMOX1, GCLC, and 
GCLM, which might offer novel mechanistic insight into the 
pathogenesis of GC. Collectively, our findings may provide 
additional evidence supporting the anti‑tumorigenic potential 
of Andrographis as an adjunctive treatment in GC.

In our study, we showed that cell viability was signifi‑
cantly reduced and apoptotic activity was enhanced in 
Andrographis‑treated GC cells compared with the control 
cells, which is consistent with previous reports. Lim et al (32) 
reported that Andrographolide dose‑dependently decreased 
the proliferation and viability of GC cells, which was accom‑
panied by increased apoptotic and non‑apoptotic cell death. 
They also demonstrated that Andrographolide enhanced 
recombinant human TRAIL‑induced apoptotic cell death 

Figure 3. Altered mRNA and protein expression levels of the ferroptosis‑associated targets HMOX1, GCLC and GCLM after Andrographis treatment in gastric 
cancer cells. (A) Changes in HMOX1, GCLC and GCLM mRNA expression after Andrographis treatment in MKN74 and NUGC4 cells. (B) Representative 
image of immunoblotting assays for each group in MKN74 and NUGC4 cells. (C) Changes in HMOX‑1, GCLC and GCLM protein expression after 
Andrographis treatment in MKN74 and NUGC4 cells. *P<0.05 and ***P<0.001 (two‑tailed Student's t‑test). GCLC, glutamate‑cysteine ligase catalytic; GCLM, 
glutamate‑cysteine ligase modifier; HMOX1, heme oxygenase‑1; Andro, Andrographis treatment group; Ctrl, Control group.
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mediated by the TRAIL‑RS (DR5) pathway (32). Furthermore, 
Li et al (37) verified that Andrographolide inhibited cell 
proliferation and induced apoptosis by altering the expression 
of BAX, caspase‑3, and BCL‑2. In a study by Dai et al (38), 
Andrographolide inhibited cell proliferation, invasion, and 
migration in a dose‑dependent manner and promoted apop‑
tosis. They also showed that Andrographolide influenced the 
expression of various targets, including the upregulation of 
TIMP‑1/2, cyclin B1, p‑Cdc2, BAX, and BIK and downregula‑
tion of MMP‑2/9 and BCL‑2 (38).

The most striking result of this study was that Andrographis 
treatment remarkably upregulated the expression of the ferrop‑
tosis‑related genes HMOX1, GCLC, and GCLM. Ferroptosis is 
a recently defined form of regulated cell death that differs from 
apoptosis, necrosis, and necroptosis and is characterized by 
iron‑dependent reactive oxygen species (ROS) generation, lipid 
peroxidation, and iron accumulation (49‑51). Because ferrop‑
tosis is often associated with resistance to chemotherapeutic 
drugs, several types of malignancies, including large B‑cell 
lymphoma, leukemia, head and neck cancer, renal cell carci‑
noma, osteosarcoma, prostate adenocarcinoma, hepatocellular 
carcinoma, cholangiocarcinoma, ovarian cancer, pancreatic 
carcinoma, and lung cancer (52‑61), exhibit sensitivity to ferrop‑
tosis inducers. For instance, ferroptosis inducers (e.g., erastin 
and sorafenib) may be considered a novel treatment regimen for 
non‑small cell lung cancer patients with cisplatin failure (62). 
Furthermore, sulfasalazine depletes paclitaxel‑resistant tumor 
cells by inducing ferroptosis in uterine serous carcinoma, 
which may be an effective treatment for patients with recurrent 
paclitaxel‑resistant uterine serous carcinoma (63).

In our study, significant upregulation of HMOX‑1 was 
observed after Andrographis treatment in GC cells. Heme 
oxygenase is a rate‑limiting enzyme that catalyzes the oxida‑
tive degradation of cellular heme, which produces carbon 
monoxide, bilirubin, and free iron (64). HMOX‑1 is a subtype 
of heme oxygenase that maintains cellular homeostasis 
and reduces tissue oxidative damage and the inflammatory 
response (65,66). Additionally, HMOX‑1 regulates cellular 
iron and ROS levels during ferroptosis (67‑70). HMOX‑1 
was reported to play an anticancer role in various types of 
human malignancies, such as fibrosarcoma, breast cancer, and 
prostate cancer (45,71‑73). Moreover, some evidence indicates 
that Andrographolide induces the upregulation of HMOX‑1 in 
breast cancer, fibrosarcoma, and colorectal cancer (44‑46). In 
this study, we revealed that Andrographis treatment induced 
significant upregulation of HMOX‑1 in GC cells, which 
strengthens the idea that Andrographis may have potential 
as an adjunctive treatment by enhancing ferroptotic activity 
mediated by HMOX‑1.

Our experimental findings also demonstrated that 
Andrographis treatment upregulated the expression of GCLC 
and GCLM. GCLC and GCLM are involved in the synthesis 
of GSH in the oxidative stress response and metabolism of 
intracellular labile iron, and GCLC and GCLM are critical 
genes in the ferroptosis‑associated pathway (74,75). Several 
dietary botanical compounds, such as chrysin, apigenin, 
and luteolin, can upregulate GCLC and GCLM in addition 
to HMOX1 gene transcription via the ERK2/NRF2/ARE 
signaling pathway (76). Consistent with this study, our findings 
demonstrated that the altered expression of HMOX‑1 was 

accompanied by the upregulation of GCLC and GCLM 
following treatment of GC cells with Andrographis.

There are several limitations to our current study. First, 
although we showed the anti‑tumorigenic potential of 
Andrographis, we demonstrated this using just two GC cell 
lines. In addition, although we revealed the upregulation of 
HMOX‑1, GCLC, and GCLM after Andrographis treatment, 
we did not perform detailed mechanistic studies of ferrop‑
tosis pathways. In the future, we plan to further identify the 
molecular mechanisms underlying the effects of this dietary 
compound on ferroptosis.

Collectively, our study demonstrated the anti‑tumorigenic 
properties of Andrographis through the alteration of the 
ferroptosis‑associated genes HMOX1, GCLC, and GCLM 
in GC cells. Although further mechanistic validation is 
warranted, our study may provide substantial evidence for 
the use of Andrographis as a potential adjunctive treatment in 
patients with GC.

In conclusion, we demonstrated that Andrographis exerts 
its anti‑tumorigenic effects by altering the expression of ferrop‑
tosis‑associated genes, indicating that Andrographis could serve 
as an adjunctive therapeutic option in patients with GC.
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