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Abstract. Lung cancer is the most common type of cancer 
with the highest mortality rate worldwide. Non‑small cell lung 
cancer (NSCLC) accounts for ~85% of the total number of 
lung cancer cases. In the past two decades, immunotherapy 
has become a more promising treatment method than tradi‑
tional treatments (surgery, radiotherapy and chemotherapy). 
Immunotherapy has been shown to improve the survival rate 
of patients and to have a superior effect when controlling 
lung cancer than traditional therapy. However, only a small 
number of patients can benefit from immunotherapy, and 
not all patients who qualify experience long‑term benefits. 
In the clinic, the objective response rate of programmed 
cell death protein 1 treatment without the prior screening of 
patients is only 15‑20%. Immunotherapy is associated with 
both opportunities and challenges for patients with NSCLC. 
The current challenges of immunotherapy include the lack 
of accurate biomarkers, inevitable resistance and insufficient 
understanding of immune checkpoints. In previous years, 
several methods for overcoming the challenges posed by 
immunotherapy have been proposed, but combination therapy 
is the most suitable choice. A large number of studies have 

shown that the combination of drugs can significantly improve 
their efficacy, compared with monotherapy, and that some 
therapeutic combinations have been approved by the Food and 
Drug Administration for the treatment of NSCLC. Traditional 
Chinese medicine (TCM) is a traditional medical practice 
in China that can play an important role in immunotherapy. 
Most agents used in TCM originate from plants, and have 
the advantages of low toxicity and multiple targets. In addi‑
tion, TCM includes a unique class of drugs that can improve 
autoimmunity. Therefore, TCM may be a promising treatment 
method for all types of cancer.
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1. Introduction

At present, the collective worldwide incidence and mortality 
rates of all cancers are high, and have become the second 
leading cause of death (1). Among all cancer types, lung 
cancer is the most common type of cancer, which accounted 
for 11.6% of all cancer cases in 2018 (2). Non‑small cell lung 
cancer (NSCLC) accounts for ~85% of the total number of 
lung cancer cases (3). The 5‑year survival rate of patients with 
advanced NSCLC is only  ~15%, and the recurrence rate of 
advanced NSCLC following radical treatment is >40% (4). In 
the past two decades, an increasing number of therapies have 
been widely considered and studied to improve the survival 
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rate and quality of life for patients with advanced or meta‑
static NSCLC. These treatments include surgery, radiotherapy, 
chemotherapy, targeted therapy, immunotherapy and combined 
therapies. Among these treatment options, immunotherapy 
has become the optimum choice, particularly for patients 
with advanced or metastatic NSCLC. Immunotherapy can 
effectively control disease progression and improve survival 
rates (5), and the use of immune checkpoint inhibitors (ICIs) 
is an effective immunotherapeutic method (6). Thus, the aim 
of the present review was to investigate the developments in 
novel immune checkpoints and immunotherapy, with their 
associated challenges and potential solutions to these issues.

2. Overview of immune checkpoints in NSCLC

Immunotherapy is a type of treatment that uses ICIs to block 
the immune checkpoint signaling pathway and reactivate 
T cells, for the purpose of destroying tumors via the immune 
system (Fig. 1). The effects of immunotherapy are superior to 
those of other traditional therapies, rendering it an effective 
and innovative method for treating cancer (7). However, low 
response rates and immune‑related adverse events (irAEs) have 
also been observed in patients treated with ICIs. Overcoming 
these challenges is necessary (8). At present, immune 
checkpoints, including cytotoxic T‑lymphocyte associated 
protein 4 (CTLA‑4), programmed cell death protein 1 (PD‑1), 
programmed death‑ligand 1 (PD‑L1), T cell immunoglobulin 
and mucin domain‑containing protein 3 (TIM‑3), lympho‑
cyte activation gene 3 (LAG‑3) and T cell immunoreceptor 
with Ig and ITIM domains (TIGIT), are a research hotspot 
(Table I) (9).

CTLA‑4. In 1995, CTLA‑4 was first discovered to deliver 
inhibitory immune response signals (10). Leach et al (11) demon‑
strated that blocking CTLA‑4 enhanced the immune‑mediated 
targeting of tumor cells, and that tumor cells had the ability 
to upregulate the expression of CTLA‑4. CTLA‑4 belongs to 
the immunoglobulin superfamily and its gene is localized to 
chromosome 2q33 in humans (12). The structure of CTLA‑4 is 
homologous to that of CD28, with which it shares two ligands, 
CD80 and CD86 (13). Therefore, CTLA‑4 and CD28 exert 
opposing functions. CTLA‑4 induces inhibitory signals in 
T cells and blocks T cell responses by competing with CD28 
for ligand binding (14). CTLA‑4 also regulates T‑cell activa‑
tion through several mechanisms, including the inhibition of 
T‑cell proliferation, differentiation, IL‑2 production and cell 
cycle progression. Therefore, CTLA‑4 serves a significant role 
in immunotherapy, and has achieved satisfactory results in 
clinical treatment (15,16).

PD‑1/PD‑L1. PD‑1 is a member of the CD28 superfamily 
involved in programmed cell death (17,18), that is preferentially 
expressed by T and B cells, but also expressed in other cell 
subsets, such as dendritic cells, natural killer (NK) cells and 
monocytes. PD‑1 forms conjugates with PD‑L1 and PD‑L2, 
which belong to the B7 protein family, where PD‑L1 is its 
primary ligand (19). PD‑1 interacts with PD‑L1 to inhibit 
the activation of T cells and promote immune escape, since 
Src homology region 2‑containing protein tyrosine phos‑
phatase 2 inhibits kinases involved in T‑cell activation (20). 

Although anti‑PD‑1/PD‑L1 inhibitors (that block the binding 
of PD‑1 and PD‑L1) have shown encouraging results in the 
clinic (21), certain challenges remain, including irAEs and low 
response rates (22).

LAG‑3. LAG‑3 (also known as CD223) was discovered 
in 1990 and includes Ig‑like domains 1‑4. Domain 1 contains 
an additional sequence of ~30 amino acids known as the 
‘extra loop’ (23). LAG‑3 is primarily expressed on CD4+ 
and CD8+ T cells, though plasmacytoid dendritic cells, regu‑
latory T cells (Tregs), activated B cells and NK T cells also 
express cell surface LAG‑3 (24,25). Stable peptide‑major 
histocompatibility complex class II (MHC‑II) is considered 
to be a ligand of LAG‑3 (26), and liver sinusoidal endothelial 
cell lectin (LSECtin), galectin‑3 and fibrinogen‑like protein 1 
have also been reported as potential LAG‑3 ligands (27,28). 
LAG‑3 possesses a similar tumor immune escape mechanism 
to that of PD‑1, and is considered the most important tumor 
treatment target after PD‑1. At present, clinical trials to verify 
the efficacy of LAG‑3 ICIs, alone and combined with other 
ICIs, are in progress.

TIM‑3. TIM‑3 is a member of the TIM family of immuno‑
regulatory proteins, first discovered in 2002 (29). TIM‑3 
is a type I transmembrane protein expressed on T cells, 
B cells, NK cells, dendritic cells (DCs) and monocytes (30). 
Ligands of TIM‑3 have been reported to include galectin 9, 
phosphatidylserine, carcinoembryonic antigen‑related cell 
adhesion molecule 1 (Ceacam1) and high mobility group 
protein B1 (31). The interaction between TIM‑3 and its 
ligands (galectin‑9 or Ceacam1) induces Tyr256 and Tyr263 
phosphorylation in the intracellular domain of TIM‑3, 
releasing BAG cochaperone 6 (BAG6) from the TIM‑3 tail. 
The release of BAG6 allows the recruitment of Src kinases 
(including, but not limited to Lck and Fyn) and promotes 
the subsequent negative regulation of T cell receptor 
signaling (32,33). When TIM‑3 is not bound by a ligand, 
BAG6 is bound to its unphosphorylated cytoplasmic tail, 
and maintains T‑cell activation through Lck recruitment (9). 
TIM‑3 is also co‑expressed with PD‑1, and the co‑blockade 
of PD‑1 and TIM‑3 can exert synergistic effects, restoring 
T cell effector function and killing tumor cells (34).

TIGIT. TIGIT (also known as WUCAM, Vstm3 and VSIG9) 
belongs to a constantly expanding family of poliovirus 
receptor like proteins that plays a critical role in limiting 
immune functions (35). In 2009, TIGIT was first identified 
by three groups as an immune checkpoint that inhibits NK 
and T‑cell activation. TIGIT is composed of an extracellular 
immunoglobulin variable domain, a type I transmembrane 
domain and two inhibitory motifs of the cytoplasmic tail; 
one immunoreceptor tyrosine‑based inhibitory motif and 
one immunoglobulin tyrosine tail (ITT)‑like motif (36,37). 
TIGIT has three ligands, CD112, CD113 and CD155, though 
it binds to CD155 with the highest affinity. In humans, TIGIT 
is expressed by activated CD4+ T and CD8+ T cells, Tregs, NK 
cells and follicular T helper cells. NK cytotoxicity is inhibited 
by ITT phosphorylation when TIGIT binds to its ligands in 
NK cells (38). Furthermore, TIGIT‑mediated inhibition of 
effector T and NK cells is also achieved by interfering with 
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DNAX accessory protein‑1 co‑stimulation, which directly 
delivers inhibitory signals to the effector cell (39).

3. Immunotherapy in NSCLC

In the current clinical treatment of NSCLC, immunotherapy 
is primarily centered around two checkpoint inhibitors that 
target CTLA‑4 and PD‑1/PD‑L1 (40). CTLA‑4 is the first ICI 
to be used in the clinic. In previous years, researchers have paid 
more attention to PD‑1/PD‑L1, leading to progress in basic and 
clinical research. Due to the high toxicity of iplimumab, an 
ICI of the CTLA‑4 signaling pathway, the probability of irAEs 
increases (41). The drugs approved by the Food and Drug 
Administration (FDA) for the treatment of NSCLC include 
pembrolizumab, nivolumab, avelumab, atezolizumab and 
durvalumab. In addition, there are several novel ICIs in the 
developmental and clinical research stages (42,43). In conclu‑
sion, immunotherapy is associated with both benefits and 
challenges. It is therefore crucial to overcome the difficulties 
in expanding the number of individuals who are able to receive 
treatment, and to improve the efficacy of immunotherapy.

4. Challenges of immunotherapy in NSCLC

Although immunotherapy presents a promising treatment 
option, not all patients can benefit from it, and the benefits 
may not be long‑lasting. In the clinic, the objective response 
rates (ORRs) of PD‑1 treatment without the prior screening 
of patients is only 15‑20%, thus only a proportion of patients 
with NSCLC are suitable for, and benefit from, immuno‑
therapy (44). The primary reason for the low response rate 
is that suitable patients are not accurately selected prior to 

treatment. Therefore, it is essential to identify biomarkers that 
can predict the efficacy of immunotherapy in patients (45). Of 
the patients that do benefit from immunotherapy, the majority 
develop resistance, which has a marked impact on future treat‑
ment. Therefore, selecting suitable biomarkers and overcoming 
resistance is necessary for improving therapeutic effects (46).

Biomarkers
PD‑L1 expression in tumors. PD‑L1 is a potential tumor 
biomarker, and its predictive value varies in different 
tumors (47). Pembrolizumab has been approved by the FDA 
as a first‑line treatment for patients with NSCLC with PD‑L1 
expression ≥50%, and without EGFR or anaplastic lymphoma 
kinase (ALK) gene mutations (48). A meta‑analysis revealed 
that the higher the expression level of PD‑L1, the greater its 
benefit in patients using anti‑PD‑1/PD‑L1 (49). However, 
patients with squamous NSCLC are treated with nivolumab 
regardless of PD‑L1 expression level (50). As a biomarker, 
PD‑L1 expression is not omnipotent. At present, PD‑L1 detec‑
tion is widely employed in the clinic, and can be used as a 
clinical auxiliary or supplementary diagnostic tool to predict 
the efficacy of immunotherapy (51,52); however, it is not 
without its challenges.

PD‑L1 is a continuous variable, the levels of which can be 
altered by induction under constant conditions, for example, by 
cisplatin. Therefore, accurately detecting the level of PD‑L1 is 
challenging (53). Furthermore, surgical resection and biopsy 
can impact PD‑L1 expression, due to the heterogeneity of the 
tumor (54). The expression of PD‑L1 in surgically‑removed 
sections and lung biopsies was analyzed by SP142 immuno‑
histochemistry (IHC) in 160 patients with NSCLC. The results 
showed that the expression of PD‑L1 in lung biopsies was not 

Figure 1. Function and ligands of immune checkpoints. PD‑1 and CTLA‑4 are classical, and TIM‑3, LAG‑3 and TIGIT are emerging immune checkpoints. 
These immune checkpoints are co‑inhibitory and can suppress T cell activity. PD‑1, programmed cell death protein 1; CTLA‑4, cytotoxic T‑lymphocyte asso‑
ciated protein 4; TIM‑3, T cell immunoglobulin and mucin domain‑containing protein 3; LAG‑3, lymphocyte‑activation gene 3; TIGIT, T cell immunoreceptor 
with Ig and ITIM domains.
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consistent with that in the surgically‑removed sections (overall 
inconsistency rate, 48%), and the expression of PD‑L1 in the 
biopsies was generally lower than that in the sections (55). 
Finally, the difference between IHC assays also has important 
implications on PD‑L1 detection, as results are inconsistent 
among different assays. Currently, four IHC assays have been 
approved by the FDA (28‑8, SP263, SP142 and 22C3), and 
selecting the most suitable one for each patient is crucial. In 
addition, the scoring system for PD‑L1 expression has not 
been standardized (56,57). In conclusion, clinical detection of 
PD‑L1 demands standardization and improved accuracy.

Tumor mutation burden (TMB). TMB is a potential 
biomarker for immunotherapy, which is defined as the total 

number of detected somatic gene coding, base substitution, 
gene insertion or deletion errors in every million bases (Mb). 
The principle of TMB in predicting the efficacy of immu‑
notherapy is that tumors with a high TMB may express a 
greater variety of antigens and have stronger immunoge‑
nicity, thus increasing their recognition by, and the killing 
effect of, cytotoxic CD8+ T cells. Therefore, tumors with a 
high TMB are suitable for immunotherapy (58). In terms of 
clinical trials, CheckMate‑568 revealed that patients with a 
TMB of >10 mutations (mut)/Mb had higher ORR and longer 
progression‑free survival (PFS) than those with a TMB of 
<10 mut/Mb, regardless of PD‑L1 expression level. The 
results showed that TMB could be used as a prospective 
biomarker for patients treated with nivolumab combined with 

Table Ⅰ. Summary of immune checkpoints.

      Binding    
    partner    
 Chromosomal Number of Binding expression Receptor  
Checkpoint location amino acids partner location expression Trial Drugs

PD‑1     2q37.3 288 PD‑L1  Cancer cells, TILs, effector CheckMate‑017  Nivolumab
   (B7‑H1) APCs, T cells, T cells,  CheckMate‑057  Pembrolizumab
   PD‑L2  tumor regulatory B cells, KEYNOTE‑010  Atezolizumab
   (B7‑DC) MDSCs NK cells KEYNOTE‑021 Durvalumab
      KEYNOTE‑024  Avelumab
      KEYNOTE‑189  PDR001
      IMpower‑131  REGN2810
      IMpower‑150 Y3300054
      Pembro‑RT  Tislelizumab
      CT02008227  MGA012
      NCT02125461  MEDI4736
      NCT02395172 SHR‑1210
       AB122
CTLA‑4        2q33 239 B7‑1  APCs Effector T cells, CheckMate227  Ipilimumab
   (CD80) Tumor  Tregs CheckMate‑568 Tremelimumab
   B7‑2 (CD86) MDSCs   
LAG‑3  12p13.32 498 MHC‑II APCs Effector T cells, NCT03250832  LAG525
   Galectin‑3  Tregs, B cells, NCT02460224 TSR‑033
   LSECtin  NK cells, DCs NCT01968109  BMS‑986016
   A‑synuclein   NCT02966548 REGN3767
   FGL1    NCT03005782  
      NCT03459222 
TIM‑3     5q33.2 302 Galectin‑9  APCs Effector T cells, NCT03099109  LY3321367
   Ceacam‑1 Cancer cells B cells, Tregs NCT03744468 BGB‑A425
   HMGB‑1  DCs, NK cells, NCT02608268  MBG453 
   PtdSer  Monocytes NCT02817633 TSR‑022
TIGIT    3q13.31 244 CD155 APCs T cells, AB154  Domvanalimab
   CD112 Cancer cells NK cells MTIG7192A Tiragolumab
      BGB‑A1217 BGB‑A1217

PD‑1, programmed death 1; PD‑L1, programmed cell death ligand‑1; PD‑L2, programmed cell death ligand‑2; CTLA‑4, cytotoxic T‑lymphocyte 
antigen‑4; TIM‑3, T cell immunoglobulin and mucin domain 3; LAG‑3, lymphocyte activation gene‑3; TIGIT, T cell immunoglobulin and ITIM 
domain; APC, antigen presenting cell; MDSC, myeloid‑derived suppressor cell; LSECtin, liver sinusoidal endothelial cell lectin; MHC‑II, 
major histocompatibility complex‑II; FGL1, Fibrinogen Like 1; PtdSer, Phosphatidylserine; Tregs, regulatory T cell.
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ipilimumab (59). However, the use of TMB as a biomarker 
has certain limitations.

In terms of detection methods, whole genome sequencing or 
whole‑exome sequencing (WES) are the standard methods for 
calculating the TMB (58); their disadvantages include the need 
for high sample quality, long detection times and high cost, and 
as such, their wide application in clinical practice is limited (60). 
A promising and convenient alternative is next‑generation 
sequencing (NGS) (61). In a study by Samstein et al (62), 
integrated mutation profiling of actionable cancer targets 
(MSK‑IMPACTTM) was used to sequence the genome. The 
results showed that for the majority of tumors treated with ICIs, 
patients with a higher TMB exhibited a higher survival rate (62). 
The relevant data also showed that the results of quantification 
of TMB detected by NGS and WES were correlated (63). The 
FDA has approved two NGS panels (FoundationOne®CDx 
and MSK‑IMPACT) to evaluate TMB. Although NGS has its 
advantages, in‑depth research is required in order to improve 
accuracy in clinical practice before it can become the standard 
method for TMB determination (64). Secondly, there is no fixed 
standard TMB cut‑off value. Generally speaking, a TMB of 
>20 mut/Mb is considered high, whereas a TMB of <10 mut/Mb 
is considered low. Therefore, it is necessary to determine the 
optimal cut‑off value of each tumor type in more prospective 
clinical studies and clinical practice (65).

Additionally, 30% of cancer patients face further challenges, 
including the inability to obtain tumor tissue, insufficient tumor 
tissue samples and tumor tissue content not meeting the require‑
ments for detection (66). Therefore, a blood‑based assay was 
developed to measure blood tumor mutation burden (bTMB). 
Blood detection is safer, less costly, and blood samples are easier 
to obtain than tumor biopsies. Related studies have confirmed that 
the bTMB can predict the efficacy of atezolizumab in patients 
with advanced NSCLC (67). However, other studies have shown 
that the bTMB cannot evaluate the results of immunotherapy 
(PFS and ORR). Patients with a low bTMB may also benefit from 
immunotherapy (68). In addition, recent studies have reported 
that the maximum somatic allele frequency combined with 
bTMB has a higher predictive effect than bTMB alone in patients 
with advanced NSCLC treated with atezolizumab (69). bTMB is 
therefore not a mature biomarker, and further experimentation is 
required for clinical verification. Although both TMB and bTMB 
can predict the efficacy of immunotherapy, there are still several 
obstacles that need to be overcome, including the specification 
of the detection platform, and the lack of standardization in the 
evaluation of TMB and bTMB.

At present, there is no single biomarker that can accurately 
predict the efficacy and prognosis of immunotherapy. In 
a clinical setting, PD‑L1 and TMB are the most commonly 
used biomarkers, but there are certain limitations regarding 
their clinical use. It is therefore crucial to continue investi‑
gating existing, and identify novel, biomarkers. For example, 
tumor‑infiltrating lymphocytes (TIL), epithelial‑to‑mesen‑
chymal transition/inflammation signature score, intestinal 
flora, microsatellite instability high/deficient mismatch repair, 
gene expression signatures and tumor‑specific genotypes 
are potential biomarkers currently being explored (70,71). 
However, the identification of a ‘perfect’ biomarker is unlikely; 
therefore, assessing the suitability of patients for immuno‑
therapy based on the comprehensive evaluation of multiple 

indicators is currently the most effective strategy. A study has 
shown that a combination of human leukocyte antigen (HLA) 
class I, CD8+ T cell infiltration, PD‑L1 expression and tumor 
mutational load is a promising biomarker for predicting 
the efficacy of anti‑PD‑1 in the treatment of NSCLC (72). 
However, this combination still requires considerable clinical 
verification to confirm its predictive ability. Therefore, the 
focus of future studies should be not only on identification of 
novel biomarkers, but also the investigation of the most effec‑
tive combination of various existing biomarkers.

Immunotherapy‑induced resistance. With the development of 
immunotherapy, the global use of ICIs has increased; however, 
the development of drug resistance remains a considerable chal‑
lenge (73). Resistance can be categorized as acquired or primary, 
with the probability of primary resistance at ~60% (74). Most 
patients develop resistance following immunotherapy, which 
reduces its anticancer effects. Therefore, overcoming resistance 
is important in improving immunotherapeutic efficacy. Existing 
literature suggest that the current understanding of resistance 
mechanisms is limited; the potential mechanisms of resistance 
(based on existing data) are summarized herein.

Firstly, tumor immunogenicity and TMB are associated 
with the mechanism of resistance. The necessary conditions for 
effective immunotherapy include tumor expression of the appro‑
priate antigens and the generation of tumor antigen‑specific 
T cells (75). Tumors with a high immunogenicity (NSCLC, 
renal cell carcinoma and human melanoma) are more sensitive 
to immunotherapy (76,77). However, tumors with a low TMB 
produce fewer tumor antigens and have poor immunogenicity, 
which negatively impacts the activation of effector T cells, further 
leading to resistance (78). Prostate cancer has poor immunoge‑
nicity and low expression of PD‑L1, which is the primary reason 
for drug resistance (79). Therefore, tumor immunogenicity and 
TMB are closely associated with the mechanism of resistance. 
Secondly, immunotherapy restores T cell function by blocking 
immune checkpoints. However, if tumor cells cannot be identi‑
fied by T cells, drug resistance ensues. The expression of tumor 
cell MHC‑I is necessary for identification of tumor cells by 
T cells, and MHC‑I loss or downregulation results in tumor 
immune escape. β2 m is an integral part of the HLA class I 
molecule, and is necessary for antigen presentation. Mutations 
in β2 m limit the recognition of CD8+ T cells, which results in 
T cell failure (80). Therefore, a promising solution is to generate 
synthetic long peptides from tumor‑associated antigens, as well 
as DNA and RNA, in order to develop novel vaccines. The associ‑
ated mechanism is that the vaccine is transported to MHC‑I and 
MHC‑II molecules of antigen‑presenting cells, thus promoting 
CD8 and CD4 T cell responses to overcome resistance (81). In 
addition, radiotherapy can lead to the independent upregula‑
tion of MHC‑I, recover antigen presentation and overcome 
resistance (82). Finally, the pathway of immunosuppression is 
not only associated with PD‑1/PD‑L1, but also other pathways 
with similar functions, such as those of TIM‑3, LAG‑3, CTLA‑4 
and B‑ and T‑lymphocyte attenuator (BTLA). In the event of the 
combined action of these pathways, blockade of one may not 
be sufficient, as the others pathways will likely compensate for 
the loss of immunosuppressive signals. Therefore, the combina‑
tion of multiple ICIs may improve their therapeutic effects (83). 
In clinical and mouse models, the expression of TIM‑3 was 
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increased following anti‑PD‑1 resistance, and the combination 
of anti‑TIM‑3 and anti‑PD‑1 was found to improve survival 
rates (84,85). Therefore, the combination of multiple ICIs may 
improve tumor control and overcome resistance.

5. Future solutions and research directions for immuno‑
therapy in NSCLC

Although its affects remain controversial, obtaining a 
deeper understanding of immunotherapy is necessary for its 

improvement. Future research directions can be divided into 
a basic and a clinical aspect. With regard to basic research, 
key directions may include the identification of novel targets, 
the effective combination of various biomarkers, and the 
investigation of resistance mechanisms. Based on current 
basic research findings, the purpose of clinical research is to 
combine existing treatment methods to obtain the optimum 
therapeutic effect. Several studies are currently in progress, 
which have achieved promising results (Table II), and are 
described in the following sections.

Table Ⅱ. First‑line treatment of NSCLC.

      Median 
      progression‑ Median
     Objective free overall
 Immunological   Condition or response survival, survival,
Study pathway Study design Phase disease rate, % months months

CheckMate‑227 CTLA‑4/PD‑1 Nivolumab plus III Squamous or 45.3 7.2 NR
  ipilimumabvs.   non‑squamous   
  chemotherapy     
CheckMate‑568 CTLA‑4/PD‑1 Nivolumab plus II Advanced/metastatic 30 4.2 NR
  ipilimumab  NSCLC   
Keynote‑021 PD‑1 Pembrolizumab plus II Non‑squamous 56.7 24 NR
  pemetrexed     
  carboplatin vs.      
  pemetrexed carboplatin
Keynote‑189 PD‑1 Pembrolizumab II Non‑squamous 47.6 8.8 NR
  platinum‑pemetrexed vs.
  placebo‑platinum
  pemetrexed     
IMpower‑131 PD‑L1 Atezolizumab + III Squamous 49 6.3 14
  carboplatin+
  paclitaxel vs.
  atezolizumab+     
  paclitaxel vs.
  atezolizumab+     
  carboplatin +
  nab‑paclitaxel vs.     
  carboplatin +
  nab‑paclitaxel     
IMpower‑150 PD‑L1 Atezolizumab plus III Non‑squamous 69.3 8.3 19.2
  carboplatin
  plus paclitaxel vs.     
  Atezolizumab plus     
  bevacizumab plus
  carboplatin plus     
  paclitaxel vs.
  Bevacizumab plus     
  carboplatin plus paclitaxel 
Pembro‑RT PD‑1 Pembrolizumab‑SBRT vs. III Metastatic NSCLC 36 6.6 15.9
  Pembrolizumab     

PD‑1, programmed death 1; PD‑L1, programmed cell death ligand‑1; CTLA‑4, cytotoxic T‑lymphocyte antigen‑4; NSCLC, non‑small cell 
lung cancer.
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Combination of multiple treatment options in clinical research
Combination of multiple ICIs for NSCLC therapy. 
PD‑1/PD‑L1 is one of the signaling pathways of several 
immune checkpoints, but various other immune checkpoints 
perform similar functions. The anti‑tumor effect can be 
improved using a combination of multiple ICIs. The combina‑
tion of anti‑PD‑1 and anti‑CTLA‑4 has been widely studied 
and shown to yield positive results. CheckMate 012 showed 
that the efficacy of nivolumab + ipilimumab as a first‑line 
treatment was superior to that of nivolumab alone (86). The 
phase III clinical study CheckMate 227 confirmed that the 
efficacy of nivolumab + ipilimumab as a first‑line treatment 
was superior to that of traditional chemotherapy. It was also 
shown that, in patients with a high TMB, the median PFS of 
the nivolumab + ipilimumab group was longer than that of the 
chemotherapy group (7.2 vs. 5.5 months) (87). Furthermore, 
CheckMate 568 revealed an association between the efficacy 
of nivolumab + ipilimumab as a first‑line treatment, and 
the expression of PD‑L1 and TMB. The results indicated 
that patients with a TMB of >10 mut/Mb had a higher ORR 
and longer PFS, regardless of PD‑L1 expression, providing 
evidence for the use of TMB as a potential biomarker (5). In 
addition to the combination of anti‑PD‑1 and anti‑CTLA‑4, 
a number of novel immunotherapy combinations are in the 
experimental stages.

ICIs combined with chemotherapy. Chemotherapy is a tradi‑
tional treatment for advanced cancer, which can increase 
tumor antigen presentation, enhance the activity of effector 
T cells, and increase the expression of PD‑L1 in tumors (88). In 
addition, the regulatory effect of a variety of chemotherapeutic 
drugs on immune function has been reported. For example, 
cisplatin upregulates PD‑L1 expression in tumor cells through 
the PI3K/AKT signaling pathway (53), and pemetrexed can 
promote the activation of NK cells, increasing the production 
of IFN‑γ (89). Also, docetaxel selectively reduces the number 
of Tregs and prevents immune suppression (90). Therefore, 
chemotherapy and immunotherapy have a synergistic effect, 
suggesting that combination therapy has a superior effect to 
monotherapy.

A number of studies have shown that as a first‑line treat‑
ment, the therapeutic benefits of immunotherapy combined 
with chemotherapy are greater than those of chemotherapy 
alone. KEYNOTE‑021 studied the difference in efficacy 
between pembrolizumab + pemetrexed‑carboplatin (PC) and 
PC alone. The results showed that the ORR of the combina‑
tion group was 56.7%, while that of the PC group was 30.2%. 
Compared with PC alone, PFS and overall survival (OS) 
following combination therapy also improved significantly (91). 
Patients were divided into three groups based on first‑line 
treatment: Atezolizumab + carboplatin + paclitaxel, atezoli‑
zumab + bevacizumab + carboplatin + paclitaxel (ABCP) 
and bevacizumab + carboplatin + paclitaxel (BCP) as. In the 
ITT‑WT population (patients with EGFR or ALK alterations 
were excluded), the mPFS of the ABCP group was significantly 
higher than that of the BCP group (8.3 vs. 6.8 months). In the WT 
population which had high expression of an effector T cell (Teff) 
gene signature in the tumor (Teff‑high WT) cases, the mPFS 
of the two groups was 11.3 and 6.8 months. The results showed 
that adding atezolizumab to bevacizumab + chemotherapy for 

non‑squamous metastatic NSCLC improved OS and PFS, 
regardless of PD‑L1 expression. In December 2018, the FDA 
approved atezolizumab + carboplatin + paclitaxel + bevaci‑
zumab as a first‑line treatment option for patients with advanced 
metastatic NSCLC without EGFR and ALK mutations (92).

ICIs combined with radiotherapy. For patients with advanced 
NSCLC, radiotherapy is one of the most conventional and 
effective treatments, and improves survival rate by increasing 
the control of primary tumour (93). Radiotherapy can 
increase tumor antigen release, enhance antigen presentation 
and promote T‑cell infiltration into the tumor tissue, thus 
enhancing the systemic anti‑tumor immune response and 
altering the tumor microenvironment (94). Radiotherapy can 
induce immunogenic cell death, enhance the TIL repertoire 
and upregulate MHC and PD‑L1 expression (95,96). In immu‑
notherapy, the expression of PD‑L1 plays an important role 
in predicting the therapeutic effect. A previous study revealed 
that radiotherapy increases the expression of PD‑L1 in tumor 
cells by activating the PI3K/AKT and STAT3 signaling path‑
ways. In addition, radiotherapy is less toxic, and thus a more 
favorable option for combined immunotherapy (97).

At present, there are few NSCLC clinical studies on 
radiotherapy combined with ICIs. PEMBRO‑RT is a recent 
multi‑center phase II randomized clinical trial, the purpose of 
which was to determine whether the use of stereotactic body 
radiotherapy before pembrolizumab treatment increases the 
anti‑tumor response of patients with metastatic NSCLC. The 
patients in the experimental arm were treated with pembro‑
lizumab following stereotactic body radiotherapy at a single 
tumor site, while the control arm were treated with pembroli‑
zumab only. The results showed that the ORR at 12 weeks in 
the experimental arm was significantly higher than that of the 
control arm (36 vs. 18%). The mPFS of the experimental arm 
was 6.6 months, and that of the control arm was 1.9 months. 
The median OS was 7.6 in the control arm, and 15.9 months 
in the experimental arm. Although the experimental results 
showed that the ORR following combination therapy was 
significantly higher than that of the control arm, the results 
did not reach the expected standard. In addition, different 
patient PD‑L1 expression levels may also have effeced the 
experimental results. Therefore, these findings require further 
experimental confirmation (98). However, based on the 
existing experimental outcomes, immunotherapy combined 
with radiotherapy is superior to radiotherapy alone, and does 
not increase the number of adverse reactions.

ICIs combined with Traditional Chinese Medicine (TCM). 
In patients with NSCLC, combined immunotherapy can 
compensate for the deficiencies of immunotherapy alone, 
allowing increased benefit to a greater number of patients. 
Combined immunotherapy appears promising, but the 
current thinking cannot be limited by the existing programs 
when investigating this research area. TCM has a long 
history of use in China (99). During the novel coronavirus 
outbreak in 2020, the majority of hospitals in China used 
a combination of western and TCM to treat patients, with 
successful results (100). China has also achieved encour‑
aging results in providing TCM treatment for patients in 
other countries, which has become an important player in 
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global disease treatment (101). The tumor environment is an 
important consideration when treating tumors, as changes 
therein may directly affect tumor cell proliferation rate, and 
subsequently, the effects of immunotherapy and occurrence 
of resistance (102). For the treatment of cancer, TCM has the 
potential to improve the tumor environment for increased 
treatment efficacy. Most TCM agents are derived from plants, 
and thus, have the advantages of low toxicity and multiple 
targets(diversity of compounds). In addition, TCM includes a 
specific class of drugs for the improvement of self‑immunity, 
which improve the tumor environment; as such, the primary 
purpose of systematic treatment for patients with metastatic 
NSCLC is to reduce the burden of cancer symptoms, and 
to improve survival, while also maintaining patient quality 
of life (103). Currently, traditional treatments and immuno‑
therapy cannot achieve satisfactory results in patients with 
metastatic NSCLC. Therefore, the use of TCM combined 
with these other treatment types is a promising option for 
patients with NSCLC, and research into the role of TCM in 
immunotherapy is ongoing.

Astragalus polysaccharide (PG2) is the active compo‑
nent of the dried roots of Astragalus membranaceus. 
A study showed that PG2 increased the M1/M2 macro‑
phage polarization ratio of H441 and H1299 cells. It also 
increased the T cell‑mediated antitumor immune response 
by promoting the functional maturity of DCs (104). 
Adding PG2 to cisplatin, a conventional chemothera‑
peutic drug, can synergistically increase the antitumor 
effect (105). According to the above theory, the effective 
results of immunotherapy combined with PG2 in NSCLC 
were expected (106). Phytolacca acinosa polysaccha‑
rides I (PAP‑1) is a compound of Phytolacca, which has 
been proven to affect immune functions in mice. It can 
also enhance the production of IL‑2 and NK cytotoxic 
factor, and exerts antitumor activity (107). It has also been 
reported that total glucosides of paeony can regulate the 
expression of PD‑1 and PD‑L1 in peripheral blood mono‑
cytes (108). Thus to conclude, TCM has the potential to 
positively influence immunotherapy. In addition, various 
other TCM agents can regulate immunity and antitumor 
effects. At present, research on the antitumor effects of 
combining TCM with immunotherapy is being conducted, 
the findings of which may provide patients with further 
treatment options and superior benefits.

6. Conclusions

For future clinical trials in cancer, several challenges need to 
be overcome, including irAEs, low patient response rates and 
tumor cell resistance to treatment. Although immunotherapy 
is currently the best option, more promising treatments are 
expected to arise from ongoing basic and clinical research. 
Until then, solutions to these problems can be found through 
the continuous identification of immune checkpoints, and the 
creation of more favorable combination treatment methods. 
The research and application of immunotherapy have broad 
prospects; the discovery of new immune checkpoints and 
continuous attempts at combination treatments, including that 
of TCM and immunotherapy, may well be hotspots of future 
research on NSCLC.
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