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Abstract. Palbociclib (PD0332991), a selective cyclin-dependent 
kinase  4/6 (CDK4/6) inhibitor, has been reported to exert 
anticancer activity in some cancers, including gastric cancer 
(GC). However, the role of palbociclib in GC remains largely 
unknown. The present study aimed to investigate the effects 
of palbociclib on the progression of GC and the potential 
mechanisms underlying its effects. The colony formation, 
proliferation, senescence, as well as apoptosis and cell cycle 
progression of AGS and HGC‑27 cells following treatment 
with palbociclib were analyzed using colony formation 
assays, MTT assays, senescence‑associated β‑galactosidase 
(SA‑β‑gal) staining and flow cytometry, respectively. The 
protein expression levels of Bax, Caspase‑3, Bcl‑2, p16, p21, p53, 
Notch1, Notch2 and hairy and enhancer of split 1 (Hes1) were 
measured in AGS and HGC‑27 cells using western blotting. 
Moreover, the mRNA expression levels of Notch1, Notch2 and 
Hes1 in AGS and HGC‑27 cells were determined by reverse 
transcription‑quantitative PCR. In the present study, palboci-
clib significantly inhibited cell proliferation and induced cell 
senescence, cell cycle arrest and apoptosis in both cell lines in a 
dose‑dependent manner. Additionally, palbociclib significantly 
increased the expression levels of Bax, Caspase‑3, p16, p21 and 
p53, whilst decreasing the expression of Bcl‑2, Notch1, Notch2 
and Hes1 in AGS and HGC‑27 cells. Furthermore, the Notch 
pathway activator Jagged‑1/FC reversed the effects of palboci-
clib on cell proliferation, apoptosis, senescence and cell cycle 
progression. These findings demonstrated that palbociclib could 
inhibit proliferation and induce senescence, cell cycle arrest and 
apoptosis in GC cells by inhibiting the Notch pathway.

Introduction

Gastric cancer (GC) was reported the fifth most commonly 
diagnosed malignancy and the third leading cause of 
cancer‑related deaths worldwide in 2018 (1). East Asia has 
the highest incidence and mortality rates of GC (2). Although 
advances have been made in GC treatment in recent years, 
the 5‑year survival rate for patients with advanced GC is 
<15% (3,4). Thus, the identification of novel drugs and thera-
peutic targets for GC treatment is urgently needed.

Palbociclib (PD0332991) is a potent and highly selective 
inhibitor of cyclin‑dependent kinase 4/6 (CDK4/6) (5), which 
was approved by the Food and Drug Administration in 2015 
for the treatment of advanced breast cancer (6). In addition, 
increasing evidence demonstrates that palbociclib also plays 
an important role in the treatment of multiple cancer types, 
including hepatocellular carcinoma, head and neck cancer, 
colorectal cancer and GC (7‑10). However, the potential role of 
palbociclib in GC has not been extensively analyzed.

The Notch signaling pathway is evolutionarily conserved 
and can direct cell fate decisions by regulating proliferation, 
cell cycle progression, apoptosis, differentiation, senescence 
and metastasis (11,12). Previous studies have demonstrated 
that the Notch pathway plays an important role in tumorigen-
esis (13,14). Moreover, activation of the Notch pathway could 
promote the progression of GC (15). Jena et al (16) reported 
that CDK6 kinase activity plays a key role in the onset of 
T cell acute lymphoblastic leukemia via Notch1 activation in 
a mouse model. However, whether palbociclib affects GC by 
modulating the Notch pathway remains unknown. The present 
study aimed to determine the effect, if any, of palbociclib on 
the Notch pathway in GC.

Materials and methods

Cell culture and drug treatment. The AGS and HGC‑27 GC 
cell lines were obtained from the American Type Culture 
Collection. All cells were cultured in RPMI‑1640 medium 
(Sigma‑Aldrich; Merck KGaA) containing 10% fetal bovine 
serum (Gibco; Thermo Fisher Scientific, Inc.) and 1% peni-
cillin/streptomycin (HyClone; Cytiva) and maintained at 37˚C 
in a humidified incubator containing 5% CO2. Palbociclib was 
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purchased from Pfizer (PD0332991), dissolved in DMSO and 
added into the culture medium at the indicated concentration. 
Cells were exposed to drug treatment for 2 days at 37˚C, 
unless otherwise indicated. Cells were randomly divided 
into seven groups: i) Control (0 µM palbociclib); ii) 0.25 µM 
palbociclib; iii) 0.5 µM palbociclib; iv) 1 µM palbociclib; 
v) 2 µM palbociclib; vi) 4 µM palbociclib and vii) 0.5 µM 
palbociclib + 10 µM Jagged‑1/FC. The activator of Notch 
pathway (Jagged‑1/FC) was supplied by Abcam. 

MTT assay. The proliferation of AGS and HGC‑27 cells was 
measured using an MTT assay. After 48 h of palbociclib treat-
ment, cells (2x103 cells/well) were seeded in 96‑well plates for 
24, 48, 72, 96 and 120 h at room temperature. At each time 
point, a volume of 20 µl MTT solution (5 mg/ml) was then 
added to each well, and the cells were incubated for an addi-
tional 4 h. Finally, the absorbance at 495 nm was measured 
using a microplate reader (Bio‑Rad Laboratories, Inc.).

Colony formation assay. Colony‑forming capability was 
measured using a colony formation assay. After  48  h of 
palbociclib treatment, AGS and HGC‑27 cells were seeded 
into 6‑well plates at a density of 1x103 cells/well and cultured 
with complete medium for 2 weeks. The cells were then fixed 
with 4% paraformaldehyde for 20 min at room temperature 
and stained with 0.1% crystal violet for 25  min at room 
temperature. The stained colonies were counted under a light 
microscope. 

Cell apoptosis assay. Apoptosis was assessed in AGS and 
HGC‑27 cells using an Annexin V‑EGFP apoptosis detection 
kit (cat. no. KGA101; Nanjing KeyGen Biotech Co., Ltd.). After 
48 h of palbociclib treatment, AGS and HGC‑27 cells were 
collected and resuspended in binding buffer. Annexin V‑EGFP 
(5 µl) and propidium iodide (5 µl, PI; Beyotime Institute of 
Biotechnology) were added to the cell suspension and main-
tained at room temperature in the dark for 15 min. Early 
and late apoptosis in the second and fourth quadrants were 
detected using FACSCalibur, using CellQuest Pro software 
(version 5.1; BD Biosciences). 

Cell cycle analysis. Cell cycle progression was evaluated 
using PI staining. After 48 h of palbociclib treatment, AGS 
and HGC‑27 cells were harvested and washed in PBS. 
Subsequently, the cells were fixed in cold 75% ethanol at 4˚C 
overnight. After washing with PBS twice, the cells were stained 
with PI (40  µg/ml; Beyotime Institute of Biotechnology) 
containing RNase A (20 ng/ml; Sigma‑Aldrick; Merck KGaA) 
for 30 min at 37˚C in the dark. Cell cycle distribution was 
then determined using FACSCalibur (BD Biosciences), using 
ModFit LT software (version 3.1; Verity Software House). 

Senescence‑associated β‑galactosidase (SA‑β‑gal) 
staining. Cell senescence was measured using a Senescence 
β‑Galactosidase Staining kit (Beyotime Institute of 
Biotechnology), as previously described (17). After 5 days of 
palbociclib treatment, AGS and HGC‑27 cells were fixed with 
4% paraformaldehyde for 10 min at room temperature, then 
incubated overnight at 37˚C in freshly prepared β‑gal staining 
solution (1 mg/ml X‑Gal, 5 mM potassium ferricyanide, 5 mM 

potassium ferrocyanide, 40 mM Na2HPO4, 150 mM NaCl and 
2 mM MgCl2). The senescent cells were observed and counted 
under a light microscope.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
After 48 h of palbociclib treatment, total RNA from AGS 
and HGC‑27 cells was extracted using TRIzol® (Invitrogen; 
Thermo Fisher Scientific, Inc.) and reverse transcribed into 
cDNA using TransScript One‑Step gDNA Removal and 
cDNA Synthesis SuperMix (TransGen Biotech Co., Ltd.). The 
conditions for RT were as follows: 25˚C for 5 min, 55˚C for 
20 min and 85˚C for 5 min. qPCR was then performed using 
the TransStart TipTop Green qPCR SuperMix (TransGen 
Biotech Co., Ltd.). The primer sequences (Sangon Biotech 
Co., Ltd.) were as follows: i) Notch1 sense, 5'‑GAC​ATC​ACG​
GAT​CAT​ATG​GA‑3' and antisense, 5'‑CTC​GCA​TTG​ACC​
ATT​CAA​AC‑3'; ii)  Notch2 sense, 5'‑TGC​CAA​GCT​CAG​
TGG​TGT​TGT​A‑3' and antisense, 5'‑TGC​TAG​GCT​TTG​TGG​
GAT​TCA​G‑3'; iii) Hes1 sense, 5'‑ACG​TGC​GAG​GGC​GTT​
AAT​AC‑3' and antisense, 5'‑ATT​GAT​CTG​GGT​CAT​GCA​
GTT​G‑3'; iv) β‑actin sense, 5'‑AGG​CAC​CAG​GGC​GTG​AT‑3' 
and antisense, 5'‑GCC​CAC​ATA​GGA​ATC​CTT​CTG​AC‑3'. 
The following thermocycling conditions were used for qPCR: 
95˚C, 10 sec (denaturation); 55˚C, 30 sec (annealing); 72˚C, 
30 sec (extension) for 40 cycles. Relative expression levels 
were calculated using the 2‑ΔΔCq method (18) and normalized 
to the internal reference gene β‑actin. 

Western blot analysis. After 48 h of palbociclib treatment, total 
protein was extracted from AGS and HGC‑27 cells using RIPA 
lysis buffer (Beyotime Institute of Biotechnology), as previously 
described (19) and maintained at ‑80˚C until use. Protein concen-
trations were determined using a bicinchoninic acid assay kit 
(Thermo Fisher Scientific, Inc.). Protein samples (50 µg) were 
resolved by SDS‑PAGE on 10% gels, then transferred onto a 
polyvinylidene difluoride membrane and blocked for 1.5 h in 
5% skimmed milk at room temperature. The membranes were 
then incubated with primary antibodies against p16 (1:1,000; 
cat. no. ab220800), p21 (1:1,000; cat. no. ab109199), p53 (1:1,000; 
cat. no. ab131442), Bax (1:1,000; cat. no. ab77566) Caspase‑3 
(1:500; cat. no. ab4051), Bcl‑2 (1:1,000; cat. no. ab196495), 
Notch1 (1:500; cat.  no.  ab52301), Notch2 (1:500; 
cat. no. ab8926), Hes1 (1:1,000; cat. no. ab221788) and β‑actin 
(1:1,000; cat. no. ab115777) (all from Abcam) overnight at 4˚C. 
Subsequently, the membranes were incubated with the horse-
radish peroxidase‑conjugated secondary antibody (1:5,000; 
cat. no. 5961; Cell Signaling Technology, Inc.) for 2 h at room 
temperature. Finally, the protein bands were visualized with 
an ECL reagent (Amersham Biosciences) and analyzed using 
Quantity One 1‑D Analysis software (Bio‑Rad Laboratories, 
Inc.). The density of the protein bands was quantitated using 
ImageJ software (version 1.8.0; National Institutes of Health).

Statistical analysis. Data are presented as the mean ± SD 
of three independent measurements. Statistical analysis was 
performed using GraphPad Prism 8.0 (GraphPad Software, 
Inc.) and SPSS 22.0 software (IBM Corp.). One‑way ANOVA 
followed by Tukey's post hoc test was used to assess the differ-
ences between the groups. P<0.05 was considered to indicate a 
statistically significant difference.
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Results

Palbociclib inhibits the proliferation of AGS and HGC‑27 
cells. To evaluate the effect of palbociclib on cell proliferation, 
AGS and HGC‑27 cells were treated with different doses of 
palbociclib. Palbociclib significantly inhibited the proliferation 
of AGS and HGC‑27 cells in a dose‑dependent manner (Fig. 1). 
Palbociclib was used at concentrations of 0.5, 1 and 2 µM for 
subsequent experiments. The results of MTT assays indicated 
that palbociclib (0.5, 1 and 2 µM) significantly inhibited the 

proliferation of AGS and HGC‑27 cells at day 1, 2, 3, 4 and 5, 
compared with the control group (P<0.01) (Fig. 2A). Moreover, 
in colony formation assays, the number of AGS and HGC‑27 
cell clones were significantly reduced by palbociclib in a 
dose‑dependent manner (P<0.01) (Fig. 2B). Thus, palbociclib 
inhibited the proliferation of AGS and HGC‑27 cells.

Palbociclib promotes the apoptosis of AGS and HGC‑27 
cells. As shown in Fig. 3A, palbociclib (0.5, 1 and 2 µM) 
significantly increased the apoptosis of AGS and HGC‑27 

Figure 1. Different doses of palbociclib inhibits the proliferation of AGS and HGC‑27 cells in a dose‑dependent manner. Proliferation of (A) AGS cells and 
(B) HGC‑27 cells following palbociclib treatment. **P<0.01 vs. palbociclib (0 µM). 

Figure 2. Palbociclib inhibits the proliferation of AGS and HGC‑27 cells. (A) Proliferation of AGS and HGC‑27 cells was detected at different time points 
following palbociclib treatment. (B) Clone numbers of AGS and HGC‑27 cells following palbociclib treatment. **P<0.01 vs. control. OD, optical density. 
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cells relative to the control group (P<0.01). To confirm the 
effect of palbociclib on apoptosis, the expression of apop-
tosis‑related proteins was detected using western blotting. 
Palbociclib significantly reduced Bcl‑2 expression in AGS 
and HGC‑27 cells in a dose‑dependent manner compared 
with the control group, but increased the expression levels 
of Bax and Caspase‑3 (P<0.01 in all cases; Fig. 3B). This 
finding suggested that palbociclib promoted the apoptosis of 
AGS and HGC‑27 cells.

Palbociclib induces cell senescence and cell cycle arrest in 
AGS and HGC‑27 cells. As shown in Fig. 4A, palbociclib 
(0.5, 1 and 2 µM) significantly increased the senescence of 
AGS and HGC‑27 cells compared with the control group 
(P<0.01). In addition, the cell cycle analysis revealed that 
palbociclib (0.5, 1 and 2 µM) increased the proportion of cells 
in the G1 phase in both AGS and HGC‑27 cells, but decreased 

the proportion of cells in the S phase (P<0.01) (Fig.  4B), 
suggesting that palbociclib could induce an accumulation 
of AGS and HGC‑27 cells in the G1 phase of the cell cycle. 
Furthermore, palbociclib significantly increased the expression 
levels of p16, p21 and p53 in AGS and HGC‑27 cells compared 
with the control group, and this effect was dose‑dependent 
(P<0.01 in all cases; Fig. 4C). These results indicated that 
palbociclib induced cell senescence and cell cycle arrest in 
AGS and HGC‑27 cells.

Palbociclib inhibits the Notch signaling pathway in AGS and 
HGC‑27 cells. As shown in Fig. 5, palbociclib (0.5 µM) signifi-
cantly reduced the mRNA and protein expression levels of 
Notch1, Notch2 and Hes1 in AGS and HGC‑27 cells compared 
with the control group (P<0.01 in all cases). However, compared 
with the palbociclib (0.5 µM) group, the mRNA and protein 
expression levels of Notch1, Notch2 and Hes1 in AGS and 

Figure 3. Palbociclib promotes the apoptosis of AGS and HGC‑27 cells. (A) Apoptosis of AGS and HGC‑27 cells after palbociclib treatment. (B) Protein expression levels of 
Bax, Caspase‑3 and Bcl‑2 were measured in AGS and HGC‑27 cells following palbociclib treatment. **P<0.01 vs. control. PI, propidium iodide. 
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HGC‑27 cells were significantly increased following treatment 
with palbociclib (0.5 µM) + Jagged‑1/FC (P<0.01 in all cases). 
These results suggested that palbociclib inhibited the Notch 
signaling pathway in AGS and HGC‑27 cells.

Jagged‑1/FC reverses the effect of palbociclib on the 
proliferation, apoptosis, cell senescence and cell cycle 
progression of AGS and HGC‑27 cells. As shown in Fig. 6, 
AGS and HGC‑27 cells treated with palbociclib (0.5 µM) 
displayed significantly inhibited proliferation, increased 
apoptosis, increased cell senescence and cell cycle arrest 
compared with the control (P<0.01). Compared with palbo-
ciclib (0.5  µM) treatment, the proliferation of AGS and 
HGC‑27 cells was markedly increased in the palbociclib 
(0.5 µM) + Jagged‑1/FC group (P<0.01), whereas apoptosis, 
senescence and cell cycle arrest were notably decreased 
(P<0.01). Altogether, these results suggested that palbociclib 
could inhibit cell proliferation and induce senescence, cell 
cycle arrest and apoptosis by inhibiting the Notch pathway in 
AGS and HGC‑27 cells.

Discussion

Most patients with GC are diagnosed at an advanced stage 
and usually show extensive tumor infiltration and distant 
lymph node metastasis (20,21). The overall 5‑year survival 
rate for patients with advanced GC is <10% (4). Thus, the 
identification of novel drugs and therapeutic targets for the 
treatment of GC is urgently needed. In the present study, 
palbociclib inhibited proliferation and induced senescence, 
cell cycle arrest and apoptosis by inhibiting the Notch 
pathway in GC cells.

Cell division depends on the cell cycle, which is regulated 
by CDKs (22,23). The interaction of cyclin D with CDK4 and 
CDK6 promotes the phosphorylation of the retinoblastoma 
gene product, which in turn leads the cell cycle from the G1 
phase to the S phase (22). There is currently much interest 
in CDK6 and the closely related CDK4 kinase as targets for 
cancer therapy. A previous study reported that palbociclib is a 
highly selective CDK4/6 inhibitor that can block the transition 
from the G1 to the S phase of the cell cycle (24). The present 

Figure 4. Palbociclib induces cell senescence and cell cycle arrest in AGS and HGC‑27 cells. (A) Senescence of AGS and HGC‑27 cells after palbociclib 
treatment was detected by senescence associated‑β‑gal staining (magnification, x200). (B) Cell cycle progression in AGS and HGC‑27 cells following palbo-
ciclib treatment. (C) Expression levels of p16, p21 and p53 were measured in AGS and HGC‑27 cells following palbociclib treatment. **P<0.01 vs. control. 
PI, propidium iodide; β‑Gal, β‑galactosidase. 
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study also confirmed that palbociclib could inhibit cell prolif-
eration and induce cell cycle arrest at the G1 phase in GC cells 
in a dose‑dependent manner. 

In addition, a previous study also indicated that palbociclib 
could suppress the progression of nasopharyngeal carcinoma 
by mediating tumor cell apoptosis  (24). Zhang  et  al  (25) 
have reported that palbociclib could trigger cell apoptosis by 
upregulating Caspase‑3 and downregulating Bcl‑xl (25). The 
present study indicated that Palbociclib might facilitate GC 
cell apoptosis in a dose‑dependent manner. Moreover, palbo-
ciclib decreased Bcl‑2 expression and increased the expression 
of Bax and Caspase‑3, which is a new finding that contrasts 
with a study by Min et al (26). 

Cell senescence plays an important role against the 
progression of cancers and represents another intracellular 
tumor‑suppressive mechanism (27). Evidence indicates that 
cell senescence is associated with the induction of several 
genes, including p16, p21 and p53 (28). Previous studies have 
confirmed that palbociclib can induce cell senescence in 
several types of cancer, including hepatocellular carcinoma, 
breast cancer, lung cancer and glioma (7,29,30). In the present 
study, SA‑β‑gal staining results suggested that palbociclib 
promoted GC cell senescence in a dose‑dependent manner. 
In addition, western blot results also showed that palbociclib 

increased the expression levels of p16, p21 and p53 in GC 
cells, further confirming that palbociclib could promote GC 
cell senescence.

In mammals, the Notch pathway is mediated by four 
Notch receptors, Notch 1‑4, and five ligands, delta‑like ligand 
(DLL) 1, DLL3, DLL4, Jagged‑1 and Jagged‑2 (31,32). The 
Notch pathway is activated when one of these ligands binds 
to a Notch receptor. Once the Notch pathway is activated, 
the Notch receptors are cleaved, and the Notch Intracellular 
Domain (NICD) translocates into the nucleus to regulate 
downstream target genes, such as Hes1, for instance (33). 
Previous studies have shown Notch activation leads to activa-
tion of CDK6 in the setting of mouse or human T‑cell acute 
lymphoblastic leukemia (34,35). The Notch pathway plays an 
oncogenic role in multiple cancer types, including hepatocel-
lular carcinoma, glioma and breast cancer, by modulating 
proliferation, cell cycle, apoptosis, differentiation, senescence 
and metastasis (12,36). Hibdon et al (37) have suggested that 
the activation of the Notch pathway could facilitate the prolif-
eration of GC cells. Moreover, Notch1 and Notch2 signaling 
is essential for gastric stem cell proliferation in the stomach 
tissue of mice and humans  (38,39). In the present study, 
palbociclib significantly inhibited proliferation and induced 
senescence, cell cycle arrest and apoptosis by inhibiting the 

Figure 5. Palbociclib inhibits Notch signaling in AGS and HGC‑27 cells. mRNA and protein expression levels of Notch1, Notch2 and Hes1 were measured in 
(A) AGS cells and (B) HGC‑27 cells following palbociclib treatment. **P<0.01 vs. control; ##P<0.01 vs. palbociclib (0.5 µM). Hes1, hairy and enhancer of split 1. 
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Notch pathway in AGS and HGC‑27 cells, which highlights 
a new regulatory mechanism for palbociclib in GC that 

contrasts with a previous study (26). One of the limitations 
of the present study was that healthy cell lines were not used 

Figure 6. Jagged‑1/FC reverses the effect of Palbociclib on the proliferation, apoptosis, cell senescence and cell cycle in AGS and HGC‑27 cells. (A) Clone 
formation, (B) apoptosis, (C) senescence (magnification, x200) and (D) cell cycle progression of AGS and HGC‑27 cells following treatment with palbociclib 
and Jagged‑1/FC. **P<0.01 vs. control; ##P<0.01 vs. palbociclib (0.5 µM). PI, propidium iodide; β‑Gal, β‑galactosidase. 
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as a control. Furthermore, additional studies are required to 
determine whether palbociclib produces the same effect in 
other GC cell lines. 

In conclusion, this study demonstrated that palbociclib 
could inhibit proliferation and induce senescence, cell 
cycle arrest and apoptosis in GC cells. In addition, the 
tumor‑suppressive mechanism of palbociclib may be associ-
ated with the inhibition of the Notch pathway in GC. By 
revealing a new mechanism whereby palbociclib, regulates the 
Notch pathway in GC, the findings presented here not only 
add more data to the anticancer mechanisms of palbociclib, 
but also provide another option for the treatment of GC.
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