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Abstract. Acute myeloid leukemia (AML) is a malignant 
disease originating from myeloid hematopoietic stem or 
progenitor cells. It is important to identify molecules associ‑
ated with the prognosis of AML and conduct an individual 
risk assessment for different patients. In the present study, 
the RNA expression profile of 132 patients with AML and 
337 healthy individuals were downloaded from the University 
of California Santa Cruz Xena and the Genotype‑Tissue 
Expression project databases. Differentially expressed mRNA 
(DEmRNA) transcripts between normal blood and AML 
blood were identified. Among these, prognosis‑associated 
signature mRNA molecules were screened using univariate 
Cox and least absolute shrinkage and selection operator 
regression. A total of four genes, namely, family with sequence 
similarity 124 member B (FAM124B), 4‑hydroxyphenylpy‑
ruvate dioxygenase‑like protein (HPDL), myeloperoxidase 
(MPO) and purinergic receptor P2Y1 (P2RY1), were identified 
using multivariate Cox regression analysis and were used to 
construct a prognostic scoring system. Moreover, the expres‑
sion levels of HPDL and MPO were higher in the samples with 
high immunity scores and estimate scores (sum of stromal 
score and immune score), compared with those with low 
scores. Reverse transcription‑quantitative PCR and western 
blot analysis were used to confirm the upregulation of the four 
candidate genes in AML cell lines as well as in clinical AML 
samples. In summary, the present study identified a novel 
mRNA‑based prognostic risk scoring system for patients with 
AML. The four genes used in this scoring system may also 
play an important role in AML.

Introduction

Acute myeloid leukemia (AML) is a malignant disease origi‑
nating from myeloid hematopoietic stem or progenitor cells. 
It is characterized by abnormal proliferation of primitive and 
juvenile myeloid cells in the bone marrow and peripheral 
blood (1,2). The clinical manifestations of this disease are 
anemia, hemorrhage, infection, fever, organ infiltration and 
abnormal metabolism. If not treated in time, AML can often 
be life‑threatening (3‑5). AML remains a disease with variable 
prognosis and high mortality. The median overall survival for 
patients with relapsed AML ranges from 4‑6 months, and the 
long‑term survival rate from the time of relapse ranges from 
5‑20% (6,7). The pathogenesis of AML is associated with 
two types of genetic abnormalities. The first type involves 
gene mutation or rearrangement in tyrosine kinases, such as 
FLT3, C‑KIT or RAS (8,9). The second type involves muta‑
tion or rearrangement in transcription factors associated with 
hematopoietic regulation, such as PML‑RARα, AML1‑ETO, 
GATA1 and GATA2 (10,11). With the development of genome 
sequencing, an increasing number of studies has suggested that 
some genes are closely related to the occurrence, development 
and recurrence of AML. For instance, a previous study has 
demonstrated that the m6A demethylase, alpha‑ketoglutarate 
dependent dioxygenase (FTO), plays an oncogenic role in 
the development of AML (12). Another study has suggested 
that R(‑)‑2‑hydroxyglutarate plays a tumor‑suppressive 
role in leukemia by competitively inhibiting the activity of 
FTO (13). Therefore, the identification of molecules related 
to the prognosis of AML and the characterization of their 
gene expression levels are important for individualized risk 
assessment in different patients. The prognostic level of AML 
patients was thus predicted by establishing a diagnostic risk 
scoring system.

Disease risk models are statistical models based on the risk 
factors for an individual that can be used to evaluate the prob‑
ability of the occurrence of a disease over a certain period of 
time (14,15). Typical tumor risk prediction models are usually 
based on demographic characteristics, environmental risk 
factor exposure, lifestyle and clinical indicators. With advances 
in the field of genomics, multigene risk scores have been 
developed that can quantify the cumulative effect of multiple 
genes and condense a large amount of genomic variation 
information into a score that can measure individual disease 
susceptibility (16). Scoring systems play an important role in 
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the prediction, screening and intervention of high‑risk groups 
to achieve the precise prevention of complex diseases (17). 
Therefore, the discovery of new AML biomarkers and the 
development of novel prognostic risk score systems may help 
improve our understanding of the molecular basis of AML and 
provide a more accurate individualized auxiliary diagnosis 
method for patients with AML.

In the present study, an mRNA‑based risk score system was 
used to predict disease prognosis using sample‑matched mRNA 
expression profiles from patients with AML. Differentially 
expressed mRNA (DEmRNA) molecules were identified 
between normal and AML blood. Among these DEmRNA 
transcripts, signature mRNA transcripts associated with 
prognosis were screened using univariate and least absolute 
shrinkage and selection operator (LASSO) regression. Using 
multivariate Cox regression analysis, the family with sequence 
similarity 124 member B (FAM124B), 4‑hydroxyphenylpy‑
ruvate dioxygenase‑like protein (HPDL), myeloperoxidase 
(MPO) and purinergic receptor P2Y1 (P2RY1) genes were 
found to be associated with AML prognosis, and a prognostic 
scoring system was developed. The expression levels of these 
four genes were also determined in the blood from healthy 
individuals or patients with AML.

Materials and methods

Data collection. The RNA expression data (read counts) of 
patients with AML (n=132) and available clinical and demo‑
graphic data (including sex, age, race, vital status and survival 
time) were obtained from The Cancer Genome Atlas (TCGA) via 
the University of California Santa Cruz (UCSC) Xena database 
(https://xenabrowser.net/datapages/?dat‑aset=TCGA‑LAML.
htseq_counts.tsv) (18). The RNA expression data (read counts) 
from healthy blood samples (n=337) were obtained from the 
Genotype‑Tissue Expression database (https://gtexportal.
org/) (19).

Clinical sample collection. A total of 40 peripheral blood 
samples were obtained from patients with AML (n=20) 
and healthy controls (n=20) between November 2019 and 
November 2020 in Kunming Yan'an Hospital (Kunming, 
China). This study was approved by The Ethics Committee 
of Kunming Yan'an Hospital (Kunming, China; approval no. 
2021‑03‑01). All patients and healthy controls signed informed 
consent forms. Clinical information was collected for all 
patients and controls. The clinical variables of the patients, 
including age, sex, French‑American‑British (FAB) classifica‑
tion (20), white blood cell count, hemoglobin content, platelet 
count and ratio of bone marrow blasts were collected from 
their medical records. The clinical features recorded for the 
healthy individuals included age and sex, as well as red blood 
cell, white blood cell and platelet counts.

Cell lines and culture. The human TK6 lymphoblastoid and 
the human AML cell lines (OCI‑AML2 and MOLM‑13) 
were obtained from Cobioer Biosciences Co., Ltd. (Nanjing, 
China). The cells were cultured in RPMI‑1640 medium 
(cat. no. AH411‑0272400047; Thermo Fisher Scientific, Inc.) 
containing penicillin‑streptomycin (100 IU/ml and 100 mg/ml 
respectively) and 20% FBS (cat. no. 10100147; Thermo Fisher 

Scientific, Inc.). The cells were cultured at 37˚C in an incu‑
bator with 5% CO2 (cat. no. OM‑80A‑Ⅱ; Shanghai Huaiyu 
Instrument Equipment Co., Ltd). White blood cell isolation 
from the peripheral blood was performed using a Human 
Peripheral Blood Leukocyte Isolation kit (cat. no. P8670; 
Beijing Solarbio Science & Technology Co., Ltd.), according 
to the manufacturer's instructions.

Protein extraction and western blot analysis. Total protein in 
the white blood cells was extracted using RIPA lysis buffer 
(cat. no. R0278‑50ML; Sigma‑Aldrich; Merck KGaA) on ice 
for 30 min. Equal masses of protein (15 µg) were separated 
using SDS‑PAGE (12% resolving gel and 5% stacking gel), 
then transferred to a PVDF membrane (cat. no. FFP24; 
Beyotime Biotechnology Inc.) and blocked in 5% BSA 
(cat. no. SW3015; Beijing Solarbio Science & Technology 
Co., Ltd.) at room temperature for 2 h. The membranes were 
incubated with the primary antibodies at room temperature 
for 2 h. After washing with Tris‑buffered saline +0.05% 
Tween (TBST) six times (for 5 min each time), the membrane 
was incubated with the secondary antibodies at room temper‑
ature for 1 h. After washing with TBST six times (for 5 min 
each time), ECL western blotting substrate (cat. no. PE0010; 
Beijing Solarbio Science & Technology Co., Ltd.) was added 
to the membranes in the dark for 10 min. The protein bands 
were visualized using a Gel Doc XR+ gel imaging system 
(Bio‑Rad Laboratories, Inc.). The relative expression levels of 
the proteins were determined by the gray value of the bands 
using Adobe Photoshop software (version 6.0; Adobe Systems 
Software Ireland Ltd). Antibodies against the following 
proteins were used: FAM124B (cat. no. 21313‑1‑AP; 1:600; 
ProteinTech Group, Inc.), HPDL (cat. no. ab246986; 1:1,000; 
Abcam), P2RY1 (cat. no. 67654‑1‑Ig; 1:5,000; ProteinTech 
Group Inc.), MPO (cat. no. ab134132; 1:1,000; Abcam) 
and β‑actin (cat. no. WL01372; 1:3,000; Wanleibio Inc.). 
HRP‑conjugated goat anti‑rabbit (cat. no. A32731; 1:5,000; 
Thermo Fisher Scientific, Inc.) and HRP‑conjugated goat 
anti‑mouse (cat. no. A32723; 1:5,000; Thermo Fisher 
Scientific, Inc.) were used as secondary antibodies.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from white blood cells or from the 
cell lines using a total RNA extraction kit (cat. no. R1200; 
Beijing Solarbio Science & Technology Co., Ltd.) according 
to the manufacturer's instructions. The relative concen‑
tration of RNA was detected using a NanoDrop 2000 
spectrophotometer (Thermo Fisher Scientific, Inc.). Total 
RNA was reverse transcribed into cDNA using the One Step 
Super RT‑PCR Mix kit (cat. no. T2240; Beijing Solarbio 
Science & Technology Co., Ltd.). The reaction condition of 
RT‑qPCR was at 50˚C or 20 min. qPCR was subsequently 
performed using the BeyoFast™ SYBR Green qPCR Mix 
(cat. no. D7265‑5ml; Beyotime Institute of Biotechnology) in 
an ABI7500 real‑time fluorescent quantitative PCR instru‑
ment (Thermo Fisher Scientific, Inc.). The reaction condition 
of qPCR was as following: 95˚C for 2 min; 95˚C for 15 sec, 
60˚C for 20 sec (40 cycle); 95˚C for 15 sec, 60˚C for 15 sec 
and 95˚C for 15 sec. The following primer sequences were 
used: i) FAM124B forward, 5'‑GAG GTC CGG CTC TTT CAG 
G‑3' and reverse, 5'‑GCG AAA TAG CCT ATC CTC TCC C‑3'; 
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ii) MPO forward, 5'‑GCA ATG GTT CAA GCG ATT CTT‑3' 
and reverse, 5'‑CGG TAT AGG CAC ACA ATG GTG AG‑3'; 
iii) P2RY1 forward, 5'‑CTC ATT GTG GTG GTG GCG‑3' and 
reverse, 5'‑GTA CTC GTC TGA GGT GGT GTC G‑3'; iv) HPDL 
forward, 5'‑CGG CTG GCG GCA GCT AGC CCT GCG C‑3' 
and reverse, AAC CCG GGA GCT GGC AGC GCT G; and 
v) GAPDH forward, 5'‑ATG ACA TCA AGA AGG TGG TGA 
AGC AGG‑3' and reverse, GCG TCA AAG GTG GAG GAG 
TGG GT. The relative mRNA expression levels were calcu‑
lated using the 2‑ΔΔCq method (21). GAPDH was used as a 
reference for standardization. 

DEmRNA screening. The protein‑coding genes from RNA 
expression data were screened against the reference genome 
Homo_ sapiens.GRCh38.94 using the dplyr and tidyr 
packages in the R programming language (version: 3.6.2; 
https://www.r‑project.org/). DEmRNA molecules identified 
in normal and AML samples were screened using the limma 
and edgeR packages in R3.6.2. P<0.01 and |log2

foldchange|>4 were 
used as thresholds. The ggplot and pheatmap R3.6.2 packages 
were used to graphically present the DEmRNA.

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. GO and 
KEGG pathways were selected to annotate the biological func‑
tions of the DEmRNA molecules. The significant enrichment 
results (P<0.05) were obtained using the database for annota‑
tion, visualization and integrated discovery 6.8 (https://david.
ncifcrf.gov/).

Development of the predictive model. Univariate Cox regres‑
sion analysis was used to examine the correlation between the 
overall survival (OS) of patients with AML and the expression 
of DEmRNA molecules using the survival R.3.6.2 package. 
P<0.05 and |z‑score|>2 were set as the thresholds. The Volcano 
map and ggplot packages in R3.6.2 were used to graphically 
present the DEmRNA molecules. LASSO Cox regression anal‑
ysis is a common method for the regression of high‑dimensional 
predictors. Selection of the tuning parameter (λ) in the LASSO 
model through 10‑fold cross‑validation procedure was plotted 
as a function of log(λ). The most powerful prognostic predic‑
tors were selected according to the best λ value (minimum of 
partial likelihood deviation). LASSO Cox regression analysis 
was then performed to further screen mRNAs using the 
glmnet R3.6.2 package. The individual patient risk score was a 
linear combination of regression coefficient‑weighted mRNA 
expression levels derived from multivariate Cox regres‑
sion analysis. The patient‑specific risk score was calculated 
using the following formula: Risk score=(α mRNA1 x exp 
mRNA1) + (α mRNA2 x exp mRNA) + ··· + (α mRNAn x exp 
mRNAn), where α is the coefficient specific to each mRNA in 
the multivariate Cox regression analysis and exp is the expres‑
sion level of each mRNA. An independent RNA sequencing 
dataset from the Gene Expression Omnibus (accession no. 
GSE12417) was used to validate the prognostics score devel‑
oped in the present study. The GSE12417 dataset was generated 
in a gene expression profiling study aiming to develop a gene 
signature that predicts OS in cytogenetically normal acute 
myeloid leukemia. A total of 79 patients was included in the 
original study (22).

Nomogram graph. A nomogram was constructed according to 
the aforementioned prognostic scoring system using the RMS 
package in R3.6.2. Nomogram predicted the 1‑year, 2‑year 
and 5‑year OS for AML patients. The nomogram summed the 
points identified on the scale for risk scores in different AML 
patients. The points projected on the bottom scales indicate 
the probabilities of 1‑year, 2‑year and 5‑year OS for AML 
patients.

Estimation of stromal and immune scores. In tumor micro‑
environment, immune cells and stromal cells are two main 
types of non‑tumor cell. The estimation of stromal and 
immune cells in malignant tumor tissues using expression 
data by ESTIMATE R package, which predicts the composi‑
tion of tumor tissue using mRNA expression data and consists 
of three scores: Stromal, immune and estimate scores (23). 
Stromal and immune scores were evaluated for the expression 
matrix according to the ESTIMATE algorithm. The stromal 
score, immune score and estimate score (sum of stromal score 
and immune score) of each gene in a single sample were 

Table I. Clinical and demographic characteristics of patients 
with acute myeloid leukemia from The Cancer Genome Atlas  
(n=132).

Clinical characteristics Number of cases, n (%)

Age, years 
  >60 55 (41.67)
  ≤60 77 (58.33)
Sex 
  Female 61 (46.21)
  Male 71 (53.79)
Ethnicity 
  Asian 1 (0.76)
  Black or African American  11 (8.33)
  White 118 (89.4)
  Unknown 2 (1.51)
Vital status 
  Deceased 80 (60.61)
  Living 52 (38.39)
Survival time, months 
  >21 84 (63.63)
  ≤21 48 (36.37)
FAB classification 
  M0 12 (9.09)
  M1 32 (24.24)
  M2 32 (24.24)
  M3 14 (10.61)
  M4 27 (20.45)
  M5 12 (9.09)
  M6 2 (1.52)
  M7 1 (0.76) 

FAB classification, French‑American‑British classification.
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calculated, and an enrichment analysis was carried out. For 
each of the three categories (stromal, immune and estimate), 
the AML samples were then divided into high‑ and low‑score 

groups according to cut off value (median). The association 
between the expression levels of the screened mRNA candi‑
dates and these scores was evaluated.

Figure 1. Visualization and functional annotation DEmRNA molecules. (A) Hierarchical clustering map of the DEmRNA molecules based on the expression 
value. Blue indicates downregulation, whereas red indicates upregulation. (B) Volcano plots of the DEmRNA molecules. (C) Top 10 (count) GO biological 
process terms of the upregulated and downregulated DEmRNA molecules. P<0.05. (D) Top 10 (count) KEGG pathways of the upregulated and downregulated 
DEmRNA molecules. P<0.05. AML, acute myeloid leukemia; DEmRNA, differentially expressed mRNA; GO, Gene Ontology; KEGG, Kyoto Encyclopedia 
of Genes and Genomes; FC, fold change.
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Survival analysis. Survival data were obtained from UCSC Xena 
(https://xenabrowser.net/datapages/). The AML samples were 
divided into ‘high’ and ‘low’ groups according to the median 
mRNA expression, as well as risk, stromal, estimate or immune 

scores. Kaplan‑Meier OS curves were generated using the survival 
R package. Moreover, receiver operating characteristic (ROC) 
curves were produced using the survivalROC R package. P<0.05 
was considered to indicate a statistically significant difference.

Table II. GO annotation of differentially expressed mRNA transcripts.

GO ID GO term P‑value Counta

GO:0002446 Neutrophil mediated immunity 3.00x10‑9 22
GO:0042119 Neutrophil activation 3.00x10‑9 22
GO:0002283 Neutrophil activation involved in immune response 1.99x10‑9 22
GO:0043312 Neutrophil degranulation 1.78x10‑9 22
GO:0031983 Vesicle lumen 4.08x10‑7 15
GO:0060205 Cytoplasmic vesicle lumen 3.93x10‑7 15
GO:0034774 Secretory granule lumen 2.03x10‑7 15
GO:0006959 Humoral immune response 3.60x10‑4 10
GO:0042742 Defense response to bacterium 1.38x10‑4 10
GO:0019730 Antimicrobial humoral response 8.73x10‑7 9
GO:0101002 Ficolin‑1‑rich granule 4.41x10‑5 9
GO:0070820 Tertiary granule 1.70x10‑5 9
GO:0042581 Specific granule 9.74x10‑5 8
GO:1904724 Tertiary granule lumen 2.94x10‑8 8
GO:1904813 Ficolin‑1‑rich granule lumen 1.58x10‑5 8
GO:0061844 Antimicrobial humoral immune response mediated by antimicrobial peptide 9.53x10‑7 7
GO:0032993 Protein‑DNA complex 1.50x10‑3 7
GO:0035580 Specific granule lumen 1.31x10‑6 7
GO:0044815 DNA packaging complex 5.36x10‑4 6
GO:0000786 Nucleosome 3.81x10‑4 6
GO:0019731 Antibacterial humoral response 6.35x10‑5 5
GO:0050832 Defense response to fungus 3.97x10‑5 5
GO:0031640 Killing of cells of other organism 2.82x10‑4 5
GO:0044364 Disruption of cells of other organism 2.82x10‑4 5
GO:0002251 Organ or tissue specific immune response 2.35x10‑5 5
GO:0002385 Mucosal immune response 1.51x10‑5 5
GO:0090307 Mitotic spindle assembly 1.43x10‑4 5
GO:0009620 Response to fungus 1.30x10‑4 5
GO:0044110 Growth involved in symbiotic interaction 5.45x10‑4 3
GO:0044116 Growth of symbiont involved in interaction with host 5.45x10‑4 3
GO:0070431 Nucleotide‑binding oligomerization domain containing 2 signaling pathway 2.36x10‑4 3
GO:0050786 RAGE receptor binding 1.38x10‑4 3
GO:0002879 Positive regulation of acute inflammatory response to non‑antigenic stimulus 9.27x10‑5 2
GO:0090063 Positive regulation of microtubule nucleation 5.49x10‑4 2
GO:0097013 Phagocytic vesicle lumen 4.71x10‑4 2
GO:0002525 Acute inflammatory response to non‑antigenic stimulus 2.76x10‑4 2
GO:0002877 Regulation of acute inflammatory response to non‑antigenic stimulus 2.76x10‑4 2
GO:0010286 Heat acclimation 2.76x10‑4 2
GO:0070370 Cellular heat acclimation 2.76x10‑4 2
GO:0070426 Positive regulation of nucleotide‑binding oligomerization domain containing 2.76x10‑4 2
 signaling pathway
GO:0098758 Response to interleukin‑8 2.76x10‑4 2
GO:0098759 Cellular response to interleukin‑8 2.76x10‑4 2

aCount, number of enriched genes per term. GO, Geno Ontology.
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Statistical analysis. The R Programming Language (version: 3.6.2, 
https://www.r‑project.org/) and SPSS 15.0 software (SPSS, Inc.) 
were used for statistical analysis. mRNA molecules associated 
with prognosis were screened using univariate and multivariate 
Cox using the survival R package. The experimental results are 
presented as the mean ± standard deviation of three independent 
experiments. The unpaired two‑tailed Student's t test was used 
for statistical analysis of two independent samples. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Patient characteristics from the TCGA samples. The RNA 
sequencing results of 132 patients with AML were used in the 
present study. The median age of all the patients was 53 years 
(age range, 21‑88 years). The number of male patients was higher 
than that of female patients. The average OS time of the patients 
was 20.56±19.94 months. Patient follow‑up time was <21 months, 
during which 84 (63.63%) patients died and 48 (36.37%) survived. 
The patient's FAB classification was as follows: M0 (9.09%), M1 
(24.24%), M2 (24.24%), M3 (10.61%), M4 (20.45%), M5 (9.09%), 
M6 (24.24%) and M7 (0.76%). Detailed demographic and clinical 
information is presented in Table I.

Differential expression of mRNA transcripts. In total, 284 
mRNA transcripts were differentially expressed in the normal 
and the AML samples. Compared with the normal samples, 
245 (86.27%) transcripts were upregulated in the AML 
samples, while 39 (13.73%) were downregulated (Table SI). 
Differences in the expression of mRNA molecules among the 
samples are presented as a hierarchical heatmap and a volcano 
plot in Fig. 1A and B.

Functional analysis of the DEmRNA molecules. In order to 
explore the biological role of DEmRNA in the development 
of AML, GO biological processes and KEGG pathways were 

obtained using functional annotation and pathway enrichment 
analysis. The significant GO biological process terms of the 
DEmRNA molecules (Top 5) included ‘Neutrophil mediated 
immunity’, ‘Neutrophil activation’, ‘Neutrophil activation 
involved in immune response’, ‘Neutrophil degranulation’ and 
‘Vesicle lumen’ (Table II; Fig. 1C). In addition, the significant 
KEGG pathway terms the DEmRNA molecules (Top 5) included 
‘Taste transduction’, ‘Neuroactive ligand‑receptor interaction’, 
‘Staphylococcus aureus infection’, ‘Systemic lupus erythema‑
tosus’, and ‘Estrogen signaling pathway’ (Table III; Fig. 1D).

mRNA screening using univariate and LASSO Cox regression 
analysis. The DEmRNA candidates were further screened 
using univariate and LASSO Cox regression analysis in order 
to examine the association between their expression levels 
and OS. Univariate Cox regression analysis indicated that the 
expression levels of 46 genes were associated with OS and 
could represent potential prognostic factors (Table IV). The 
results are presented as a volcano plot and a bubble diagram 
based on the z‑score and P‑value (Fig. 2A and B). As shown in 
Fig. 42, when lambda.min=0.05461219, there was a minimum 
of partial likelihood deviation. The final prognostic mRNAs 
screened using LASSO analysis were presented in Fig. 2C 
as follows: ACER2 (coefficient was ‑0.089403751), AQP11 
(coefficient was ‑0.059480539), EBLN2 (coefficient was 
‑0.364833846), FAM124B (coefficient was 0.149939194), 
FFAR2 (coefficient was 0.041310604), HOXA10 (coefficient 
was 0.005494029), HPDL (coefficient was 0.169134128), 
KLHL11 (coefficient was ‑0.191801822), KRT1 (coefficient 
was ‑0.036254336), LY6G6F (coefficient was 0.029249458), 
MPO (coefficient was ‑0.081176390), MPV17L (coefficient 
was 0.058822069), P2RY1 (coefficient was 0.048969293), 
POU5F2 (coefficient was ‑0.212188153), SLC45A3 (coefficient 
was ‑0.075187165), SPDYE3 (coefficient was ‑0.153921022), 
YY2 (coefficient was ‑0.010861848), ZBTB12 (coefficient was 
‑0.025082532) and ZNF750 (coefficient was ‑0.033000344).

Table III. KEGG pathway analysis of the differentially expressed mRNA transcripts.

KEGG ID KEGG pathway P‑value Counta

hsa04742 Taste transduction 1.52x10‑16 16
hsa04080 Neuroactive ligand‑receptor interaction 0.000152 12
hsa05150 Staphylococcus aureus infection 1.69x10‑5 5
hsa05322 Systemic lupus erythematosus 9.05x10‑5 5
hsa04915 Estrogen signaling pathway 9.70x10‑5 5
hsa05034 Alcoholism 0.000402 5
hsa04612 Antigen processing and presentation 0.000138 4
hsa03040 Spliceosome 0.001695 4
hsa04144 Endocytosis 0.01051 4
hsa05134 Legionellosis 0.000964 3
hsa04213 Longevity regulating pathway‑multiple species 0.001231 3
hsa05145 Toxoplasmosis 0.006609 3
hsa05162 Measles 0.011934 3
hsa00601 Glycosphingolipid biosynthesis‑lacto and neolacto series 0.030336 2 

aCount, number of enriched genes per term. KEGG, Kyoto Encyclopedia of Genes and Genomes; hsa, Homo sapien.
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Analysis of mRNA transcripts associated with OS and risk 
stratification. A total of 4 mRNA molecules (FAM124B, 
HPDL, MPO and P2RY1) were identified as statistically 
significant using multivariate Cox regression analysis 

(Table V). In TCGA data, the expression levels of FAM124B, 
HPDL, MPO and P2RY1 were significantly upregulated in 
AML compared with normal samples (Fig. 3A). Moreover, 
the 4 mRNA candidates were associated with OS (FAM124B, 

Table IV. Univariate factor regression analysis.

Gene symbol Z‑score HR (95% CI) P‑value

HPDL 2.020562 1.336966 (1.008747‑1.771977) 0.043325
SRXN1 2.603306 1.322869 (1.071593‑1.633067) 0.009233
C10orf105 3.260314 1.292048 (1.107599‑1.507214) 0.001113
FAM124B 2.612856 1.274911 (1.062568‑1.529687) 0.008979
P2RY1 2.089863 1.259619 (1.014453‑1.564041) 0.036631
MPO 2.57379 1.257714 (1.024216‑1.589134) 0.027316
HSPA1B 2.051886 1.238036 (1.009612‑1.518140) 0.040181
MPV17L 3.46339 1.226998 (1.092864‑1.377594) 0.000533
IFI30 2.871828 1.163941 (1.049384‑1.291004) 0.004081
FFAR2 2.715637 1.152658 (1.040325‑1.277119) 0.006615
HOXA10 3.302104 1.124714 (1.048929‑1.205975) 0.000960
HOXA5 3.2402 1.101344 (1.038877‑1.167566) 0.001194
KCNJ2 2.135027 1.098921 (1.007765‑1.198323) 0.032759
S100A9 2.131387 1.080554 (1.006250‑1.160344) 0.033057
S100A12 2.017188 1.070960 (1.001947‑1.144727) 0.043676
CPA3 ‑2.63684 0.897505 (0.828188‑0.972623) 0.008368
NOG ‑2.34828 0.891834 (0.810568‑0.981248) 0.018860
KRT1 ‑2.41044 0.890778 (0.810823‑0.978617) 0.015933
ZBED2 ‑2.35064 0.871339 (0.776811‑0.977370) 0.018741
SLC45A3 ‑2.00193 0.842103 (0.711697‑0.996404) 0.045293
SPIN4 ‑2.06124 0.800266 (0.647476‑0.989112) 0.039280
TAS2R4 ‑2.39681 0.779280 (0.635518‑0.955564) 0.016538
ZNF253 ‑2.12396 0.765366 (0.598006‑0.979565) 0.033673
LOXL4 ‑3.2022 0.760204 (0.642764‑0.899102) 0.001364
TAS2R5 ‑2.35111 0.749635 (0.589550‑0.953190) 0.018718
SRSF12 ‑2.79951 0.722048 (0.574840‑0.906954) 0.005118
ZNF750 ‑2.44682 0.719873 (0.553241‑0.936694) 0.014412
ACER2 ‑2.57922 0.716421 (0.556045‑0.923053) 0.009902
ZNF878 ‑2.38729 0.715298 (0.543277‑0.941788) 0.016973
MT‑ND4L ‑2.00006 0.699167 (0.492354‑0.992852) 0.045494
ZNF891 ‑2.22299 0.696751 (0.506667‑0.958149) 0.026217
SLC26A2 ‑2.47371 0.693930 (0.519502‑0.926924) 0.013372
POU5F2 ‑2.79357 0.691119 (0.533314‑0.895617) 0.005213
ZBTB12 ‑2.21169 0.682746 (0.486836‑0.957494) 0.026988
DNAJB7 ‑2.14893 0.668002 (0.462342‑0.965143) 0.031640
SPTY2D1AS1 ‑2.54099 0.662182 (0.481826‑0.910049) 0.011054
TAS2R14 ‑2.17785 0.648317 (0.438939‑0.957568) 0.029417
SPDYE1 ‑2.42966 0.635537 (0.440898‑0.916102) 0.015113
SPDYE3 ‑2.40341 0.629404 (0.431478‑0.918123) 0.016243
KLHL11 ‑2.55082 0.626862 (0.437850‑0.897466) 0.010747
ZNF805 ‑2.25392 0.616572 (0.404909‑0.938879) 0.024201
YY2 ‑2.42275 0.599926 (0.396810‑0.907012) 0.015404
AQP11 ‑3.45816 0.531384 (0.371347‑0.760392) 0.000544
EBLN2 ‑2.53238 0.463530 (0.255644‑0.840467) 0.011329 

HR, hazard ratio; CI, confidence interval.
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P=0.019; HPDL, P=0.023; MPO, P=0.0091; P2RY1, 
P=0.021; Fig. 3B). The corresponding area under the curve 
(AUC) in the ROC analysis was 0.69, 0.68, 0.71 and 0.72, 
indicating that the survival model had moderate sensitivity 
and specificity (Fig. 3C). Based on the expression levels of 
FAM124B, HPDL, MPO and P2RY1 and the correlation 
coefficient in the multivariate Cox regression analysis, a 
risk factor prediction linear model was constructed as: Risk 
score=(0.1814 x exp FAM124B) + (0.3634 x exp HPDL) + 
(0.2312 x exp MPO) + (0.342 x exp P2RY1). The patients 
were then divided into high‑ and low‑risk groups using the 
median risk factor as a cutoff point (n=66/group). The risk 
score of the high‑risk group was 9.35±9.51‑fold greater than 
that of the low‑risk group (P<0.001; Fig. 4A). As shown in 
Fig. 4B, the survival time in patients with AML decreased 

with increasing risk score (Fig. 4B). There was a significant 
difference in OS between the high‑ and low‑risk groups 
(log‑rank P<0.001). The area under the curve (AUC) in the 
ROC analysis was 0.851, indicating that the risk score model 
had high sensitivity and specificity (Fig. 4C). An inde‑
pendent RNA sequencing dataset from the GEO database 
(accession no. GSE12417) was used to validate the model. 
According to the risk factor prediction linear model, the 
samples were divided into high‑ and low‑risk groups. As 
shown in Fig. 4D. The OS time of the low‑risk group was 
longer than that of high‑risk group (P<0.001; AUC=0.759). 
A nomogram was then generated for the prognostic scoring 
system. Patients with lower risk scores had a higher survival 
time, which confirmed that the prognostic score could 
predict the survival rate (Fig. 4E).

Figure 2. DEmRNAs were further screened through univariate Cox and LASSO regression analysis. (A) Survival‑associated DEmRNAs were screened by 
univariate Cox and visualized by volcanic map. The red dots represent DEmRNA molecules that were significantly correlated with patient survival. The blue 
dots represent DEmRNA molecules without correlation. A total of 46 mRNA molecules were associated with overall survival. P<0.05; |Z‑score|>2. (B) Bubble 
diagram of the 46 significantly survival‑associated DEmRNA molecules. (C) LASSO coefficient profiles of the survival‑ associated mRNA transcripts. The 
y‑axis represents the partial likelihood deviance and the x‑axis represents the log (λ). Numbers along the upper x‑axis represent the average number of predic‑
tors. Red dots represent average deviance values for different log (λ). Two dashed lines indicate two special λ values, one is λ.min (minimum) and the other is 
λ.1se (1‑standard error). The best log (λ)= ‑2.91. (D) Dotted vertical lines were drawn at the optimal values using the λ.min. DEmRNA, differentially expressed 
mRNA; LASSO, least absolute shrinkage and selection operator.
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Estimation of infiltrating cell distribution using stromal and 
immune scores. The infiltrating cell distributions and composi‑
tion of the tumor samples were estimated using the ESTIMATE 

algorithm. A ‘stromal score’ was designed to estimate the pres‑
ence of stromal cells in tumor samples and an ‘immune score’ 
was designed to estimate the infiltration of immune cells in 

Figure 3. FAM124B, HPDL, MPO and P2RY1 were upregulated in AML and significantly associated with survival. (A) FAM124B, HPDL, MPO and P2RY1 
were upregulated in AML blood (The Cancer Genome Atlas dataset). ***P<0.001. (B) Kaplan‑Meier survival curves of patients with AML stratified according 
to FAM124B, HPDL, MPO and P2RY1 expression. (C) ROC curves with AUCs for FAM124B, HPDL, MPO and P2RY1 expression in patients with AML. 
AML, acute myeloid leukemia; DEmRNA, differentially expressed mRNA; ROC, receiver operating characteristic; AUC, area under the curve; FAM124B, 
family with sequence similarity 124 member B; HPDL, 4‑hydroxyphenylpyruvate dioxygenase‑like protein; MPO, myeloperoxidase; P2RY1, purinergic 
receptor P2Y1.

Table V. Multivariate Cox regression analysis.

Gene symbol Coefficient HR (95% CI) P‑value

FAM124B 0.181431 1.298932 (1.154716‑1.305619) 0.018476
HPDL 0.363443 1.438273 (1.055875‑1.959161) 0.021181
MPO 0.231234 1.312346 (1.124210‑1.514532) 0.023234
P2RY1 0.342021 1.407790 (1.058439‑1.872449) 0.012327

HR, hazard ratio; CI, confidence interval.
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tumor samples. The estimate score was the sum of stromal 
score and immune score. The patients were divided into high 
and low stromal, immune or estimate score groups using the 

median of each score as cut‑off. There was a significant differ‑
ence in score between the high‑score and the low‑score groups 
(P<0.001 in all three cases, Fig. 5A). As shown in Fig. 5B, the 

Figure 4. Analysis of risk score distribution and survival time using a prediction model based on four mRNA molecules. (A) Number of low‑risk or high‑risk 
patients (left). Risk score of low‑ or high‑risk patients (right). ***P<0.001. (B) Distribution of the risk score (left). Patient survival time and risk score (right). The 
black dotted line represents the optimum cut‑off point dividing patients into low‑ and high‑risk groups. (C) Kaplan‑Meier curves for high‑ and low‑risk groups 
in TCGA data (left). ROC curves with AUCs for overall survival constructed with high‑ and low‑risk groups (right). (D) Kaplan‑Meier curves for high‑ and 
low‑risk groups in GSE12417 (left). Low‑risk group, n=40; high‑risk group, n=39. ROC curves with AUCs for overall survival in the high‑ and low‑risk groups 
(right). (E) Nomogram‑based risk scores from TCGA data. Nomogram predicted the 1‑year, 2‑year and 5‑year OS for AML patients. The nomogram summed 
the points identified on the scale for risk scores in different AML patients. The points projected on the bottom scales indicate the probabilities of 1‑year, 2‑year 
and 5‑year OS for AML patients. ROC, receiver operating characteristic; AUC, area under the curve; TCGA, The Cancer Genome Atlas.
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Figure 5. Estimation of infiltrating cells and stromal and immune scores. (A) Patients were divided into high‑ or low‑score groups according to stromal, immune 
or estimate score. ***P<0.001. (B) Kaplan‑Meier curves for high‑ and low‑risk groups. (C‑E) Expression of FAM124B, HPDL, MPO and P2RY1 between the 
high score groups and low score groups according to stromal, immune or estimate scores. ***P<0.001, *P<0.05. FAM124B, family with sequence similarity 
124 member B; HPDL, 4‑hydroxyphenylpyruvate dioxygenase‑like protein; MPO, myeloperoxidase; P2RY1, purinergic receptor P2Y1; NS, not significant.
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low‑score groups were associated with significantly higher OS 
than the high‑score groups (P=0.046, P=0.021 and P=0.008 
for stromal, immune and estimate scores, respectively). The 
AUCs in the ROC analysis were 0.541, 0.726 and 0.674, for the 
stromal, immune and estimate scores, respectively, indicating 
that the survival model had low to moderate sensitivity and 
specificity. The relationship between the expression of the four 
aforementioned mRNA candidates (FAM124B, HPDL, MPO 
and P2RY1) and the stromal, immune and estimate scores 
was then evaluated. The mRNA expression of HPDL in the 
low‑stromal‑score group represented 93.25±13.21% (P<0.001) 
of that in the high‑stromal‑score group (Fig. 5C). For the 
immune scores, the mRNA expression of HPDL and MPO in 
the low‑immune‑score group was equivalent to 93.94±13.76% 
(P<0.001) and 94.59±25.2% (P<0.05) of that in the respec‑
tive high‑immune score groups (Fig. 5D). Moreover, HPDL 
and MPO mRNA expression levels in the low‑estimate‑score 
group represented 93.58±13.76% (P<0.001) and 94.59±25.2% 
(P<0.05) of those in the respective high‑estimate‑score group 

(Fig. 5E). Altogether, these results indicated that the OS time 
of patients with AML was associated with stromal, estimate 
and immune scores. Patients with low scores experienced 
longer OS time. Moreover, the mRNA expression of HPDL 
and MPO in the high‑immune or estimate score group was 
higher than that in the low‑immune or estimate score group. 
This suggests that of HPDL and MPO expression is associated 
with the purity of AML cells.

Validation of dysregulated mRNA using RT‑qPCR. To vali‑
date the bioinformatics analysis results, RT‑qPCR was used 
to detect the expression levels of FAM124B, HPDL, MPO 
and P2RY1 in clinical AML samples and healthy controls. 
Clinical information is shown in Tables VI and SII. As shown 
in Fig. 6A, the mRNA expression of FAM124B, HPDL, MPO 
and P2RY1 was significantly upregulated in AML compared 
with normal samples (P<0.001 in all cases). This was also the 
case at the protein level (Fig. 6B). The mRNA expression levels 
of FAM124B, HPDL, MPO and P2RY1 were also examined in 

Figure 6. Validation of dysregulated mRNA transcripts in AML. (A) mRNA expression of FAM124B, HPDL, MPO and P2RY1 in the healthy control and the 
AML groups. ***P<0.001. (B) Protein expression levels of FAM124B, HPDL, MPO and P2RY1 in the healthy control and the AML groups (left). The relative 
protein expression levels are shown as a gray values normalized to β‑actin (right). *P<0.05, **P<0.01, ***P<0.001. (C) Relative mRNA expression of FAM124B, 
HPDL, MPO and P2RY1 in the TK6, MOLM‑13 and OCI‑AML2 cell lines. *P<0.05, **P<0.01 vs. TK6 cells. (D) Relative mRNA expression of FAM124B, 
HPDL, MPO and P2RY1 in the low‑ and high‑risk groups. *P<0.05, **P<0.01, ***P<0.001. ΔCq values were normalized to GAPDH. FAM124B, family with 
sequence similarity 124 member B; HPDL, 4‑hydroxyphenylpyruvate dioxygenase‑like protein; MPO, myeloperoxidase; P2RY1, purinergic receptor P2Y1; 
Cq, quantification cycle.
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the TK6, OCI‑AML2 and MOLM‑13 cell lines. As shown in 
Fig. 6C, the mRNA expression of FAM124B, HPDL, MPO 
and P2RY1 was significantly upregulated in OCI‑AML2 and 
MOLM‑13 cells compared with that of TK6 cells. The relative 
quantitative expression (Δcq) of FAM124B, HPDL, MPO and 
P2RY1 was detected in peripheral blood of 20 AML patients. 
The corresponding Δcq value was substituted into the Risk 
Factor Prediction Linear model to calculate the risk value of 
each sample. According to the risk value, patients with AML 
were divided into high‑risk and low‑risk groups according to 
the median (cutoff point=8.41). As shown in Fig. 6D, the ΔCq 
values of the four mRNA candidates in the high‑risk group 
were lower than that of the low‑risk group (P<0.05).

Discussion

Acute myeloid leukemia (AML) is a hematological 
malignancy characterized by high heterogeneity of 

clinical cytogenetics and molecules, with an incidence rate of 
3.7/100,000 person‑years (24). Clinical manifestations of AML 
include fever, hemorrhage, anemia and enlargement of lymph 
nodes, liver and spleen. In addition, abnormal proliferation of 
leukemic cells also has corresponding manifestations of organ 
and tissue infiltration (25‑27). Currently, it is generally thought 
that the biological characteristics of AML are caused and 
determined by genetic abnormalities (28). At present, different 
karyotypes have been found in over one‑half of patients with 
AML using cytogenetic detection methods, which serve a 
guiding role when evaluating the risk of AML recurrence (29). 
In addition to cytogenetic differences, molecular factors also 
affect the prognosis of AML. In recent years, great progress 
has been made in the search for prognostic markers at the 
genetic level for restratification of AML (30,31). Screening of 
novel molecular markers, such as gene mutations/abnormal 
gene expression, has further improved our understanding 
of the pathogenesis of AML and refined the prognostic risk 
grading of AML.

In the present study, an mRNA‑based risk score was 
developed in order to predict the prognosis of patients AML 
with sample‑matched mRNA expression profiles. DEmRNA 
transcripts in normal blood and AML blood were first identi‑
fied. Among these, prognosis‑associated signature mRNA 
candidates were screened using univariate Cox regression and 
LASSO Cox regression. A total of four mRNA candidates 
(FAM124B, HPDL, MPO and P2RY1) associated with the 
prognosis of AML were identified. Multivariate Cox regres‑
sion analysis of these four candidates was used to construct 
a prognostic scoring system. Moreover, the expression of 
HPDL and MPO was lower in samples with low immunity and 
stromal scores. Lastly, the differences in mRNA expression of 
these potential markers were analyzed in clinical AML blood 
samples and healthy controls.

The prognostic value of the four protective genes 
(FAM124B, HPDL, MPO and P2RY1) expressed in AML 
has not been identified in previous studies. FAM124B is a 
protein‑coding gene. Li et al (32) revealed that FAM124B 
has a higher DNA methylation level in ER+/PR+ breast 
cancer compared with ER‑/PR‑breast cancers. HPDL is an 
iron‑dependent dioxygenase involved in tyrosine catabo‑
lism (33). Ye et al (34) reported that HPDL promoted the 
proliferation of pancreatic cancer cells and was associated 
with glutamine‑mediated redox balance. MPO is a dimeric 
protein consisting of two 15‑kDa light chains and two vari‑
able‑weight glycosylated heavy chains bound to a prosthetic 
heme group (35). Yuzhalin and Kutikhin (36) demonstrated 
that gene polymorphisms in MPO (rs11079344, rs8178406 
and rs2243828) may represent important tumor‑associated 
biomarkers. P2RY1 is a membrane‑bound protein receptor 
that is activated by ADP or its analogs (37). P2RY1 is closely 
associated with the proliferation of gastric adenocarcinoma 
cells and the drug resistance of pancreatic cancer (38).

In conclusion, the study identified an mRNA expression 
signature that could predict the survival of patients with AML. 
These findings may have potential clinical research value.
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Table VI. Clinical features of collected tissue samples from 
patients with acute myeloid leukemia. 

Clinical characteristics Values

Age, years 
  Median 41
  Mean 41.8
  Range 8‑79
Sex, n 
  Female 10 
  Male 10 
FAB classification, n 
  M0 1
  M1 2 
  M2 3 
  M3 4 
  M4 4 
  M5 3
  M6 2 
  M7 1 
White blood cell count, x109/l 
  Median 38.3
  Mean 50.4
  Range 1‑230
Hemoglobin, g/l, n 
  <80 14
  ≥80 6
Platelet, x109/l, n 
  <50 16
  ≥50 4
Ratio of bone marrow blasts 
  <60% 9
  ≥60% 11 

FAB classification, French‑American‑British classification.
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