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Abstract. Gastric cancer is a common tumor of the diges‑
tive system, which can occur in any part of the stomach. 
Kallikrein 6 (KLK6) is a trypsin‑like serine protease and has 
been found to be involved in extracellular matrix remodeling, 
tumor invasion and nervous system plasticity. Our previous 
study reported that KLK6 suppressed HGC‑27 gastric cancer 
cell growth by inhibiting epithelial‑mesenchymal transition; 
however, the mechanism of action underlying the effect of 
KLK6 still remains unclear. The aim of the present study was 
to investigate the effect and the underlying mechanism of 
KLK6 on stem cell‑like properties and metabolism in gastric 
carcinoma cells. The HGC‑27 cell line was transfected with 
KLK6 overexpression (OV‑KLK6) and interference (short 
hairpin‑KLK6) vectors, then the transfection efficiency 
was confirmed using western blot analysis and reverse 
transcription‑quantitative PCR. The percentage of CD133+ 
and CD44+ cells was detected using flow cytometry, while 
the protein expression levels of the stem‑associated genes, 
Nanog, Oct‑4, SOX2 and Notch1, the metabolic markers, 
hexokinase (HK)1, HK2, GLUT1, and the proteins within the 
PI3K signaling pathway, phosphorylated (p)‑PI3K, p‑AKT 
and p‑mTOR, were determined using western blot analysis. 
Biochemical kits were used to measure ATP production, lactic 
acid content and glucose uptake. A tumorigenicity assay was 
performed with nude mice to detect gastric tumor volume, and 
the protein expression level of Oct‑4, Nanog, HK1, HK2 and 
GLUT1, and the mRNA expression level of KLK6 was also 
determined in gastric tumor tissues of mice. Compared with 
that in the control group, KLK6 protein and mRNA expres‑
sion levels were significantly decreased in the four sh‑RNA 
groups (P<0.05). Among them, sh‑RNA‑3 induced the lowest 
KLK6 expression and was used to silence KLK6 in subsequent 

experiments. Compared with that in the control and negative 
control groups, the percentage of CD133+ and CD44+ cells, the 
protein expression level of Oct‑4, Nanog, HK1, HK2, GLUT1, 
p‑PI3K, p‑AKT and p‑mTOR, and ATP content, lactic acid 
production, glucose uptake and gastric tumor volume were 
significantly decreased by sh‑KLK6 (P<0.05), whereas KLK6 
overexpression induced the opposite effect (P<0.05). In conclu‑
sion, KLK6 modulated stemness properties and cell metabolic 
profile in gastric carcinoma cells and the mechanism may be 
associated with the PI3K/AKT/mTOR signaling pathway.

Introduction

Gastric cancer is a common tumor of the digestive system, 
which can occur in any part of the stomach; its incidence rate 
ranks second among all malignant tumors, while its mortality 
rate ranks third, with both rates increasing every year in China 
in the last 10 years  (1,2). Epidemiological studies showed 
that ~400,000 new cases of gastric cancer occur in China 
every year, resulting in high socioeconomic pressure (3,4). 
Most patients with early stages of gastric cancer show no 
obvious symptoms; however, a few patients experience nausea, 
vomiting or upper gastrointestinal symptoms similar to those 
caused by ulcers, making it difficult to diagnose (5). Pain and 
weight loss are the most common clinical symptoms associ‑
ated with advanced stages of gastric cancer (5). At the time 
of diagnosis, most patients with gastric cancer have middle‑ 
or late‑stage disease. Surgical treatment and chemotherapy 
are the main treatment methods; however, since 70% of 
advanced gastric cancer cells can be transferred through the 
lymphatic system (6,7), the current treatment methods are not 
sufficient (7). Therefore, in‑depth studies on treatment modali‑
ties are of great significance for the clinical management of 
gastric cancer.

Tumor stem cells are the main cause of tumor proliferation 
and if they are not eradicated properly it will lead to multiple 
tumor recurrence (7). Thus, treatment schemes centered on the 
stemness of tumor cells could be the core of an effective anti‑
cancer strategy (8,9). Tumorigenesis is a dynamic and complex 
process, wherein tumor stem cells, with genetic and functional 
characteristics, play an important role. The metastatic poten‑
tial of clustered tumor stem cells is greater compared with that 
in single stem cells and is the key target of anticancer treat‑
ment (10,11). Cancer stem cells can drive tumor growth and 
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metastasis. A study found that when tissue cells, formed by 
tumors, were transplanted into the colons of mice, metastasis 
and tumor formation were observed in the liver. After removal 
of the targeted stem cell populations, it was found that meta‑
static liver tumor number was significantly decreased and the 
tumors shrank, suggesting that stemness is a prerequisite for 
cancer metastasis (12). As cells become malignant, changes in 
metabolic pathways occur accordingly. Metabolism, the ability 
to use energy, is a characteristic of all living things. The metab‑
olism of cancer cells is extremely vigorous and the mutated 
cells continue to invade surrounding tissues for unrestricted 
growth. The Warburg effect is the metabolic basis of tumor 
(cancer gene) growth, tumor progression and metastasis, and 
tumor treatment resistance, while the Warburg effect and fat 
synthesis are the main pathways of tumor metabolism (7,13). 
Thus, targeting cancer cell metabolism has also become a new 
strategy for cancer treatment (14).

Kallikrein 6 (KLK6) is a member of the KLK family of 
serine proteases, which is involved in extracellular matrix 
remodeling, tumor invasion and nervous system plasticity (15). 
The KLK6 gene was found to be significantly overexpressed 
in gastric cancer tissues, suggesting that its expression status 
may be a strong indicator of prognosis in patients with gastric 
cancer (12). Inhibition via short hairpin (sh)RNA of KLK6 
expression suppressed the proliferation and invasion of gastric 
cancer cells (16). KLK6 could also be used as a biomarker 
in the early stages of tumor metastasis (17‑19). Our previous 
study reported that KLK6 suppressed HGC‑27 gastric cancer 
cell growth by inhibiting epithelial‑mesenchymal transition 
(EMT) (Zhou et al, unpublished data); however, the mecha‑
nism of action underlying the effect of KLK6 is still unclear. 
Tumor stemness indicates that the tumor cells have the char‑
acteristics of self‑renewal and infinite proliferation, which 
play an important role in the survival, proliferation, metastasis 
and recurrence of tumor cells. The stemness genes of tumor 
cells can affect cancer metastasis by regulating EMT‑related 
pathways. The stronger the stemness of the tumor cells, the 
stronger their drug resistance (20,21). Therefore, the main‑
tenance of tumor cell stemness is of great significance to 
tumor cells (22,23). The PI3K/AKT/mTOR signal transduc‑
tion pathway has been proved to play an important role in 
the proliferation, metastasis and apoptosis of a variety of 
cancer cells by regulating gene expression. Blocking the 
PI3K/AKT/mTOR signaling pathway has become a new 
target for the treatment of a variety of cancer cells  (24). 
Porta et al (25) found that inhibition of PI3K/AKT/mTOR 
pathway could treat prostate cancer. Fattahi et al (26) observed 
that inhibition of PI3K/AKT/mTOR pathway can inhibit the 
proliferation and invasion of gastric cancer cells.

In the present study, the effect of KLK6 on the stemness 
and metabolism of gastric cancer cells was investigated. 
This could determine the mechanism of action of KLK6 and 
provide a theoretical basis for the treatment of gastric cancer.

Materials and methods

Cell culture and transfection. The human gastric carcinoma cell 
line, HGC‑27, was purchased from the Type Culture Collection 
of the Chinese Academy of Sciences. The cells were cultured 
in RPMI‑1640 medium (HyClone; Cytiva), supplemented with 

10% fetal bovine serum (FBS; Bioswamp Life Science Lab) at 
37˚C in a humidified incubator with 5% CO2.

The full‑length cDNA of human KLK6 (gene ID, 5653) 
was obtained from the National Center for Biotechnology 
In format ion database (ht tps://www.ncbi.n lm.n ih.
gov/gene/5653). KLK6 mRNA was amplified using PCR 
(forward primer, 5'‑GCT​CTA​GAT​GAA​GAA​GCT​GAT​GGT​
G‑3' and reverse, 5'‑CGG​GAT​CCT​CAC​TTG​GCC​TGA​ATG​
GT‑3') and ligated into the pCDH vector (Addgene, Inc.) to 
produce pCDH‑KLK6 [overexpression (OV)‑KLK6] plasmids. 
The interference fragments (sh‑RNA‑1, 5'‑AGA​ATA​AGT​TGG​
TGC​ATG​G‑3'; sh‑RNA‑2, 5'‑CAG​ATG​GTG​ATT​TCC​CTG​
AC‑3'; sh‑RNA‑3, 5'‑GAT​CAA​AGG​AGA​AGC​CAG​GA‑3' 
and sh‑RNA‑4, 5'‑CAG​ATA​CAC​GAA​CTG​GAT​CC‑3') were 
ligated into the pSICOR vector (Addgene, Inc.) to produce 
pSICOR‑shKLK6 plasmids. The HGC‑27 cells were trans‑
fected with sh‑RNA (1‑4), OV‑KLK6 and their corresponding 
negative controls (sh‑NC and OV‑NC) using Lipofectamine® 
2000 (cat. no. 11668‑027; Invitrogen; Thermo Fisher Scientific, 
Inc.) following the manufacturer's instructions at 37˚C. After 
24 h [relevant pre‑experiments were performed and the results 
showed that although a 24‑h transfection time was relatively 
short, the overexpression and knockdown of KLK6 was stably 
expressed after transfection (data not shown)], transfection 
efficiency was confirmed using western blot analysis and 
reverse transcription‑quantitative PCR (RT‑qPCR). To further 
clarify that KLK6 regulated cell stemness and metabolism 
via the PI3K/AKT/mTOR axis, a PI3K/AKT inhibitor, 
PI3K‑in‑1 (cat. no. HY‑12068, MedChemExpress) was added 
to each group.

HGC‑27 cells were respectively divided into six groups: 
Control (HGC‑27 cells), sh‑NC, sh‑KLK6, ov‑NC, OV‑KLK6, 
sh‑KLK6 + PI3K‑in‑1 (25 µM), OV‑KLK6 + PI3K‑in‑1 groups.

Cell counting Kit‑8 (CCK‑8). In total, 3x103 cells were seeded 
in a 96‑well plate using RPMI 1640 medium containing 
10% FBS and treated for 24 h. To evaluate cell viability, 
10 µl of CCK‑8 solution was added to each well and the cells 
were cultured at 37˚C for 4 h. The optical density (OD) was 
measured using a microplate reader (Multiskan FC; Thermo 
Fisher Scientific, Inc.) at 450 nm.

Microsphere formation. The transfected HGC‑27 cells 
were suspended in serum‑free culture medium at a concen‑
tration of 1x105  cells/ml. Microsphere culture medium 
(DMEM/FBS:B27 at 1:50, 20 ng/ml epidermal growth factor, 
20 ng/ml basic fibroblast growth factor, 5 µg/ml insulin and 
10 µg/ml transferrin) was added to each well of a 6‑well 
ultra‑low‑adsorption culture plate (Corning, Inc.). Images 
were captured using a light microscope on day 5 (DM IL LED; 
Leica Microsystems GmbH).

Flow cytometry. The HGC‑27 cells (1x106) were resuspended 
in 100 µl flow cytometry buffer in an Eppendorf tube and 2 µl 
CD133‑fluorescein isothiocyanate (FITC) (cat. no. 11‑1331‑80) 
or CD44‑FITC (cat. no. 11‑0441‑82) (both from eBioscience; 
Thermo Fisher Scientific, Inc.) was added (27). The cells were 
incubated in the dark for 35 min at 4˚C and 400 µl flow cytom‑
etry dye buffer (cat. no. PAB180076; Bioswamp Life Science 
Lab) was added to each tube. The cells were then subjected to 
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flow cytometry (NovoCyte; ACEA Bioscience, Inc.) and the 
results were analyzed using NovoCyte software (version 2.0, 
ACEA Bioscience, Inc.).

Biochemical analysis. The levels of glucose (cat. no. F006), 
ATP (cat. no. A095‑1) and lactic acid (cat. no. A019‑2) (all 
from Nanjing Jiancheng Bioengineering Institute) were evalu‑
ated using the respective biochemical detection kits according 
to the manufacturer's instructions.

RT‑qPCR. Total RNA was extracted from 1x105 HGC‑27 
cells and tumors using TRIzol® (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's procedures and 
cDNA was synthesized using a reverse transcriptase kit (cat. 
no. 639505; Takara Bio, Inc.) according to the manufacturer's 
instructions. RT‑qPCR was performed with a real‑time system 
(CFX‑Connect 96; Bio‑Rad Laboratories, Inc.) using the 
SYBR Green PCR kit (cat. no. KM4101; Roche Diagnostics), 
and the GAPDH gene was used as the control. Each reaction 
was performed in duplicate. The following thermocycling 
conditions were used: Initial denaturation at 95˚C for 3 min 
followed by denaturation at 95˚C for 5 sec, annealing at 56˚C 
for 10 sec and extension at 72˚C for 25 sec for 39 cycles, 
followed by a final step at 65˚C for 5 sec and 95˚C for 50 sec. 
The relative gene expression levels were determined using the 
2‑ΔΔCq method (28). The primers were designed and purchased 
from Nanjing Kingsy Biotechnology Co., Ltd. and are listed 
in Table I.

Animals. A total of 30 nude Balb/c mice (male; 6 weeks of 
age) weighing 18‑20  g were purchased from Changzhou 
Cavens Biological Co., Ltd. (animal cer t if ication 
no.  1107301911000025). The animals were housed in a 
pathogen‑free environment in opaque polypropylene cages, 
with a standard 12 h light/dark cycle, at 22±3˚C and 50‑60% 
humidity. Food and water were available ad libitum. The mice 
were allowed to adapt to the aforementioned conditions for 
7 days prior to experimentation.

Xenograft mouse model. The mice were randomized into five 
groups (n=6 per group): Control, sh‑NC, sh‑KLK6, OV‑NC and 
OV‑KLK6. The HGC‑27 cells (1x106 cells) were inoculated 
subcutaneously into the right axillary region of each mouse, 
according to a previous study (29). Either 10 µg sh‑KLK6 or 
10 µg OV‑KLK6 was injected into the same subcutaneous site, 
where the tumor cells were implanted, 15, 18, 21 and 24 days 
after subcutaneous inoculation. The mice in the control, 
OV‑NC (empty vector) and sh‑NC (empty vector) groups were 
injected with an equal volume of PBS on the same days. Tumor 
formation was monitored every 2 days, beginning at day 8, by 
measuring the tumor length (L) and width (W) using calipers. 
The tumor volume (V) was calculated as follows: V=(L x W2)/2. 
After 27 days, all the mice were sacrificed by cervical disloca‑
tion, and the tumors were dissected and collected for follow‑up 
experiments. Animal death was confirmed as the absence of a 
heartbeat and breath.

Immunohistochemistry. Sections were fixed with 10% 
formalin for 48 h at 4˚C, paraffin‑embedded tissue blocks 
were placed at ‑20˚C for at least 30  min to increase the 

hardness before slicing. The tissue blocks were sliced at a 
thickness of 5‑µm. Before primary antibody incubation, the 
sections were heated at 60˚C in an incubator 1 h, dewaxed with 
xylene, hydrated with ethyl alcohol (100, 95, 85 and 75%) and 
subjected to antigen retrieval (0.01 M sodium citrate buffer) 
at 125˚C for 15 min. PBS solution was then used for washing 
three times for 3 min each and endogenous peroxidase activity 
was eliminated using 3% H2O2 for 10 min. Then, 10% goat 
serum (cat. no. I1726; Bioswamp Life Science Lab) was added 
to each group and incubated for 30 min at 4˚C. The sections 
were then incubated overnight at 4˚C with primary antibodies 
against Nanog (rabbit; 1:50; cat. no. PAB43881; Bioswamp 
Life Science Lab) and Oct‑4 (rabbit; 1:50; cat. no. PAB35586; 
Bioswamp Life Science Lab). Next, the sections were incubated 
with horseradish peroxidase‑conjugated goat anti‑rabbit IgG 
secondary antibody (1:1,000; ab6721; Abcam). The sections 
were counterstained with Harris' hematoxylin (4˚C for 3 min) 
and evaluated by visual assessment of the staining intensity 
using a light microscope at x200 magnification.

Western blot analysis. Total protein was extracted from the 
HGC‑27 cells and gastric tumor tissues by using radioimmu‑
noprecipitation assay lysis buffer (cat. no. W1689; Bioswamp 
Life Science Lab), and their concentration was measured using 
a bicinchoninic acid protein assay kit (cat. no. PAB180007; 
Bioswamp Life Science Lab). Total protein (20 µg/lane) was 
separated on a 12% gel using SDS‑PAGE and transferred to 
polyvinylidene fluoride membranes. The membranes were 
blocked with a buffer containing 5% non‑fat milk in PBS with 
0.05% Tween‑20 for 2 h, and the following primary antibodies 
were used: Nanog (1:2,000; cat. no. PAB43881), Oct‑4 (1:1,000; 
cat. no. PAB35586), SOX2 (1:1,000; cat. no. PAB30154), Notch1 
(1:1,000; cat. no. PAB35376), hexokinase (HK)1 (1:1,000; cat. 
no. PAB30519), HK2 (1:1,000; cat. no. PAB30271), GLUT1 
(1:1,000; cat. no. PAB40969), phosphorylated (p)‑PI3K (1:1,000; 
cat. no. PAB43641‑P), PI3K (1:1,000; cat. no. PAB30084), 
p‑AKT (1:1,000; cat. no. PAB43181‑P), AKT (1:1,000; cat. 
no.  PAB30596), p‑mTOR (1:1,000; cat. no.  PAB36313‑P), 
mTOR (1:1,000; cat. no. PAB30674) and GAPDH (1:1,000; cat. 
no. PAB36269) (all from Bioswamp Life Science Lab). After 
three washes with PBS/0.05%Tween‑20, the membranes were 
incubated with horseradish peroxidase‑conjugated secondary 
goat anti‑rabbit IgG (1:20,000; cat. no. SAB43714; Bioswamp 
Life Science Lab) at 4˚C, 1 h. The protein bands were visual‑
ized using an enhanced chemiluminescence color detection 

Table I. Primer sequences.

Primer name	 Sequence (5'‑3')

KLK6	
  Forward	 GAACTCATCCAGCCCCTT
  Reverse	 CATCCCCAGCACACAACA
GAPDH	
  Forward	 CCACTCCTCCACCTTTG
  Reverse	 CACCACCCTGTTGCTGT

KLK6, kallikrein 6.
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kit (cat. no. Tanon‑5200; Tanon Science and Technology Co., 
Ltd.) and the images were obtained using a Tanon Gis digital 
image analysis system and analyzed using Tanon Gis software 
(version 4.2) (both Tanon Science and Technology Co., Ltd.).

Statistical analysis. The data are presented as the mean ± stan‑
dard deviation. To analyze the differences between groups, 
one‑way analysis of variance followed by Tukey's post hoc 
test was performed to compare differences between multiple 
groups using SPSS version 22 (IBM Corp.). P<0.05 was 
considered to indicate a statistically significant difference. All 
experiments are repeated three times.

Results

Evaluation of transfection efficiency. To detect the transfec‑
tion efficiency of the interference and overexpression vectors, 
the mRNA and protein expression level of KLK6, in each 
group, was determined, as shown in Fig. 1A‑D, respectively. 
Compared with that in the control group, the mRNA and 
protein expression level of KLK6 in the OV group was signifi‑
cantly increased (P<0.05), whereas that in the four sh‑RNA 
groups was significantly decreased (P<0.05). As sh‑RNA‑3 
reduced the mRNA and protein expression level of KLK6 to 
a more significant level, it was used to silence KLK6 in the 
following experiments. To eliminate the effect of empty vector 
or the transfection procedure on the experimental results, 
the cell viability of the control and the empty vector groups 
following transfection was investigated. The results showed 
that there was no significant difference between the control 
group and the empty group (P>0.05; Fig. 1E).

KLK6 silencing attenuates the stem cell‑like properties of 
HGC‑27 cells. As shown in Fig. 2A, compared with that 
in the control and the OV group, the ability of HGC‑27 
cells to form microspheres was enhanced by OV‑KLK6. 
However, when the KLK6 gene was silenced, the micro‑
sphere‑forming ability was weakened compared with that 
in the sh‑NC group.

In addition, the proportion of CD133+ and CD44+ cells 
was notably decreased by sh‑KLK6 compared with that 
in the control and sh‑NC groups (P<0.05) (Fig. 2B), while 
OV‑KLK6 significantly increased the proportion of these 
cells (P<0.05).

The protein expression level of the stemness maintenance 
genes, Nanog, Oct‑4, SOX2 and Notch1 was also investigated, 
and the results showed that the expression level of these genes 
were significantly increased and decreased by OV‑KLK6 and 
sh‑KLK6 compared with the control and NC (sh‑ and OV‑) 
groups, respectively (both P<0.05) (Fig. 2C).

KLK6 silencing inhibits HGC‑27 cell metabolism by 
regulating the PI3K/AKT/mTOR pathway. To evaluate the 
effect of KLK6 on the metabolism of the HGC‑27 cells, 
cellular glucose uptake, and ATP and lactic acid content 
were measured. The results showed that, compared with the 
control and NC (sh‑ and OV‑) groups, inhibition of KLK6 
expression significantly decreased the uptake of glucose, and 
reduced the synthesis of ATP and lactic acid in the HGC‑27 
cells (P<0.05), while the levels were significantly increased by 
KLK6 overexpression (P<0.05; Fig. 3A). A PI3K inhibitor was 
added to the sh‑KLK6 and OV‑KLK6 groups, and the results 
showed that after the addition of PI3K‑IN‑1, the concentrations 
of ATP, lactic acid and glucose in sh‑KLK6‑PI3K‑IN‑1 group 
and OV‑KLK6+PI3K‑IN‑1 group were decreased compared 
with the sh‑KLK6 or OV‑KLK6 group, respectively (Fig. 3A).

As shown in Fig. 3B, the protein expression levels of HK1, 
HK2 and GLUT1 were significantly increased by OV‑KLK6, 
while they were significantly decreased by sh‑KLK6 
compared with the control and NC (sh‑ and OV‑) groups (all 
P<0.05). To further investigate the potential mechanism of 
KLK6, the expression level of proteins associated with the 
PI3K/AKT/mTOR signaling pathway was detected using 
western blot analysis. Compared with that in the control 
group, the phosphorylation levels of PI3K, AKT and mTOR 
(p‑PI3K, p‑AKT and p‑mTOR, respectively) were signifi‑
cantly decreased by sh‑KLK6 (P<0.05), whereas they were 
significantly increased by OV‑KLK6 (P<0.05).

Figure 1. Protein and mRNA expression level of KLK6 following transfection. (A) Protein and mRNA expression level of KLK6 was observed in cells 
transfected with (A and B) control, sh‑NC and sh‑RNA (1‑4) groups, and (C and D) control, OV and OV‑NC groups. (E) Cell Counting Kit‑8 assay was 
used to determine the cell viability of the control and NC group. *P<0.05 vs. control. n=3. OV, overexpression; NC, negative control; sh, short hairpin; 
KLK6, kallikrein 6.
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Figure 3. Expression of KLK6 on the metabolism of the HGC‑27 cells. (A) Levels of ATP, lactic acid and glucose were detected using biochemical kits. 
(B) Protein expression level of HK1, HK2, GLUT1, PI3K, p‑PI3K, AKT, p‑AKT, mTOR and p‑mTOR was observed using western blot analysis. *P<0.05 
vs. control. n=3. OV, overexpression; NC, negative control; sh, short hairpin; p, phosphorylated; KLK6, kallikrein 6; HK, hexokinase.

Figure 2. Effect of KLK6 on the stem cell‑like properties of the HGC‑27 cells. (A) Microsphere formation ability was observed using a microscope. Scale bar, 
50 µm. (B) Percentage of CD133+ and CD44+ cells was evaluated using flow cytometry. (C) Protein expression level of Nanog, Oct‑4, SOX2 and Notch1 was 
observed using western blot analysis. *P<0.05 vs. control. n=3. OV, overexpression; NC, negative control; sh, short hairpin; KLK6, kallikrein 6.



ZHOU et al:  KLK6‑ALLEVIATED STEMNESS AND METABOLISM OF GASTRIC CARCINOMA CELLS6

Figure 4. KLK6 mediates the tumorigenicity and stemness of the HGC‑27 cells in vivo. (A) sh‑KLK6 attenuated the tumorigenicity and KLK6 mRNA 
expression level of the HGC‑27 cells in vivo. (B) KLK6 silencing inhibited the levels of ATP, lactic acid, glucose and the protein expression levels of HK1, 
HK2, and GLUT1 in vivo, and the levels of Nanog and Oct‑4 were detected using immunohistochemistry. (C) Effect of KLK6 on the proteins involved in the 
PI3K/AKT/mTOR signaling pathway was detected using western blot analysis. *P<0.05 vs. control. n=3. OV, overexpression; NC, negative control; sh, short 
hairpin; KLK6, kallikrein 6.
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When PIK3‑IN‑1 was administered, the expressions 
of HK1, HK2, GLUT1, p‑PI3K, p‑AKT and p‑mTOR 
protein were decreased in the OV‑KLK6+PIK3‑IN‑1 and 
sh‑KLK6+PIK3‑IN‑1 groups compared with the OV‑KLK6 
and sh‑KLK6 groups (P<0.05). The results suggested that 
KLK6 silencing inhibited the energy uptake of the HGC‑27 
cells and slowed down cell metabolism by regulating the 
PI3K/AKT/mTOR pathway.

KLK6 mediates the tumorigenicity and stemness of the 
HGC‑27 cells by regulating the PI3K/AKT/mTOR pathway. In 
the aforementioned experiment, it was found that KLK6 could 
affect the stemness and energy metabolism of the HGC‑27 
cells. As tumor growth in vivo is a typical feature of gastric 
cancer (30), it was further investigated whether KLK6 medi‑
ated the growth of the HGC‑27 cells in vivo (Fig. 4A). On the 
27th day of the experiment, the tumor volume of the sh‑KLK6 
group was significantly lower compared with that in the control 
group (P<0.05), while that of the OV‑KLK6 group was signifi‑
cantly increased (P<0.05). Compared with that in the control 
and NC groups, the mRNA expression level of KLK6 in the 
OV‑KLK6 group was significantly increased (P<0.05), while 
it was significantly decreased in the sh‑KLK6 group (P<0.05; 
Fig. 4A). Immunohistochemistry, western blot analysis and 
biochemical detection were also performed to further examine 
whether KLK6 affected the stemness and energy metabolism 
in vivo. Compared with that in the control group, the protein 
expression level of HK1, HK2 and GLUT1, and the levels 
of ATP, lactic acid and glucose in the sh‑KLK6 group were 
significantly lower (P<0.05), and Oct‑4 and Nanog expression 
decreased, while those in the OV‑KLK6 group showed the 
opposite trend (P<0.05) (Fig. 4B). In addition, KLK6 silencing 
significantly inhibited the activity of the p‑PI3K, p‑AKT, and 
p‑mTOR, while in OV‑KLK6, those expression was signifi‑
cantly increased (P<0.05) (Fig. 4C), suggesting that KLK6 
mediated the tumorigenicity and stemness of the HGC‑27 
cells by regulating the PI3K/AKT/mTOR signaling pathway.

Discussion

Research has shown that cancer stem cells may play an impor‑
tant role in the invasion, metastasis, drug resistance, recurrence 
and other malignant behaviors of gastric cancer cells (31‑35), 
and their tumorigenic activity has also been confirmed in a 
variety of malignant tumors (36), such as lung cancer (37), 
glioblastoma (38) and breast cancer (39). Giraud et al  (40) 
confirmed that a relevant side population of the human gastric 
cancer cell line, HGC‑27, could possess characteristics of 
tumor stem cells. An undifferentiated HGC‑27 cell line was 
used in the present study and it was found that KLK6 silencing 
reduced the proportion of the cell population expressing CD44 
and CD133, which are markers of tumor cell stemness (6). 
SOX2, Oct‑4 and Nanog, which are involved in the process 
of tumorigenesis, invasion, metastasis and recurrence (41), 
are key regulators of tumor cell self‑renewal, proliferation 
and differentiation, and also act as predictive biomarkers of 
poor prognosis for ovarian endometriosis  (42), esophagus 
cancer (43) and etc. In the present study, it was found that 
KLK6 silencing, in turn, inhibited the protein expression 
level of the tumor cell stemness maintenance factors, SOX2, 

Oct‑4 and Nanog, suggesting that KLK6 may suppress gastric 
cancer cell growth by inhibiting the stem‑like properties and 
behaviors.

The glycometabolism pathway in tumor cells is different 
from that in normal cells. Normally, cells metabolize glucose 
using mitochondrial oxidative phosphorylation and glycolysis, 
both under anaerobic conditions. However, tumor cells prefer 
to produce energy and substances required by the cells using 
glycolysis, under either aerobic or anaerobic conditions (44,45). 
Glucose transporters (GLUTs) are carriers of glucose in 
mammalian cells, among which GLUT1 mainly transports 
glucose (46). An upregulation of GLUT1 was found to increase 
glucose uptake by tumor cells and promote cell prolifera‑
tion (47). Hexokinases (HKs) are key enzymes that are involved 
in glycolysis and participate in the Warburg effect and in the 
immortalization of tumor cells  (48). As key enzymes that 
affect tumor cell metabolism, HKs are essential in promoting 
tumorigenesis and tumor development, and their inhibition 
has become a new pharmacological strategy in cancer treat‑
ment (49). In the present study, KLK6 inhibition decreased 
glucose uptake, lactic acid production and ATP content in 
gastric cancer cells, and simultaneously suppressed the protein 
expression level of GLUT1, HK1 and HK2. It was also found 
that inhibition of KLK6 decreased the activity of proteins in 
the PI3K/AKT/mTOR signaling pathway, suggesting that 
KLK6 mediated energy metabolism in gastric cancer cells by 
regulating the PI3K/AKT/mTOR signaling pathway.

A limitation of the present study was that double staining 
was not performed in the flow cytometry assays; therefore, it 
was not confirmed whether the cells belonged to the same cell 
group. The effect of KLK6 on the stemness and metabolism 
of the HGC‑27 gastric cancer cells and its potential mecha‑
nism was investigated; however, whether KLK6 affects other 
signaling pathways is still unclear and further research is 
therefore required.

In conclusion, KLK6 modulated stemness properties and 
the metabolic profile in gastric carcinoma cells, which may 
be achieved by regulating the PI3K/AKT/mTOR signaling 
pathway.
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