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Abstract. The treatment options for breast cancer include 
endocrine therapy, targeted therapy and chemotherapy. However, 
some patients with triple‑negative breast cancer cannot benefit 
from these methods. Therefore, novel therapeutic targets should 
be developed. The cytochrome P450 enzyme (CYP) is a crucial 
metabolic oxidase, which is involved in the metabolism of 
endogenous and exogenous substances in the human body. Some 
products undergoing the metabolic pathway of the CYP enzyme, 
such as hydroxylated polychlorinated biphenyls and 4‑chlorobi‑
phenyl, are toxic to humans and are considered to be potential 
carcinogens. As a class of multi‑gene superfamily enzymes, 
the subtypes of CYPs are selectively expressed in breast cancer 
tissues, especially in the basal‑like type. In addition, CYPs are 
essential for the activation or inactivation of anticancer drugs. 
The association between CYP expression and cancer risk, 
tumorigenesis, progression, metastasis and prognosis has been 
widely reported in basic and clinical studies. The present review 
describes the current findings regarding the importance of 
exploring metabolic pathways of CYPs and gene polymorphisms 
for the development of vital therapeutic targets for breast cancer.
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1. Introduction

Breast cancer is a malignant tumor that occurs in the lobule 
and the ductal epithelium of the breast (1). It ranks first in 
terms of incidence among malignancies in female patients 
worldwide (2). In 2005, ~1 million new cases of breast cancer 
were reported worldwide and cases were growing at a rate of 
5‑20% per year (3). With the development of medical tech‑
nology and the increasing awareness of cancer prevention, 
the mortality rate of breast cancer is decreasing every year. 
In 2019, ~268,600 new cases of invasive breast cancer and 
41,760 deaths associated with breast cancer were reported 
in USA women (2). Numerous studies have focused on the 
pathogenesis, progression, prognosis and treatment of breast 
cancer. Notably, increasing attention has been paid to the role 
of metabolic oxidase in breast cancer.

Cytochrome P450 (CYP) enzymes are a large family 
of self‑oxidizing heme proteins belonging to the class of 
mono‑oxygenases, and these compounds are involved in 
the synthesis of hormones, second messengers and other 
endogenous substances in the body, and in the regulation of 
detoxification and substance metabolism (4). Under normal 
conditions, CYPs are widely expressed in multiple human 
organs and are mainly located in the liver  (5). During the 
course of the disease, such as breast cancer, CYPs are selec‑
tively expressed in different types of neoplasms (6). Notably, 
this phenomenon demonstrates the biological importance 
of exploring tumor‑inherent metabolic pathways. Therefore, 
the present review focuses on the effects of the CYP meta‑
bolic pathway and its gene polymorphism on the occurrence, 
progression, treatment and prognosis of breast cancer.

2. CYP: Background

In 1958, CYP was first identified in rat liver microsomes (7). 
It is a B‑group cytochrome with iron protoporphyrin as a 
prosthetic group (7). CYPs are a large superfamily of intact 
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membrane‑conserved proteins found in animals, plants and 
micro‑organisms  (8). CYPs are named according to the 
specific absorption peaks of the complex at a wavelength of 
450 nm (9). In the process of naming these compounds, the 
numbers after CYP stand for different families, the letters 
after the family indicate their subfamilies and the numbers 
after the subfamily indicate peptides. For instance, CYP1B1 
represents the cytochrome P450 family 1 subfamily B poly‑
peptide 1  (7,10). As terminal oxygenases, CYPs transport 
electrons through the iron ions of heme in its structure, oxidize 
heterologous substances, enhance the water solubility of heter‑
ologous substances and ease their excretion (11). The human 
CYP superfamily includes 18 families, 26 subfamilies and 
>50 subtypes with catalytic functions (11,12). Furthermore, 
>40% of the CYP amino acid sequences are classified into 
the same family and represented by Arabic numerals, and 
those with the same rate of ≥55% within the same family are 
categorized under the same subfamily (10). CYPs are mainly 
distributed in the liver and individual forms of CYPs are 
present in the extrahepatic tissues, such as the small intestine, 
kidney, lung and ovary (13,14). The CYP1, CYP2 and CYP3 
families account for ~70% of the total CYP content of the liver 
and are responsible for the metabolism of most drugs (15). It 
is the prime superfamily enzyme system involved in phase I 
drug metabolism and in mediating drug oxidation, reduc‑
tion or hydrolysis (15). CYPs not only catalyze the phase I 
metabolic reactions of various endogenous substances 
(e.g., sex hormones, glucocorticoids and arachidonic acid) and 
exogenous substances (e.g., drugs, poisons and procarcino‑
gens) (16,17), but are also closely related to the occurrence 
of disease, the generation of drug resistance and the suscep‑
tibility of tumors (18). Considering that gene polymorphisms 
are widespread among family members, individual differences 
are present in the distribution of CYPs in tissues and organs, 
resulting in discrepancies in the susceptibility to certain 
tumors. Therefore, the association between CYP enzymes and 
tumorigenesis has received increasing attention, and numerous 
studies have been conducted to determine the relevance of 
CYP enzymes in tumorigenesis.

3. Effect of CYP on steroid hormones

Breast cancer is a hormone‑dependent tumor (19). The interac‑
tion of androgen, estrogen, progesterone and their receptors 
is involved in the occurrence and development of breast 
cancer (19). Long‑term high levels of estrogen exposure factors 
(e.g., early menarche, late menopause, non‑fertility and late 
child‑birth) is a risk factor for breast cancer, which can directly 
or indirectly work via the estrogen signaling pathway (20‑22). 
The function of estrogen is achieved by binding to the corre‑
sponding receptor. Estrogen receptor‑α (ERα) accelerates 
tumor growth by stimulating abnormal cell proliferation and 
inhibiting apoptosis  (23‑25). Furthermore, ERα promotes 
mitosis by directly upregulating cyclin D1 and Myc expression, 
and interacts with EGFR and other receptor tyrosine kinases to 
activate the Ras/MAPK/PI3K/Akt signaling pathway, thereby 
stimulating tumor cell proliferation, enhancing DNA mutations 
and contributing to the development of breast cancer (26‑28).

CYPs are involved in the biosynthesis and oxidative metab‑
olism of sex hormones. Estradiol is gradually synthesized 

from cholesterol by the catalytic action of enzymes, such as 
CYP11, CYP17 and CYP19 family (29). Subsequently, estra‑
diol is converted into various hydroxyl products by enzymatic 
oxidation, and the hydroxyl products undergo glucuronidation, 
sulfation, esterification and O‑methylation metabolism, leading 
to the production of carcinogens  (30). CYP1B1 is highly 
expressed in breast carcinoma tissues, and this compound 
metabolizes estrogen to 4‑hydroxyestradiol and simultane‑
ously binds to and activates ER, thereby promoting cell 
mitosis in breast tissues (29). This excessive growth stimula‑
tion may promote breast cancer occurrence (31). In addition, 
reactive estrogen semiquinone/quinone intermediates are the 
metabolic redox products of 4‑hydroxyestradiol (32), causing 
DNA destruction, induction of cell transformation and initia‑
tion of tumorigenesis (33,34). Bradlow et al (35) demonstrated 
that the metabolite 16α‑hydroxyestradiol of CYP2C9 and 
CYP3A4 is positively associated with the incidence of breast 
cancer. Furthermore, based on an epidemiological case‑control 
study  (36) and prospective study  (37), elevated levels of 
16α‑hydroxyestradiol are associated with increased risk of 
breast cancer. Conversely, ERs also regulate CYP expression in 
breast tumors (38). CYP2B6 expression is markedly increased 
in ER‑positive breast tumors because ERα regulates CYP2B6 
gene expression in human breast cancer cells by directly 
binding to functional estrogen response elements located 
in the upstream regulatory region of CYP2B6 (38). Notably, 
Fukasawa et al (39) revealed a novel compound, NK150460, 
which inhibits 17β‑estradiol (E2)‑dependent transcription 
without affecting binding of E2 to ER. Contrary to expecta‑
tions, NK150460 inhibits the proliferation of not only most 
ER‑positive, but also some ER‑negative breast cancer cell lines, 
such as T‑47D, MCF‑7, and SK‑BR‑3; however, it never inhibits 
the proliferation of non‑breast cancer cell lines (39). At present, 
inhibiting the synthesis of estrogen is still an important regimen 
for the treatment of luminal‑type breast cancer. Although 
estrogen is considered to serve a causal role in breast cancer, 
as aforementioned, there is increasing evidence that the way 
estrogen is metabolized is related to the risk of breast cancer. 
This may explain why the effect of endocrine therapy is not 
always satisfactory. Therefore, studies clarifying the mecha‑
nism of estrogen metabolism in patients with breast cancer are 
an exciting domain of investigation. This could provide patients 
with precise endocrine targeted therapy in the future.

4. CYP gene polymorphism: A friend or foe in breast can‑
cer

In addition to participating in estrogen metabolism, the gene 
polymorphisms of CYPs carry huge implications for the risk 
and prognosis of breast cancer. CYP3A4 mRNA expres‑
sion is negatively associated with the morbidity of breast 
cancer (40). Additionally, Johnson et al (41) reported that the 
CYP3A polymorphism site rs10235235 is negatively associ‑
ated with the morbidity of patients with breast carcinoma 
with late menarche. Johnson et al (42) further revealed that 
CYP3A4 SNP (rs10273424), a non‑coding variant at the 
CYP3A locus, is associated with reduced risk of breast cancer 
in younger women below the age of 50 years at the time of 
diagnosis. However, polymorphisms in the CYP17, CYP19 
and CYP1A1 genes are closely associated with breast cancer 
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susceptibility  (43‑45). Women with CYP1A1 T6235C and 
A4889G genotypes rather than AA and TT are more likely to 
develop low‑grade tumors; 85.9% of tumors in the AA and TT 
genotype groups are grade III; however, only 76.1% of poly‑
morphism carriers are grade III (46). There was no significant 
difference in survival related to CYP1A1 gene status (46). 
Sangrajrang et al (29) performed genetic testing on the breast 
tissue of 1,067 Thai women and revealed that CYP1A2, 
CYP2C19 and CYP17 polymorphisms serve a crucial role in 
estrogen metabolism and affect the individual susceptibility 
of Thai women to breast cancer. Furthermore, CYP1A2 
rs2470890 is prominently associated with the prognosis of 
patients with breast cancer and might serve as a novel genetic 
indicator of prognosis of patients with breast carcinoma (47). 
Raskin et al (48) demonstrated that CYP19 Val (80) polymor‑
phisms and its haplotypes are associated with increased risk 
of breast cancer in young women with breast cancer suscep‑
tibility gene mutations. In addition, the association between 
six SNPs of CYP8A1 and breast cancer risk has been reported 
in detail (49,50). Patients with homozygotes of minor alleles 
of rs5602, rs477627 and rs6125671 exhibit increased risk of 
breast cancer compared with normal alleles (49). Furthermore, 
the minor allele homozygotes of rs477627 have a protec‑
tive effect in Caucasian populations (49). Among Caucasian 
women with progesterone receptor‑positive breast cancer, the 
cancer risk is associated with the rs6095541 and rs6095543 
alleles (50). Notably, genetic polymorphisms in CYPs vary 
among different ethnicities (49). Justenhoven et al (51) reported 
that the CYP2C19*17 variant is associated with reduced risk of 
breast cancer in the German population; however, this varia‑
tion is common in Europeans but rare in Asians. Furthermore, 
Ruiter et al (52) suggested that CYP2C19*2 polymorphisms are 
associated with increased survival time in European patients 
with breast cancer who have been treated with tamoxifen. 
Among female Chinese Han patients, the carriers of the A 
allele of CYP2C19*3 are 2.19 times more likely to be attacked 
by breast cancer than those of the G allele (53). However, this 
variant of CYP2C19*3 is rare among the European popula‑
tion (53). The relationship between the gene polymorphisms of 
CYPs and breast cancer has been clarified, thus contributing to 
the prediction of populations with high‑risk tumor and deter‑
mine individuals susceptible to tumors. However, at present, 
numerous conflicting results have been reported, and this may 
be associated with various reasons, such as region, ethnicity 
and sex. To the best of our knowledge, limited information is 
available regarding the interaction between the CYP gene and 
other genes or environmental factors. Therefore, an in‑depth 
study on the association between CYP gene polymorphisms 
and tumorigenesis is important for early tumor screening, 
targeted therapy and therapeutic efficacy.

5. Effect of CYPs on tumor angiogenesis

Angiogenesis is one of the major characteristics of malignant 
tumors, which are rich in blood supply. Angiogenesis is 
regulated by pro‑angiogenic and anti‑angiogenic factors via 
a complicated process. Under normal conditions, the dynamic 
balance is maintained between pro‑angiogenic and anti‑angio‑
genic factors during physiological angiogenesis. When 
this balance is broken by pathogenic factors, pathological 

angiogenesis, such as tumor angiogenesis, might occur. Breast 
cancer cells flourish in the tumor microenvironment. Diverse 
components of the breast cancer microenvironment, such 
as pathological neovascular structures, may promote breast 
cancer progression and metastasis (54). The CYP4 family can 
hydroxylate arachidonic acid (AA), and the product of this 
metabolism is a novel lipid mediator, which may be involved 
in the proliferation of breast cancer cells and tumor angio‑
genesis (55). 20‑Hydroxy‑eicosatetraenoic acid (20‑HETE) is 
converted from AA by the ω‑hydroxylase enzymes from the 
CYP family 4 and subfamily A (CYP4A) genes (55). 20‑HETE 
is the main pro‑inflammatory metabolite that regulates vascular 
remodeling and neovascularization under ischemic or hypoxic 
conditions (55‑57). Additionally, 20‑HETE serves an impor‑
tant role in epidermal growth factor and vascular endothelial 
growth factor (VEGF) activation, pro‑angiogenic effects and 
the stimulation of endothelial cell proliferation, migration 
and cell survival (55,58). In tumors, the CYP4A/20‑HETE 
axis promotes endothelial cell migration and neovasculariza‑
tion  (59,60). When N‑hydroxy‑N'‑(4‑butyl‑2methylphenyl) 
formamidine(HET0016), a highly selective inhibitor of 
20‑HETE synthesis, is used alone in tumor‑bearing animals, 
tumor neovascularization is reduced (61,62). When the level 
of different pro‑ and anti‑angiogenic factors in tumor lysates 
is detected, prominent changes occur after HET0016 treat‑
ment compared with placebo‑treated tumors (63,64). When 
certain indicators, including extravascular cell space (EES), 
vascular parameters and tumor angiogenesis, are analyzed, 
HET0016 treatment reduces EES, tumor blood volume, perme‑
ability and tumor angiogenesis (63,64). In the field of cancer, 
triple‑negative breast cancer is not sensitive to chemotherapeu‑
tics. The inhibition of the synthesis of 20‑HETE is expected 
to be a breakthrough in the treatment of triple‑negative breast 
cancer. Further investigation is required to explore how 
20‑HETE inhibitors could be more effective in decreasing 
tumor growth and neovascularization.

In addition, compared with other members of the large 
CYP family 4, CYP4Z1 is unique and vital in the develop‑
ment of breast cancer. A 52% increase in CYP4Z1 mRNA 
expression was identified in breast cancer tissues compared 
with non‑cancerous tissues (65). Yu et al (66) demonstrated 
that CYP4Z1 overexpression activates the PI3K/Akt and 
ERK1/2 signaling pathways and induces human breast cancer 
angiogenesis and tumor growth. Additionally, Wang et al (67) 
demonstrated that CYP4Z1 3'untranslated region may be 
involved in the regulation of E‑cadherin protein, thus affecting 
the migration of breast cancer cells. In addition, in ER‑positive 
breast cancer cells, the regulation of the CYP4Z1 RNA 
network may be associated with tamoxifen resistance during 
breast cancer treatment (68). Further in vivo experiments are 
required to confirm whether CYP4Z1 could be a therapeutic 
target in restraining cancer progression.

6. Effect of CYPs on pre‑metastatic niche formation and 
metastasis via the arachidonic acid metabolic pathway

The tumor interstitial microenvironment serves an essen‑
tial role in the occurrence, development and metastasis of 
breast cancer. The breast carcinoma microenvironment has 
numerous components, including suppressive immune cells, 
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reprogrammed fibroblasts, pathological neovascular struc‑
tures, altered extracellular matrix and certain soluble factors, 
which together facilitate a pro‑tumorigenic environment (54). 
Tumor‑associated macrophages (TAMs) are the main compo‑
nent of the tumor microenvironment and are among the 
most abundant inflammatory stromal cells (69). According 
to different functional characteristics, TAMs are usually 
divided into the M1 and M2 subtype. The M1 type is equipped 
with antitumor effects, while M2 activates the generation of 
tumor growth factors, such as VEGF, and promotes tumor 
growth, invasion and metastasis  (70‑72). Furthermore, the 
role of TAMs that construct a protective niche of tumor cells 
in distant organs is slowly being recognized (73). Notably, 
targeting TAMs in part prevents tumor metastasis by inhib‑
iting the production of multiple endogenous factors, including 
chemokines, inflammatory factors and growth factors (74‑76). 
CYP4A, a key inducible cytochrome P450 enzyme, catalyzes 
the synthesis of 20‑HETE from AA in human tissues (77), 
as shown in Fig. 1. 20‑HETE is a novel lipid mediator, which 
promotes tumor growth and angiogenesis (78) and induces 
the transformation of the tumor stromal microenviron‑
ment into the pro‑tumorigenic environment  (79,80). The 
expression levels of 20‑HETE‑producing enzymes of the 
CYP4A family are upregulated in invasive breast carcinoma 
tissues  (73). CYP4A/20‑HETE induces the transformation 
of macrophage to M2 phenotype via the STAT3 signaling 
pathway, and CYP4A/20‑HETE activation is an important 
medium for promoting niche formation before tumor cell 
metastasis, leading to distant colonization of tumor cells (73). 
Therefore, downregulation of CYP4A/20‑HETE expression 
has therapeutic potential in the tumor microenvironment.

In human tissues, CYP4A11 and CYP4A22 are the 
most important isozyme types of CYP4A for catalyzing the 
synthesis of 20‑HETE (80). Alexanian et al (81) revealed that 
the expression levels of CYP4A11 and CYP4A22 in triple 
negative breast cancer tissues are higher than those in normal 

breast tissues, indicating an increase in CYP4A/20‑HETE 
activity after the malignant transformation of breast ductal 
epithelium. The downregulation of cyclooxygenase‑2 and 
CYP4A signaling in human breast carcinoma cells inhibits 
cancer metastasis by preventing anoikis resistance, migration 
and invasion (82). The inhibition of 20‑HETE synthesis with 
chemical inhibitor HET0016 reduces proangiogenic factors 
and inhibits breast cancer growth (62). Borin et al (61) demon‑
strated that targeting the AA signaling pathway by inhibiting 
the synthesis of 20‑HETE reduces the migration and invasion 
of metastatic breast cancer cells. Furthermore, an animal study 
indicated that the incidence of lung metastases in breast cancer 
can be reduced by inhibiting CYP4A/20‑HETE activity (61). 
Notably, CYP8A1 also is involved in the metabolism of 
AA. CYP8A1, also known as prostacyclin I2 synthase, is an 
isomerase, which converts prostaglandin H2 into prostacy‑
clin (PGI2) (83). PGI2 is a type of prostanoid, which exerts a 
crucial role in cancer‑associated inflammation, tumor progres‑
sion and metastasis (84,85). Notably, CYP8A1 is expressed 
in breast carcinoma and adjacent tissues and is involved in 
the inflammation mechanism of breast cancer cells through 
the aforementioned eicosanoid metabolites (83). In addition, 
CYP8A1 affects tumor cell survival signaling via AA metabo‑
lism pathways, including cell proliferation and apoptosis, tumor 
cell invasion, metastasis, and angiogenesis  (83). Similarly, 
CYP2C19 is a key enzyme for the synthesis of epoxy‑eicosa‑
trienoic acids (EETs) in the AA metabolic pathway (86). The 
exogenous supplementation of EETs promotes the proliferation 
of cancer cells in vitro and in vivo (86). In a number of tumor 
cell lines, such as breast cancer cell lines, EETs stimulate the 
activation of the MAPK and PI3K/Akt signaling pathways, 
promote phosphorylation of EGFR (86), alter the tumor micro‑
environment, and induce immunosuppression in an autocrine 
and paracrine manner (80). Additionally, EET inhibits cancer 
cell apoptosis by upregulating the anti‑apoptotic proteins 
Bcl‑2 and Bcl‑xl and downregulating the pro‑apoptotic protein 

Figure 1. Schematic representation of arachidonic acid metabolic pathway via the major CYP enzymes. Metabolites (20‑HETE, EETs and PGI2) possess 
tumor‑promoting effects on breast cancer. 20‑HETE, 20‑hydroxy‑eicosatetraenoic acids; CYP, cytochrome P450; EETs, epoxy‑eicosatrienoic acids; HET0016, 
N‑hydroxy‑N0‑(4‑butyl‑2 methyl phenyl) formamidine; PGH2, prostaglandin H2; PGI2, prostacyclin. 
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Bax (86). Therefore, CYP2C19 serves a vital role in promoting 
the malignant manifestation of tumors and in the pathogenesis 
of breast cancer via the EET anabolic pathway. In humans, 
CYP2C8, 2C9 and 2J2 subfamily members are also involved 
in the synthesis of EETs. CYP2C8, 2C9 and 2J2 are highly 
expressed in breast cancer tissues, thus indirectly promoting 
cancer cell proliferation, migration, angiogenesis and inva‑
sion (87). CYP3A4, an activated AA epoxygenase, accelerates 
STAT3‑mediated cell proliferation of breast cancer via EET 
biosynthesis  (88). Furthermore, EETs induce tumor cell 
proliferation and survival via multiple signaling pathways 
and molecular mechanisms, including EGFR/PI3K/Akt, 
EGFR/MAPK, TNF‑α and prometastatic matrix metallopro‑
teinases (86,89,90). Therefore, novel therapeutics that target 
the AA metabolic pathway should be the focus for cancer 
chemoprevention and treatments.

7. Effect of CYP on clinicopathological factors

CYPs are selectively expressed in breast cancer tissues, and 
their expression levels affect clinicopathological factors and 
patient prognosis (91). Based on the analysis of the expres‑
sion levels of CYPs in 393  patients with breast cancer, 
Haas et al (92) revealed that the expression levels of CYP3A4/5 
are markedly associated with lymph node metastasis rate, and 
high expression levels of CYP1B1 are associated with poor 
tumor differentiation. Murray et al  (91) demonstrated that 
CYP2S1, CYP3A4, CYP4V2 and CYP26A1 are associated 
with survival in patients with breast cancer, indicating that CYP 
can be used as a marker of prognosis for patients with breast 
cancer. CYP4Z1 is a novel member of the CYP4 family that is 
upregulated in human breast cancer, and CYP4Z1 expression 
is positively associated with high‑grade malignancy tumors 
and poor prognosis (66). Patients with breast cancer with high 
CYP4A22 expression often experience shortened relapse‑free 
survival, which is a negative prognostic factor (73). The down‑
regulation of CYP4A signal transduction may inhibit tumor 
cell migration and invasion, thereby inhibiting breast cancer 
metastasis (82). However, the expression of several CYPs may 
imply favorable clinical outcomes (93,94). CYP2E1 expression 
is elevated in breast cancer tissues and negatively associated 
with tumor size (93). High CYP2E1 expression contributes 
to the production of reactive oxygen species and the occur‑
rence of the oxidative stress reaction in breast cancer cells, 
resulting in damaged mitochondria and DNA modification, 
leading to accelerated death of necrotic cancer cells, which 
may be beneficial to patients with breast cancer to a certain 
extent  (93,94). CYP2E1 could inhibit breast cancer cell 
metastasis by regulating tumor cell autophagy and stimulating 
endoplasmic reticulum stress (95). Other mechanisms involved 
in the adverse prognostic factors mediated by CYPs in patients 
with breast carcinoma need to be explored further. However, 
the present review suggests that the inhibition of CYPs may 
be a novel therapeutic target for improving the prognosis of 
patients with breast cancer.

8. Effect of CYPs on carcinogen metabolism

Inter‑individual genetic variation in the metabolism of carcin‑
ogens is a determinant factor of susceptibility to various types 

of cancer (96). CYPs serve a profound role in the metabolism 
of carcinogens (97). The difference in the enzyme activity 
of CYPs determines the susceptibility to chemical carcino‑
gens  (96). Numerous CYPs are involved in catalyzing the 
metabolism of potential breast cancer‑related carcinogens (96). 
Polycyclic aromatic hydrocarbons  (PAHs) are common 
environmental carcinogens that induce tumorigenesis when 
they are activated by CYPs (98). They accumulate in breast 
tissues (99), and are metabolized and activated by CYP1A1 to 
produce electrophilic epoxy compounds with strong carcino‑
genic activity, which change the base pairing of DNA, cause 
codon changes, introduce mutations and eventually lead to 
cancer (100). Therefore, the activity of CYP1A1 isoenzyme 
in breast tissues is the key to determine the carcinogenicity of 
PAHs. The aryl hydrocarbon receptor (AhR) is a transcriptional 
regulator of CYP1A1, thereby regulating its protein expres‑
sion (101). To the best of our knowledge, Al‑Dhfyan et al (101) 
were the first to report that the AhR/CYP1A1 signaling 
pathway regulates the proliferation, development, self‑renewal 
and chemoresistance of breast cancer stem cells by inhibiting 
phosphatase and tensin homolog and activating β‑catenin and 
Akt signaling pathways. AhR may be a potential drug target 
for treatment of ER‑negative breast cancer in the future. In 
addition, CYP1B1 can convert the heterocyclic amine 2‑amin
o‑1‑methyl‑6‑phenylimidazole[4,5‑b] pyridine in food into 
N2‑hydroxylated derivatives with DNA mutagenicity, which 
has been linked to the incidence of colon cancer and breast 
cancer (102). Additionally, CYP2W1 expression is upregulated 
in breast cancer tissues and is involved in the biological activa‑
tion of PAH carcinogens (83). CYPs have hallmark effects in 
the metabolic activation and elimination of numerous carcino‑
gens. A number of chemical carcinogens are mostly indirect 
carcinogens, which need to be activated by metabolic activation 
in vivo to interact with cellular biomolecules to cause cancer. 
The genetic polymorphism of CYPs determines the discrep‑
ancy in the metabolism of carcinogens and the susceptibility 
of tumors in patients (96). In future research, attention should 
be paid to the metabolic function and genotypes of CYPs in 
patients to carry out individualized administration for patients 
with tumors and optimize the clinical therapeutic schedule.

9. Effect of gene polymorphism of CYPs on chemotherapy 
drug metabolism

The genetic polymorphisms of CYP enzymes in breast tumors 
have an effect on the drug treatment outcomes of patients 
with breast cancer. They lead to changes in the response to 
drugs ranging from adverse reactions to lack of efficacy. The 
discovery of genetic markers for susceptibility to breast carci‑
noma has led to a growing body of epidemiological research 
examining relatively common genetic polymorphisms. 
Among the 57 identified CYP isoenzymes that catalyze drug 
metabolism, >20 CYP genes, including CYP1B1, CYP2B6, 
CYP2C9, CYP2C19 and CYP2D6, have functional poly‑
morphisms. CYP1B1 is a metabolic enzyme for numerous 
anticancer drugs, including cyclophosphamide, paclitaxel, 
doxorubicin, docetaxel, cisplatin and 5‑fluorouracil  (103). 
Furthermore, the CYP1B1 4326G allele is associated with a 
decreased response rate, reduced progression‑free survival 
and shorter overall survival in patients with breast cancer 
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treated with taxanes  (104). CYP2B6 serves a pivotal role 
in the efficacy of doxorubicin and cyclophosphamide (105). 
Compared with that in patients with wild‑type alleles, the 
efficacy of neoadjuvant chemotherapy is reduced in patients 
with breast cancer with CYP2C9*2 heterozygotes  (106). 
Furthermore, the genotypes of CYP2C19 and CYP2D6 influ‑
ence the therapeutic actions of tamoxifen in patients with 
breast cancer  (107). Similarly, the majority of CYP genes 
are associated with the clinical efficacy of chemotherapy 
drugs in patients with breast cancer; these genes include 
CYP1A2, CYP2A6, CYP2B, CYP2C8, CYP2C9, CYP2E1, 
CYP2S1, CYP2W1, CYP3A4 and CYP3A5 (97,106,108‑110). 
Furthermore, the genetic polymorphisms of CYPs are closely 
associated with the hematological adverse reactions caused 
by chemotherapy drugs in patients with breast cancer (105). 
Bray et  al  (105) revealed that CYP2B6*2 and CYP2B6*5 
mutant genes are closely associated with a high incidence 
of drug dose delay and adverse hematological reactions. 
Nakajima et al (111) demonstrated that leukopenia is associated 
with CYP2B6 gene polymorphism g. ‑2320T>C, g. ‑750T>C, 
g. 18492T>C. Therefore, this may explain the unsatisfactory 
therapeutic effect in some patients with breast cancer. Whole 
genome sequencing of CYPs in patients with breast cancer 
is important to provide the necessary guarantee to patients 
to implement precise treatment. Although next‑generation 
sequencing technology is relatively mature now, its high cost 
limits the actions of patients. In the future, more patients are 
expected to benefit from it.

10. Conclusion

CYPs serve a multi‑faceted role in contributing to carcino‑
genesis, tumor growth, invasion and metastasis. Additionally, 
they catalyze phase 1 metabolism of xenobiotics, such as 
drugs and carcinogens. These CYP gene polymorphisms are 
associated with drug responses and susceptibility to breast 
cancer. Notably, the CYP4A/20‑HETE axis serves a key role 
in promoting tumor growth, neovascularization, migration 
and invasion, and may be a potential target for prevention 
and therapy of metastasis. Evidence that glioma and breast 
tumor growth and metastasis can be successfully controlled 
by HET0016 has been provided by some research groups. 
Therefore, novel therapeutics targeting the CYP4A/20‑HETE 
metabolic pathway should deserve more attention in trans‑
lational medicine, either as monotherapy or in combination 
with first‑line chemotherapy drugs and radiotherapeutic 
approaches. An increased understanding of CYPs will provide 
novel therapeutic targets for clinical precision treatment of 
patients with breast cancer.
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