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Abstract. Although a large cohort of potential biomarkers 
for thyroid cancer aggressiveness have been tested in various 
formats in recent years, to the best of our knowledge, thyro‑
globulin and calcitonin remain the only two established 
biomarkers associated with thyroid cancer management. Our 
group has recently validated a novel means of maintaining 
live, human ex vivo thyroid tissue within a tissue‑on‑chip 
format. The present pilot study aimed to interrogate the tissue 
effluent, containing all the soluble markers released by the 
tissue samples maintained within the devices' tissue chamber, 
for the presence of markers potentially associated with thyroid 
cancer aggressiveness. Culture effluent from tissue samples 
harvested from 19 individual patients who had undergone 
thyroidectomy for the treatment of suspected thyroid cancer 
was assessed, first using a proteome profiler™ angiogenesis 
array kit. Patients were subcategorised as ‘aggressive’ if 
they possessed a minimum of N1b level metastases, whilst 
‘non‑aggressive’ samples were T3 or lower without evidence 
of multifocality; and contralateral healthy thyroid tissue 
was harvested for comparative studies. Levels of Serpin‑F1, 
vascular endothelial growth factor, Thrombospondin‑1 and 
chemokine (C‑C motif) ligand were significantly altered 
and, thus, were further investigated using ELISA to allow 
for quantitative analysis. The concentration of serpin‑F1 
was significantly increased in the effluent of aggressive 
thyroid cancer tissue when compared with levels released by 
both non‑aggressive and benign samples. The present study 
demonstrated the usability of microfluidic technology for the 
analysis of the ex vivo tissue secretome in order to identify 
novel biomarkers.

Introduction

The majority of thyroid cancers have an excellent prognosis, 
although the presence of locoregional or distant metastases 
has a considerable negative effect on patient survival and 
morbidity (1). At present, thyroglobulin and calcitonin are 
the only two established biomarkers associated with thyroid 
cancer management and are the subject of active surveillance 
within patient serum following thyroidectomy to indicate 
disease recurrence (2,3). However, no markers associated with 
thyroid cancer aggressiveness have been incorporated into 
clinical practice.

In recent years various molecular markers have been exten‑
sively studied as predictors of patient outcome. For example, 
the BRAFV600E mutation has been associated with aggres‑
sive clinical behaviours such as metastatic spread or recurrent 
tumour burden (4). In addition, multiple microRNAs (miRs), 
such as miR‑221, miR‑222 and miR‑146b have been reported 
as overexpressed in papillary thyroid cancer (PTC) specimens 
and may also be associated with disease aggressiveness (5‑7). 
A wide range of both soluble and tissue‑retained biomarkers 
for thyroid cancer have been studied previously (Table I). The 
expression of biomarkers within a tissue, although interesting 
from a biological perspective, commonly do not reflect the 
level within circulation (8), and it is clearly impractical to 
sample routinely making them less attractive for clinical 
utilisation. On the other hand, patient sera, potentially offer 
a higher degree of translatability for the identification of 
progression and disease‑specific biomarkers (9‑11); thus far 
both serum VEGF‑C and MMP‑2 have been correlated with 
thyroid tumour metastases (11,12).

The use of a precision cut tumour slice microfluidic device 
to maintain ex vivo thyroid cancer tissue has been demonstrated 
previously, and offers a novel means of assessing the levels 
of soluble markers released specifically from the malignant 
tissue (13). Proteins involved in the process of blood vessel 
formation are ideal candidates as markers of cancer progres‑
sion and metastasis, with angiogenesis being fundamental to 
these processes (14). The current research aimed to elucidate 
the levels of common angiogenic biomarkers within effluent 
produced in the described system and correlating the findings 
with the clinical features of the patients.

Identification of soluble tissue‑derived biomarkers from human 
thyroid tissue explants maintained on a microfluidic device
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Materials and methods

Patient sample acquisition. Human thyroid tissue samples were 
collected during thyroidectomy following written informed 
consent under ethical approval from Northeast‑Newcastle and 
North Tyneside Research Ethics Committee (15/NE/0412) 
and Hull University Teaching Hospitals NHS Trust R&D 
(R1925). Where possible, tissue was excised from the contra‑
lateral lobe alongside the malignant sample (aggressive n=9; 
non‑aggressive n=8; pathologically benign (n=3; Table II). 
Tissues were classed as ‘aggressive’ if they presented clini‑
cally with a minimum of N1b level metastases [tumour spread 
beyond the central compartment, including unilateral (on 1 
side of the neck), bilateral cervical (on both sides of the neck), 
contralateral cervical (the opposite side to the tumour), or 
mediastinal (chest) lymph nodes]. ‘Non‑aggressive’ samples 
were T3 or lower (localised to the thyroid gland) without 
evidence of multifocality.

Microculture device set up. Tissue samples were ‘live’ sliced 
(350‑500 µm) in ice‑cold PBS using a vibratome (Leica 
VT1200S, Milton Keynes) with a blade speed of 0.1 mms‑1 

and amplitude of 2.5 mm. A skin biopsy punch (Stiefel) was 
used to generate a precision cut tumour slice (PCTS), 5 mm 
in diameter. Each PCTS was weighed before insertion into 
the microculture device. Average PCTS wet weight was 
15.92±2.41 mg. A schematic demonstrating the study design 
is shown in Fig. 1. A previously described PCTS device (13) 
was used to house the thyroid tissue whilst being perfused at 
a rate of 2 µl min‑1 with Dulbecco's modified eagles medium 
(DMEM; GE Healthcare) containing 10% (v/v) heat inactivated 
foetal bovine serum (FBS; Biosera), penicillin/streptomycin 
(0.1 U/ml and 0.1 mg/ml respectively; GE Healthcare), 0.4 mM 
glutamine (GE Healthcare), 2.5 µg/ml Amphotericin B (Life 
Technologies, Paisley, UK), thyrotropin (TSH; 2 mIU/l) and 
sodium iodide (0.1 µg/ml). The culture device (shown in 
Fig. 2) was maintained at 37˚C for 72 h; medium coming 
off the device was collected after 2 h culture, then once per 
day thereafter and frozen (‑80˚C) prior to use in the assays. 
Effluent was collected from at least 2 patient‑derived tissue 
slices from each patient, which had been cultured in parallel, 
was used in this study in order to minimise the impact of 
tumour tissue heterogeneity.

Proteome profiler™ angiogenesis array. An Array Kit 
(Proteome Profiler™; R&D Systems) was used, as directed, 
to detect the presence of 55 angiogenesis‑related proteins 
released from the thyroid tissue whilst maintained on the 
microfluidic device. Following a 1 h incubation of the array 
membranes with blocking buffer, detection antibody cocktail, 
reconstituted in dH20 (15 µl), was added to 700 µl of thawed 
and centrifuged (300 x g; to remove cellular debris) culture 
effluent collected following a 72 h incubation on the microflu‑
idic device. The 72 h timepoint was chosen as data produced 
previously demonstrated a stabilisation of cellular death (such 
as tissue LDH leakage) within 72 h incubation (13). Effluent 
from a minimum of 2 explants from each patient, cultured 
in parallel, was utilised. The sample volume was made up to 
1.5 ml using buffer provided and incubated for 1 h at room 
temperature, before adding to the membranes in separate wells 

of a 4‑well multi‑dish (provided). The membranes and samples 
were incubated overnight at 4˚C on a rocking platform before 
being washed in 20 ml wash buffer (provided) for 3x10 min. 
Streptavidin‑HRP (1:2,000) was added to each membrane 
(2 ml) and incubated for 30 min with gentle agitation. The 
membranes were washed a further three times before antibody 
binding was detected with chemiluminescence (Thermo 
Fisher Scientific) and autoradiography. Dot densitometry 
was then analysed using the ‘analyse gels’ function within 
ImageJ Fiji software (open source; https://imagej.net/Fiji). The 
mean densitometry of each protein duplicate was calculated 
and expressed as a percentage of the average density of the 
6 positive‑control dots within the membrane. The resultant 
expression intensities were correlated to thyroid disease aggres‑
siveness, by comparing their levels in three tissue groups: 
benign, non‑aggressive and aggressive.

Quantification of factor expression using ELISA. Following 
initial detection of biomarkers of interest using a Proteome 
Profiler™ angiogenesis array, marker specific ELISAs were 
utilised, allowing fully quantitative evaluation of their levels 
within microculture effluent. ELISAs [CCL2 (DY279); 
serpin‑F1 (DY1177‑05); R&D, Oxford, UK] were carried out 
according to the manufacturer's instruction. Effluent samples 
were combined from a minimum of two replicate culture 
devices set‑up from each resected patient sample (aggressive 
n=9; non‑aggressive n=8; benign n=3). Due to limitations of 
effluent availability, effluent collected after 96 h culture was 
tested by ELISA (as opposed to the 72 h timepoint used for 
Proteome Profiler experiments). Following removal of the 
capture antibody and washing of the plate with the wash 
buffer provided, effluent (100 µl/well) samples were added to 
the plate in duplicate alongside prepared standards, covered 
with an adhesive strip, and incubated at room temperature for 
two hours. Following three washes with TBS, incubation with 
matched biotinylated detection antibodies was carried out for 
a further two hours before addition of the streptavidin‑biotin 
complex for 20 min. Colour development was induced 
by the addition of substrate reagent containing stabilised 
tetramethylbenzidine (TMB; R&D Systems). The optical 
density of each well was measured at 450 nm with wavelength 
correction at 570 nm. The mean of duplicate readings was 
taken for each sample. A 4‑parameter logistic curve fit was 
used to produce a standard curve from which protein concen‑
tration in the unknown samples was determined.

Statistical analysis. Data were grouped into results for 
benign, non‑aggressive and aggressive tumours and analysed 
using one‑way ANOVA and post‑hoc Tukey/Sidak tests on 
GraphPad Prism 8.0. All data is reported as mean ± SEM 
unless otherwise stated.

Results

Semi‑quantitative measurement of angiogenic factors release 
from thyroid tissue maintained on a microfluidic device using 
a Proteome Profiler™ array. The analysis of microfluidic 
culture effluent for the presence of 55 soluble angiogenesis‑ 
related protein factors, using the proteome profiler™ array, 
demonstrated that 22 of those factors were detectable (Fig. 3). 
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While the majority of detectable factors showed relatively little 
variance between the three disease sub‑groups, inter‑group 
variance existed in the cases of chemokine (C‑C motif) 
ligand 2 (CCL2), Serpin‑F1, vascular endothelial growth factor 
(VEGF) and Thrombospondin‑1 (TSP‑1; Fig. 3). The effluent 
of aggressive thyroid cancers contained a significantly higher 
level (72.85±21.38 a.u.; P=0.0002 and P=0.04) of CCL2 when 
compared to the effluent of non‑aggressive (32.06±13.57 a.u.) 
and benign (39.72±32.96 a.u.) thyroid tissue, respectively. No 
significance was detected between the levels of CCL2 released 
by benign and non‑aggressive tumour tissue.

In addition, the level of Serpin‑F1 increased with disease 
severity; benign thyroid tissue released 22.99±8.28 a.u., 
compared with 35.06±10.64 a.u. in non‑aggressive cancer tissue 
and 64.87±8.25 a.u. in the effluent of aggressive thyroid cancer 
tissue explants. Significance was detected when comparing 
the levels of Serpin‑F1 in aggressive with both non‑aggressive 
(P=0.008) and benign thyroid tissue (P=0.005). In contrast, 
VEGF release decreased with disease severity and was found 
to be significantly lower in concentration in the effluent collected 
from aggressive thyroid tumours compared to that collected from 
benign thyroid tissue (28.79±9.46 vs. 60.69±12.02 au.; P=0.044). 
Finally, although not significant, thrombospondin‑1 was mark‑
edly higher in effluent from the aggressive tissue sub‑group, 
when compared to the non‑aggressive group (32.86±8.06 vs
. 11.46±2.99 a.u.; P=0.08). Further, benign tissue appeared to 
release a higher level of thrombospondin‑1 than the counterpart 
non‑ aggressive tissue, although the difference was minimal and 
there was large variation in the levels.

Quantification of factor expression using ELISA. Following 
initial, semi‑quantitative biomarker, analysis within the 
culture supernatant, and due to a limited volume of available 
supernatants for subsequent analyses, Serpin F1 and CCL2 
were chosen to be studied by ELISA as they represented 
the most interesting potential biomarkers of thyroid disease 
aggressiveness due to the clear differences in levels between 
tissue types. The concentration of Serpin‑F1 within the effluent 
of aggressive thyroid cancer tissue (4,038±518.01 pg•ml‑1) was 
significantly higher (P=0.005) than that from non‑aggressive 
cancer tissue (1,450.48±532.34 pg•ml‑1) and benign thyroid 
tissue (P=0.01; 1,104.28±95.24 pg•ml‑1; Fig. 4A). The overall 
pattern of Serpin F1 release detected by ELISA directly 
mirrored the pattern detected by the aforementioned array 
experiments. Four of the eight patients within the ‘aggres‑
sive’ group (1,3,4,9) experienced disease progression; 
furthermore, three of those four patients (1,3,9) passed 
away due to complications with progression of their thyroid 
disease 750±236 days following their initial thyroid cancer 
surgery. No significant difference in factor secretion existed 
between those patients who experienced a fatal progression 
of their disease and those who did not. All patients within the 
‘non‑aggressive’ subcategory are currently alive.

The concentration of CCL2 detectable by ELISA across 
the three tissue types was above the top standard supplied 
(1,000 pg•ml‑1). Due to the limited volumes of culture super‑
natant available, it was not possible to dilute and repeat the 
analysis, thus the results were extrapolated and therefore 
should be regarded with caution and may be why the pattern 
observed (decreasing with disease severity) was not the same 
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as detected in the array experiments (Fig. 4B). No significant 
differences between the tissue cohorts were observed.

Discussion

A number of previous studies have investigated whether 
quantifiable changes in protein expression can be used 

diagnostically or prognostically for thyroid malignancies, 
especially as biomarkers for disease characteristics such as 
lateral neck metastasis in thyroid cancer (11). As is the case for 
most cancers (>90% cancer‑related deaths are due to tumour 
invasion), metastasis remains one of the main reasons for 
patient mortality in PTC (15,16). Currently no clinical utilised 
biomarkers of thyroid cancer invasiveness or metastasis exist. 

Table II. Clinicopathological features of thyroid patients, ordered by descending tumour‑node‑metastasis stage.

Patient Staging Age, years Sex Tissue type Survival, months

  1 T4aN1b 70‑80 F A 16a

  2 T4aN1b 70‑80 F A 23a

  3 T4N0M1 50‑60 F A 29a

  4 T4aN1bMX 70‑80 M A 28
  5 T3N1bMX 20‑30 F A 43
  6 T3bN1aMX 40‑50 M A/BC 35
  7 T3aN1bM0 20‑30 F A 31
  8 T3aN1bMX 30‑40 F A 32
  9 T3N1bMX 40‑50 F A 40a

10 T3aNXMX 60‑70 F L 28
11 T3aNXMX 50‑60 F L 26
12 T2NXMX 40‑50 M L 47
13 T1aNXMX 50‑60 F L 23
14 T1NXMX 60‑70 F L  33
15 T1aNXMX 10‑20 M L 33
16 T1aNXMX 40‑50 F L 30
17 T1bNXMX 40‑50 M L  35
18 ‑ 50‑60 F BC 25
19 ‑ 60‑70 F BC 23

aPatient mortality. F, female; M, male; A, aggressive; L, localised; BC, benign contralateral; where an additional sample of benign tissue was 
derived from the contralateral thyroid lobe at the time of surgery. 

Figure 1. A schematic showing the biomarker experiment workflow. (A) Culture supernatant produced by thyroid tissue explants maintained within the 
microfluidic device was stored within polypropylene tubes at ‑80˚C. (B) Supernatants assayed using a proteome profiler™ array to provide preliminary data 
pertaining to angiogenic factor release. (C) Two most strongly modulated factors [Serpin‑F1 and chemokine (C‑C motif) ligand 2] were investigated individu‑
ally using ELISA to provide quantitative data. (D) Results associated with disease characteristics. PCTS, precision cut thyroid slice.
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Effluent samples from thyroid patient tumour tissue were 
grouped into three categories: Aggressive, non‑aggressive and 
benign thyroid tissue. Culture effluent was initially analysed 
semi‑quantitatively; of the 55 proteins investigated, a total of 
22 proteins were detectable following their release by ex vivo 
thyroid tissue. Four of the 22 detectable proteins were differ‑
entially expressed depending on the thyroid tissue group from 
which they were derived. Levels of Serpin‑F1, CCL2, and 
Thrombospondin‑1 were all significantly higher in the effluent 
derived from aggressive thyroid cancers than those which had 
not metastasised. VEGF, on the other hand, was inversely 
correlated with aggressiveness; appearing to be released in 
lesser quantities by aggressive thyroid tissue, comparatively. 
Due to logistical difficulties regarding the quantity of culture 
effluent produced by on‑chip maintenance of thyroid tissue 
explants, fully quantitative analysis was carried out on 
Serpin‑F1 and CCL2 by ELISA only, as those factors appeared 
most profoundly modulated between the subgroups.

Serpin‑F1, also known as pigment epithelial‑derived 
factor, is a 50‑kDa glycoprotein with numerous biological 
functions including antiangiogenic and anti‑tumorigenesis, 
and was initially purified from conditioned medium from 
human retinal pigment epithelial cells (17). The protein is 
commonly expressed in normal tissues (18) and to a lesser 
extent, in malignant tissues (19), in contrast to the findings in 

the current study. Approximately a decade after the proteins' 
initial discovery it was observed to be a potent inhibitor of 
angiogenesis, acting as a major antagonist to a range of 
pro‑angiogenic factors such as VEGF; multiple studies have 
shown an inverse relationship in the expression of both 
serpin‑F1 and VEGF (20,21). In addition to its anti‑angiogenic 
activity, serpin‑F1 has been demonstrated as able to induce 
tumour cell re‑differentiation and block tumour cell invasion 
and metastasis (22,23). These anti‑tumour effects of serpin‑F1 
have been demonstrated in a range of human cancers such as 
prostate (23), ovarian (24) and glioma (25). A previous study 
carried out by Lv et al utilising immunohistochemistry (IHC) 
and RT‑qPCR established a correlation between the reduced 
expression of serpin‑F1 in the thyroid and lymph node metas‑
tasis, extrathyroidal invasion and BRAFV600E mutation in cases 
of papillary thyroid cancer (26). Although these findings 
apparently contradict the results obtained for serpin‑F1 release 
in the current study, the two sets of data should be compared 
with caution; as Lv et al studied tissue‑specific levels of the 
molecule, the current study investigated the levels released 
directly from the tissue.

CCL2 is a chemokine produced by a wide range of cell types 
including fibroblasts, endothelial and tumour cells (27). It has 
previously been demonstrated that CCL2 is overexpressed by 
a range of cancer types such as melanoma, ovarian, breast, and 

Figure 2. A composite image showing the microfluidic device employed within the current study. Left: PEEK plates (30‑mm diameter) contain a 10‑mm glass 
sintered disk situated in an adequately sized cavity to ensure the disk is flush with the internal plate surface. The lower disc is covered with a 70‑µm membrane 
before the gasket is put in place, creating a central area for the tissue to be housed (bottom left). Threaded holes (3‑mm) through the centre of the PEEK allow for 
connection of the inlet and outlet tubing via a CapTite™ fitting. Right: Assembled PEEK MF device held together with nylon screws. PEEK, polyether ether ketone.
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oesophageal (28‑31). Furthermore, increased CCL2 expression 
has been correlated with poor prognosis and advanced stage 

in cancer types such as prostate and oesophageal (32,33) as 
well as predicting recurrence and vascular invasion in breast 
cancer (30,34). Importantly, increased CCL2 expression, was 
significantly correlated with lymph node involvement and poor 
prognosis in thyroid cancer tissue (35,36). These scant findings 
in the current literature appear to agree with the current results 
regarding CCL2 release by thyroid cancer tissue. However, 
as was the case with Lv et al who investigated Serpin‑F1 
release, Tanaka's study was carried out using IHC to assess 
tissue‑specific marker expression, whereby the current study 
tested the level of released, soluble, CCL2.

Thrombospondin‑1 is a 450 kDa homotrimeric glyco‑
protein with diverse functionality such as the modulation 
of endothelial cell adhesion, motility, and growth, mediated 
through interaction between its structural domains and multiple 
cell‑surface molecules and is produced by a range of cell types 
including platelets, endothelial cells, cancer cells and circu‑
lating immune cells (37,38). In thyroid cancer, TSP‑1 has been 
shown to be upregulated and mediate invasiveness and aggres‑
siveness in B‑RAFV600E mutant tumours; murine implantation 
of TSP‑1 knockdown cancer cells yielded significantly smaller 
tumours by volume, and fewer metastases compared with 
control (39). Further, Soula‑rothhut and colleagues proposed 
that TSP‑1 is a positive effector in thyroid tumorigenesis; they 
used an in vitro model to demonstrate the proteins' stimula‑
tion of cell proliferation, migration and invasion in FTC133 
and FTC‑238 thyroid cancer cells (40). The results found in 

Figure 4. Graphs illustrating the quantitative analysis of serpin‑F1 and CCL2 
concentration within culture effluent. (A) Serpin‑F1 release as detected 
by ELISA. (B) Mean CCL2 release as detected by ELISA. All values fell 
above the maximal reference value (1,000 pg ml‑1) and were extrapolated as 
a result. Aggressive n=7; non‑aggressive n=7; benign n=3. Data presented 
as mean ± SEM; *P=0.01, **P=0.005. CCL2, chemokine (C‑C motif) ligand.

Figure 3. Bar chart displaying the relative expression of 22 detectable angiogenic factors released by human thyroid explants (aggressive n=7; non‑aggressive 
n=8; benign n=3) cultured within the novel microfluidic device. Of those 22 factors detected, CCL2, Serpin‑F1 and VEGF demonstrated significant variation 
between the three tissue subgroups to some degree when significance was tested using a one‑way ANOVA. Data produced were used to guide marker selection 
for subsequent fully quantitative, ELISA analysis. *P<0.05 between the three tissue subgroups. a.u, absorbance units; CXCL16, chemokine (C‑X‑C motif) 
ligand 16; DPPIV, dipeptidyl peptidase‑4; GM‑CSF, granulocyte macrophage colony‑stimulating factor; IGFBP, insulin‑like growth factor‑binding protein; 
CCL2, chemokine (C‑C motif) ligand; MMP, matrix metalloproteinase; PIGF, phosphatidylinositol‑glycan biosynthesis class F; TIMP, Tissue inhibitor of 
metalloproteinases; uPA, urokinase‑type plasminogen activator; VEGF, vascular endothelial growth factor.
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the current study would appear to agree with the evidence 
for the role of TSP‑1 in mitigating tumour invasion since a 
significantly higher concentration of TSP‑1 was detected in the 
effluent of aggressive thyroid cancer tissue compared to that 
of non‑aggressive thyroid cancer tissue. However, in contrast, 
TSP‑1 has been shown to inhibit kidney cancer cell migration 
in vitro (41). In addition, oesophageal cancer patients with 
low tumour expression of TSP‑1 were associated with worse 
progression free survival (42). This incongruence between 
studies investigating the role of TSP‑1 in cancer tissues reveals 
a potentially multifaceted, pleiotropic role which depends on 
both the tumour microenvironment and downstream receptor 
presence (43). VEGF is a pro‑angiogenic growth factor which 
binds one of two receptors (VEGFR‑1 and VEGFR‑2), both 
of which are expressed on the surface of endothelial cells 
and transduce pro‑angiogenic signalling (44). VEGF is a 
key mediator of angiogenesis in tumour tissue, where it is up 
regulated due to oncogene activation and hypoxia within the 
tumour microenvironment (45). Interestingly, a previous study 
carried out by Soh and colleagues found an increased level 
of VEGF secretion by thyroid cancer cells when compared 
to their benign counterparts. The discrepancy is perhaps as 
the group employed fully quantitative ELISA, which was not 
possible in the current study (46). A different group discov‑
ered that serum VEGF was more likely to be elevated in 
patients with differentiated thyroid cancer, as opposed to those 
suffering poorly differentiated thyroid cancer (47). It would be 
possible in future studies to investigate the effect of hypoxia 
on the relative levels of VEGF release by ex vivo thyroid tissue.

The logical next stage of the work would involve the 
collection of data concerning tissue‑specific levels of the 
proteins investigated, by separate means such as IHC, in order 
to correlate the tumour microenvironment with secreted prod‑
ucts. Furthermore, maximising the quantity of tissue collected 
at the point of surgical resection would increase the number of 
tissue slices able to be cultured in parallel. Thus, an increased 
volume of effluent could be collected and combined, strength‑
ening the statistical analyses, and improving the clinical 
applicability of the system. However, the quantity of human 
tissue provided will always be a limiting factor, and thus 
focussing on a smaller subset of targets is an equally valuable 
approach. In addition, a potentially interesting avenue of work 
would be the investigation of serpin‑F1 and CCL2 in vitro 
and in vivo, assessing how inhibition of these proteins affects 
thyroid cancer development and aggressiveness.

The data presented within this manuscript demonstrates first 
and foremost the application of microfluidic technology for the 
detection of soluble tissue‑derived factors. This is, to the best 
of the authors knowledge, the first time effluent derived from 
the microfluidic culture of ex vivo human thyroid tissue has 
been tested for the expression of a panel of angiogenic markers. 
Initial testing of effluent identified four potential markers of 
thyroid cancer progression/aggressiveness (Serpin‑F1, CCL2, 
VEGF, and TSP‑1). Further testing by ELISA demonstrated 
the significant modulation of serpin‑F1 release according 
to tissue severity, and therefore its' potential as a marker of 
thyroid cancer aggressiveness. An interesting facet of the data 
presented herein is the prediction of disease progression by 
elevated Serpin‑F1 and CCL2 in culture effluent at the point 
of testing. These data represent a pilot study, demonstrating 

the correlation between a number of identified markers and 
thyroid cancer aggressiveness.
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