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Abstract. Melanomas are highly malignant tumors that readily 
metastasize and have poor prognosis. Targeted therapy is a 
cornerstone of treatment for patients with melanoma. Although 
c‑Kit gene aberration has found in 5‑10% of melanoma cases, 
research on c‑Kit inhibitors for melanoma with c‑Kit aberra‑
tion have been disappointing. Sorafenib is a tyrosine kinase 
inhibitor, whose targets include c‑Kit, platelet derived growth 
factor receptor (PDGFR), VEGFR and RAF. The present 
study aimed to examine the effect of sorafenib on metastatic 
melanoma with c‑Kit aberration. Cell viability was assessed 
via trypan blue assay. Migration and invasion were analyzed 
using cell culture inserts. The anti‑metastatic effects and 
antitumour activity of sorafenib were determined in an in vivo 
model. Protein expression was detected via western blotting, 
and the expression of MMP and very late antigen (VLA) was 
detected via reverse transcription‑quantitative PCR. It was 
identified that sorafenib decreased cell viability, migration and 
invasion in vitro. Furthermore, sorafenib inhibited metastasis 
and tumor growth in vivo. Mechanistically, sorafenib inhibited 
c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf phosphorylation 
both in vitro and in vivo. In addition, sorafenib reduced the 
expression levels of MMPs and VLA. Importantly, there was 
a significant effect of sorafenib treatment on overall survival 
in mice. Collectively, this study suggests that sorafenib may 
serve as a novel therapeutic option for melanoma with c‑Kit 
dysregulation.

Introduction

Melanomas are highly malignant tumors that readily 
metastasize and have poor prognosis, with a 5‑year overall 

survival (OS) rate of 12‑28% (1,2). Melanoma has several 
biologically distinct subtypes, each with the mutation profile 
of melanoma cells, such as B‑Raf, NRAS and c‑Kit (3,4). 
The B‑Raf inhibitor vemurafenib provides a clinical benefit 
to B‑Raf‑mutated melanoma (5), while the MEK inhibitor 
MEK‑162 prolongs OS and progression free survival in 
NRAS‑mutated melanomas (6). This approach of using 
targeted therapies against these mutations has been successful 
for melanoma treatment.

The c‑Kit proto‑oncogene is hyperactivated in 5‑10% of 
melanomas, by either somatic mutation or amplification (7). 
It is a receptor tyrosine kinase associated with malignant 
cancer, which can regulate proliferation, migration, invasion 
and metastasis (8). c‑Kit knockdown is reported to inhibit 
melanoma cell proliferation, invasion and migration (9,10). 
Although clinical benefit has been achieved in melanoma 
cases with c‑Kit aberration, results from molecular therapies 
targeting c‑Kit in melanoma have been disappointing.

Sorafenib is a multikinase inhibitor that has been approved 
for the treatment of thyroid cancer, renal cell carcinoma and 
hepatocellular carcinoma (11). Sorafenib has been reported to 
inhibit B‑RAF, c‑RAF, platelet derived growth factor receptor 
(PDGFR), VEGFR and c‑Kit (12). We hypothesized that 
sorafenib may be useful for treatment of metastatic melanoma 
with c‑Kit aberration. Thus, the present study examined the 
effect of sorafenib in metastatic melanoma with c‑Kit aberra‑
tion in vitro and in vivo.

Materials and methods

Materials. For the in vitro studies, sorafenib (Funakoshi, Co., 
Ltd.) was dissolved in DMSO to a concentration of 20 mM 
(stock solution at ‑20˚). The solution was diluted in PBS before 
use in the subsequent experiments at room temperature.

For the animal studies, sorafenib was made up as a 
1.25 mg/ml (10 mg/kg of body weight), 3.75 mg/ml (30 mg/kg 
of body weight) and 6.25 mg/ml (50 mg/kg of body weight) 
solution in PBS containing 0.1% DMSO.

Cells and culture conditions. Murine melanoma cell lines, 
B16F1 and B16BL6, were kindly provided by Dr Inufusa of 
Kindai University (Osaka, Japan). B16F1 cells were established 
from lung metastasis lesions from the intravenous injection of 
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B16 melanoma cells into a syngeneic C57BL/6J mouse, and 
B16F10 cells were selected by using 10 successive lung metas‑
tasis lesions. B16BL6 cells were derived from B16F10 cells that 
have invaded the mouse bladder membrane (13). MeWo cells 
were obtained from the Japanese Cancer Research Resources 
Bank. These cells were maintained in RPMI‑1640 medium 
(Sigma‑Aldrich; Merck KGaA) with 10% FBS (Gibco; Thermo 
Fisher Scientific, Inc.), 2 mM L‑glutamine (FUJIFILM Wako 
Pure Chemical Corporation), 25 mM HEPES (FUJIFILM 
Wako Pure Chemical Corporation) and 100 µg/ml penicillin 
and streptomycin (Gibco; Thermo Fisher Scientific, Inc.) at 
37˚C with 5% CO2.

Mice. Female C57BL/6 mice (age, 6 weeks; weight, 21±3 g; 
n=116) were purchased from Shimizu Laboratory Supplies Co., 
Ltd. Mice were housed in an animal care facility with a 12‑h 
light/dark cycle and had free access to water and commercially 
available chow. The mice were housed in a controlled envi‑
ronment with an ambient temperature of 22‑25˚C and relative 
humidity of 40‑60%. All animal experiments were approved 
by the Animal Care and Use Committee of Kindai University 
(project identification code KAPS‑27‑021; April 1, 2015). 
Animal experimental procedures and ethical procedures were 
carried out strictly in accordance with the Recommendations 
for Handling of Laboratory Animals for Biomedical Research 
compiled by the Committee on Safety and Ethical Handling 
Regulations for Laboratory Animal Experiments, Kindai 
University and the United Kingdom Coordinating Committee 
for Cancer Research guidelines (14).

Cell viability. B16BL6, MeWo and B16F1 cells were plated in 
96‑well plates at 2x103 cells in a volume of 100 µl medium and 
cultured for 24 h at 37˚C with 5% CO2. Then, sorafenib (0.1, 
0.5, 1, 5, 10, 25 and 50 µM) was added to the well and cultured 
at 37˚C with 5% CO2. After, 1, 3 and 5 days, the cells were 
stained with 0.4% trypan blue at room temperature and imme‑
diately counted using light microscopy (x100 magnification).

Migration assay. The in vitro migration was measured using 
8.0‑μm pore size Falcon cell culture inserts (Becton‑Dickinson 
and Company). B16BL6 and MeWo cells (2x104) suspended in 
200 µl serum‑free medium were added in the upper chamber 
compartment, and incubated in the absence or presence of 
sorafenib (0.5, 1, 5 and 10 µM) at 37˚C with 5% CO2. The 
lower chamber was filled with 500 µl medium supplemented 
with 10% FBS. After 24 h, the lower layer was fixed with 
95% ethanol for 10 min at room temperature and stained with 
hematoxylin for 5 min at room temperature. The migrated 
cells were counted using light microscopy.

Matrigel invasion assay. The in vitro invasion was measured 
using 8.0‑μm pore size Falcon cell culture inserts with Matrigel 
(Becton, Dickinson and Company). Cell culture inserts were 
precoated with Matrigel (50 µl) and incubated for 10 min 
at 37˚C. Next, B16BL6 and MeWo cells (2x104) suspended 
in 200 µl medium containing 0.5% FBS were added in the 
upper chamber compartment, and incubated in the absence 
or presence of sorafenib (0.5, 1, 5 and 10 µM) at 37˚C with 
5% CO2. The lower chamber was filled with 500 µl medium 
supplemented with 10% FBS. After 24 h, the lower layer was 

fixed with 95% ethanol for 10 min at room temperature and 
stained with hematoxylin for 5 min at room temperature. The 
invaded cells were counted using light microscopy.

Western blot analysis. Western blot analysis was performed 
as described in our previous study (15). B16BL6 cells and the 
harvested tumor were lysed in lysis buffer [20 mM Tris‑HCl 
(pH 7.5), 10 mM NaCl, 1 mM EDTA, 0.5% NP‑40, 1 µM 
pepstatin, 1 µM leupeptin, 2 mM sodiumorthovanadate, 1 µM 
calpain inhibitor, phosphatase inhibitor cocktail I/II and 
1 mM phenylmethylsulfonyl fluoride]. The protein concentra‑
tions were examined using the BCA protein assay kit (Thermo 
Fisher Scientific, Inc.). Then, equal amounts of protein (20 µg) 
were separated using 10% SDS‑PAGE, and transferred to 
PVDF membranes (Cytiva). The proteins were detected using 
following specific antibodies overnight at 4˚C: Phosphorylated 
(p)‑c‑Kit (cat. no. 3391), c‑Kit (cat. no. 3074), p‑PDGFR (cat. 
no. 3124), PDGFR (cat. no. 3175), p‑VEGFR (cat. no. 2471), 
VEGFR (cat. no. 2469), p‑B‑Raf (cat. no. 2696), B‑Raf (cat. 
no. 9433), p‑c‑Raf (cat. no. 9427), c‑Raf (cat. no. 9422), 
p‑ERK1/2 (cat. no. 9101), ERK1/2 (cat. no. 9102), p‑Akt 
(cat. no. 9271), Akt (cat. no. 9272), p‑STAT3 (cat. no. 9131), 
STAT3 (cat. no. 9132), p‑NF‑κB p65 (cat. no. 3033), NF‑κB 
(cat. no. 4764), p‑p38 (cat. no. 9215), p38 (cat. no. 9212), very 
late antigen (VLA)‑1 (cat. no. 71747), VLA‑4 (cat. no. 8440), 
VLA‑5 (cat. no. 4705), VLA‑6 (cat. no. 3750) (all from Cell 
Signaling Technology, Inc.; 1:3,000), β‑actin (1:3,000; cat. 
no. A5316; Sigma‑Aldrich; Merck KGaA), VLA‑2 (1:1,000; 
cat. no. sc‑6586), VLA‑3 (1:1,000; cat. no. sc‑6586) (all from 
Santa Cruz Biotechnology, Inc.) and MMP‑14 (1:3,000; 
cat. no. MAB3328; Calbiochem; Merck KGaA). Next, the 
membranes were incubated with HRP‑conjugated anti‑rabbit 
secondary antibody (cat. no. 7074) or anti‑mouse secondary 
antibody (cat. no. 7076) (both Cell Signaling Technology, 
Inc.) (both 1:5,000) at room temperature for 2 h, and the HRP 
activity was visualized using a Luminata Forte Western HRP 
Substrate (MilliporeSigma). The quantities of reactive proteins 
were determined based on densitometric measurements using 
a CS analyzer (ATTO Corporation).

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA was 
isolated using the RNAiso Plus reagent (Takara Bio, Inc.), 
according to the manufacturer's protocol. Then, 1 µg purified 
total RNA was used for cDNA synthesis using the PrimeScript™ 
RT reagent kit (Takara Bio, Inc.), according to the manufacturer's 
protocol, and subjected to RT‑qPCR, which was performed with 
the Thermal Cycler Dice Real Time system (Takara Bio, Inc.) 
using SYBR Premix Ex Taq (Takara Bio, Inc.). The following 
PCR conditions were used: Initial denaturation at 95˚C for 5 min, 
followed by 40 cycles of denaturation at 94˚C for 30 sec, annealing 
at 50˚C for 30 sec and extension at 72˚C for 30 sec. The following 
primers were used: MMP‑1 forward, 5'‑CGACTCTAGAAACAC 
AAGAGCAAGA‑3' and reverse, 5'‑AAGGTTAGCTTACTGT 
CACACGCTT‑3'; MMP‑2 forward, 5'‑TGTGTCTTCCCCTTCAC 
TTT‑3' and reverse, 5'‑GATCTGAGCGATGCCATCAA‑3'; 
MMP‑9 forward, 5'‑AGGCCTCTACAGAGTCTTTG‑3' and 
reverse, 5'‑CAGTCCAACAAGAAAGGACG‑3'; MMP‑14 
forward, 5'‑ACACCCTTTGATGGTGAAGG‑3' and reverse, 
5'‑TCGGAGGGATCGTTAGAATG‑3'; VLA‑1 forward, 5'‑GTC 
TTCATGCTCCCAACAGC‑3' and reverse, 5'‑ACTTCTGACGT 
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GATTACAGGAAGC‑3'; VLA‑2 forward, 5'‑TCTGCGTGTG 
GACATCAGTTTGGA‑3' and reverse, 5'‑GATAACCCCTGT 
CGGTACTTCTGC‑3'; VLA‑3 forward, 5'‑ATTGACTCAGAGC 
TGGTGGAGGAG‑3' and reverse, 5'‑TACTTGGGCATAATC 
CGGTAGTAG‑3'; VLA‑4 forward, 5'‑GTCTTCATACTCCC 
AACAGC‑3' and reverse, 5'‑ACTTCTGACGTGATTACAGGA 
AGC‑3'; VLA‑5 forward, 5'‑CTGCAGCTGCATTTCCGAGTC 
TGG‑3' and reverse, 5'‑GAAGCCGAGCTTGTAGAGGAC 
GTA‑3'; VLA‑6 forward, 5'‑GAGGAATATTCCAAACTGAAC 
TAC‑3' and reverse, 5'‑GGAATGCTGTCATCGTACCTA 
GAG‑3'; and GAPDH forward, 5'‑ACTTTGTCAAGCTCA 
TTT‑3' and reverse, 5'‑TGCAGCGAACTTTATTG‑3'. The 
expression levels were normalized to the internal control GAPDH, 
and fold change of expression levels were calculated using the 
2‑ΔΔCq method (16).

Collagenase activity assay. MMP‑1, MMP‑2 and MMP‑9 
activity was measured using a type I collagenase assay kit (cat. 
no. AK37; Cosmo Bio Co., Ltd.) and a gelatinase activity assay 
kit (cat. no. CBA003; Merck KGaA) following the protocol 
of the manufacturer. MMP‑1 activity from tumor lysates was 
estimated at 37˚C for 2 h using a type I collagenase activity 
assay kit containing FITC. MMP‑2 and MMP‑9 activity from 
tumor lysates were estimated at 42˚C for 2 h using a type IV 
collagenase activity assay kit containing FITC. MMPs activi‑
ties were measured using a spectrophotofluorometer at an 
excitation wavelength of 495 nm and an emission wavelength 
of 540 nm.

Metastasis mouse model. B16BL6 cells (1x105 cells in 50 µl 
PBS) were inoculated into the right hind footpad of C57BL/6 
mice (6‑week‑old female). The tumor in the footpad was 
excised surgically under anesthesia with 2% isoflurane 
(FUJIFILM Wako Pure Chemical Corporation). The mice 
were randomly separated (n=10 for each group), and orally 
treated with 0.1% DMSO (control) or sorafenib (10, 30 and 
50 mg/kg of body weight) once a day. The number of meta‑
static nodules in the lungs were counted after the amputation.

Subcutaneous tumor growth studies. B16BL6 cells (1x105 cells 
in 50 µl PBS) were inoculated into the right hind footpad of 
C57BL/6 mice (6‑week‑old female). Then, the mice were 
randomly separated (n=9 for each group), and orally treated 
with 0.1% DMSO (control) or sorafenib (10, 30 and 50 mg/kg 
of body weight) once a day from the day of inoculation. Tumor 
volume was measured daily using calipers and calculated as 
(A x B2)/2, where A is the long axis and B is the short axis 
of the tumor. After 21 days, the mice were sacrificed by 
asphyxiation with CO2, and the right footpads were removed 
immediately stored at ‑80˚C until assayed. During euthanasia, 
the mice were kept in a 5 liters cage, then 100% CO2 was intro‑
duced at a flow rate of 1 l/min. The mortality of the mice was 
confirmed by checking breathing.

Survival studies. B16BL6 cells (1x105 cells in 50 µl PBS) were 
injected into tail vain of C57BL/6 mice (6‑week‑old female). 
Then, the mice were randomly separated (n=10 for each group), 
and orally treated with 0.1% DMSO (control) or sorafenib (10, 
30 and 50 mg/kg of body weight) once a day from the day of 
inoculation. Animals were monitored daily, and sacrificed via 

CO2 inhalation when they met the following humane endpoint 
criteria: Posture, gait or mobility that interfere with feeding 
behaviour, such as hind limb paralysis, consistent foot drag‑
ging or spinal curvature. During euthanasia, the mice were 
kept in a 5 liters cage, then 100% CO2 was introduced at a flow 
rate of 1 l/min. The mortality of the mice was confirmed by 
checking breathing.

Statistical analysis. Data are presented as the mean ± SD 
of two or three independent experiments. All analyses were 
conducted using SPSS version 21.0 software (IBM Corp.). 
Statistical analysis was performed using one‑way analysis of 
variance (ANOVA) with Dunnett's test. P<0.05 was considered 
to indicate a statistically significant difference. For survival 
date, Kaplan‑Meier curves were plotted using the log‑rank test.

Results

Sorafenib inhibits the viability, migration and invasion of 
melanoma cells with c‑Kit aberration. The present study 
used B16BL6 cells to investigate the effect of sorafenib on 
melanoma cells with c‑Kit aberration, as B16BL6 cells 
expressed higher levels of p‑c‑Kit and c‑Kit compared with 
B16F1 cells (Fig. S1). To clarify whether sorafenib exhibits 
cytotoxicity in melanoma cells with c‑Kit aberration, the 
viability of B16BL6, MeWo and B16F1 cells was examined. It 
was found that B16BL6 cells treated with 0.1‑5 µM sorafenib 
did not show inhibited viability (Fig. 1A). However, 10‑50 µM 
sorafenib reduced B16BL6 cell viability compared with 
untreated cells. MeWo cells showed results similar to those 
observed with B16BL6 cells (Fig. 1A). In the same experi‑
ment, it was identified that B16F1 cells were less sensitive to 
sorafenib than B16BL6 and MeWo cells (Fig. S2). The IC50 
values for the treatment of sorafenib at 72 h were 15.0 µM 
(B16BL6 cells), 16.6 µM (MeWo cells) and 33.7 µM (B16F1 
cells), respectively.

Next, the anti‑migration and anti‑invasion effects of 
sorafenib on B16BL6 and MeWo cells were examined. The 
results demonstrated that sorafenib inhibited the migration 
and invasion of B16BL6 and MeWo cells in a dose‑dependent 
manner (Figs. 1B and C, and S3). These results suggest that 
sorafenib decreased melanoma cell viability, migration and 
invasion in a concentration‑dependent manner.

Sorafenib inhibits c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf 
signaling pathways in melanoma cells with c‑Kit aberra‑
tion. Next, the molecular mechanism of the anti‑proliferative, 
anti‑migratory and anti‑invasive effects of sorafenib were 
determined. Sorafenib has been shown to inhibit c‑Kit, RAF, 
PDGFR and VEGFR activation (11). Therefore, the expres‑
sion levels of the p‑ state of c‑Kit, PDGFR, VEGFR, B‑Raf, 
c‑Raf, downstream ERK, Akt, STAT3, p38 and NF‑κB protein 
were detected via western blotting. It was found that sorafenib 
suppressed the phosphorylation levels of c‑Kit, PDGFR, 
VEGFR, B‑Raf, c‑Raf, ERK, Akt and STAT3 (Figs. 2 and S4). 
However, there were no significant changes in the levels of 
p38 and NF‑κB phosphorylation. These results suggest that 
sorafenib suppresses the viability, migration and invasion of 
melanoma cells with c‑Kit aberration via the inhibition of 
c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf signaling pathways.
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Sorafenib decreases the mRNA expression and enzymatic 
activities of MMPs, and the mRNA and protein expression 
levels of VLAs in melanoma cells with c‑Kit aberration. 
MMPs and VLAs are responsible for the metastasis and inva‑
sion of malignant tumors (15,17). Therefore, the current study 
investigated the mRNA expression and enzymatic activities of 
MMPs, and the mRNA and protein expression levels of VLAs 
in melanoma cells with c‑Kit aberration. Sorafenib decreased 
the mRNA expression and enzymatic activities of MMP‑1, 
MMP‑2, MMP‑9 and MMP‑14 in a concentration‑dependent 
manner (Figs. 3 and S5A). In addition, sorafenib reduced the 
mRNA expression and protein expression levels of VLA‑1, 
VLA‑2, VLA‑4, VLA‑5 and VLA‑6 (Figs. 4 and S5B). 
However, no change was observed in the expression of VLA‑3. 
These data suggest that sorafenib decreased the mRNA 

expression and enzymatic activities of MMPs, and the mRNA 
and protein expression levels of VLAs in melanoma cells with 
c‑Kit aberration.

Sorafenib treatment has a significant effect on OS  in mice 
by inhibiting metastasis and tumor growth in vivo. To clarify 
the anti‑metastatic activity of sorafenib, the number of the 
lung metastatic nodules formed in a spontaneous metastasis 
model was counted. It was identified that sorafenib reduced 
the number of lung metastatic nodules in the sorafenib treated 
groups (Fig. 5A). The maximum tumor volumes of control, 
10 mg/kg sorafenib, 30 mg/kg sorafenib, and 50 mg/kg 
sorafenib groups were 471.3 mm3 (11.9 mm is the long axis 
and 8.9 is the short axis), 285.9 mm3 (9.4 mm is the long axis 
and 7.8 is the short axis), 233 mm3 (9.0 mm is the long axis and 

Figure 1. Sorafenib inhibits the viability, migration and invasion of melanoma cells with c‑Kit aberration. (A) B16BL6 and MeWo cells were treated with 
sorafenib (0.1, 0.5, 1, 5, 10, 25 and 50 µM), and cell viability was determined via trypan blue. The number of viable cells (unstained) and dead cells (stained) was 
counted using a haemocytometer. (B) B16BL6 and MeWo cells were treated with sorafenib (0.5, 1, 5 and 10 µM), and the migrated cells were measured in 
Falcon cell culture inserts. (C) B16BL6 and MeWo cells were treated with sorafenib (0.5, 1, 5 and 10 µM), and the invaded cells were measured in Falcon cell 
culture inserts with Matrigel. Data are presented as the mean ± SD of three independent experiments. *P<0.05 vs. control.
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Figure 2. Sorafenib inhibits c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf signaling pathways of melanoma cells with c‑Kit aberration. B16BL6 cells were treated 
with sorafenib (0.5, 1, 5 and 10 µM), and the expression levels of p‑ and total c‑Kit, PDGFR, VEGFR, B‑Raf, c‑Raf, ERK, Akt, STAT3, NF‑κB and p38 proteins 
were analyzed via western blotting. β‑actin was used as internal control. All determinations made in western blotting were from three different experiments. 
p‑, phosphorylated; PDGFR, platelet derived growth factor receptor.

Figure 3. Sorafenib decreases the mRNA expression and enzymatic activities of MMPs of melanoma cells with c‑Kit aberration. B16BL6 cells were treated 
with sorafenib (0.5, 1, 5 and 10 µM). mRNA expression levels of (A) MMP‑1, (B) MMP‑2, (C) MMP‑9 and (D) MMP‑14 were measured via reverse transcrip‑
tion‑quantitative PCR. (E and F) MMP‑1, MMP‑2 and MMP‑9 activity was measured using assays for collagenase activity. (G) Expression level of MMP‑14 
was analyzed via western blotting. β‑actin was used as internal control. All determinations made in western blotting were from three different experiments. 
Data are presented as the mean ± SD of three independent experiments. *P<0.05 vs. control.
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7.2 is the short axis) and 160.1 mm3 (8.5 mm is the long axis 
and 6.0 is the short axis), respectively. No significant change 
in body weight or side effects were observed in the sorafenib 
treated groups (data not shown).

In addition, the anti‑tumor effect of sorafenib was evalu‑
ated in the in vivo model by inoculating the footpad of mice 
with B16BL6 cells. It was found that sorafenib inhibited tumor 
growth in the sorafenib treated group in a dose‑dependent 
manner (Fig. 5B). The effect of sorafenib on overall mice 
survival time were also examined in the experimental 
metastasis model. There was a significant prolonged effect 
of sorafenib treatment on OS (Fig. 5C). The median survival 
times of the control, 10 mg/kg sorafenib, 30 mg/kg sorafenib 
and 50 mg/kg sorafenib‑treated groups were 27.4, 31.8, 31.9 
and 35.5 days, respectively. These results indicated that 
sorafenib treatment had a significant effect on OS  in mice by 
inhibiting metastasis and tumor growth in vivo.

Sorafenib inhibits the expression of p‑c‑Kit, p‑PDGFR, 
p‑VEGFR, p‑B‑Raf and p‑c‑Raf in vivo. Next, the effect of c‑Kit, 
PDGFR, VEGFR, B‑Raf and c‑Raf inhibition by sorafenib 
treatment in tumor lysates was examined via western blotting. 
Sorafenib inhibited c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf 
phosphorylation in a dose‑dependent manner (Figs. 6 and S6). 
Consistent with the results of the in vitro studies, sorafenib 
abolished the phosphorylation of c‑Kit, PDGFR, VEGFR, 
B‑Raf and c‑Raf. These data support the notion that sorafenib 
inhibits metastasis and tumor growth via the inhibition of 
c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf pathways.

Sorafenib decreases the mRNA expression levels of MMPs 
and VLAs in vivo. The mRNA expression levels of MMPs 
(MMP‑1, MMP‑2, MMP‑9 and MMP‑14) and VLAs (VLA‑1, 
VLA‑2, VLA‑4, VLA‑5 and VLA‑6) in tumor lysates were 
detected via RT‑qPCR. Sorafenib significantly inhibited the 

Figure 4. Sorafenib decreases the mRNA and protein expression levels of VLAs in melanoma cells with c‑Kit aberration. B16BL6 cells were treated with 
sorafenib (0.5, 1, 5 and 10 µM). mRNA expression levels of (A) VLA‑1, (B) VLA‑2, (C) VLA‑3, (D) VLA‑4, (E) VLA‑5 and (F) VLA‑6 were measured via 
reverse transcription‑quantitative PCR. Data are presented as the mean ± SD of three independent experiments. *P<0.05 vs. control. (G) Protein expression 
levels of VLA‑1, VLA‑2, VLA‑3, VLA‑4, VLA‑5 and VLA‑6 were analyzed via western blotting. β‑actin was used as internal control. All determinations were 
made in western blotting from three different experiments. VLA, very late antigen.
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mRNA expression levels of MMP‑9 and MMP‑14 (Fig. 7). 
Sorafenib treatment also led to a notable decrease in the 
mRNA expression levels of MMP‑1 and MMP‑2, but this was 
not significant. In addition, sorafenib significantly decreased 
the mRNA expression levels of VLA‑1, VLA‑2, VLA‑4 
and VLA‑5 (Fig. 8). The mRNA expression level of VLA‑6 
showed a small reduction. These results suggest that sorafenib 

decreases metastasis by suppressing the expression levels of 
MMPs and VLAs.

Discussion

Mutations or amplification of the c‑Kit gene has been identi‑
fied in 5‑10% of melanoma, in particular mucosal melanomas, 
acral melanomas and melanomas as a result of chronic sun 
damage (CSD) (18). Previous data shows that c‑Kit aberration 
in melanoma cells leads to increased proliferation, survival, 
migration and oncogenic potential (3,19). Although, inhibition 
of c‑Kit is a potential approach for the treatment of melanoma, 
c‑Kit inhibitors for melanomas with c‑Kit mutation or amplifi‑
cation are not currently available. Therefore, the present study 
aimed to investigate the effect of sorafenib on melanoma cells 
that have a c‑Kit aberration.

The present study demonstrated that sorafenib inhibited 
cell viability, migration and invasion in vitro. Furthermore, 
it was found that sorafenib inhibited metastasis and tumor 
growth in vivo. It was also shown that sorafenib inhibited 
c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf signaling pathways 
both in vitro and in vivo. Previous studies have reported that 
sorafenib prevents the tumor growth of hepatocellular, breast 
and pancreatic cancer types via the inhibition of c‑Kit, VEGFR 
and B‑Raf (12,20,21). Moreover, the inhibition of c‑Kit 
suppresses tumor growth and metastasis in melanoma (22‑24). 
The current results support the notion that sorafenib inhibits 
tumor growth and metastasis by suppressing c‑Kit, PDGFR, 
VEGFR, B‑Raf and c‑Raf signaling pathways.

Melanomas are highly malignant tumors that readily 
metastasize and have poor prognosis. Previous studies have 
revealed that MMPs and VLAs are involved in migration, 
extracellular matrix degradation, adhesion and invasion of 
cancer cells such as melanoma (25‑27). In addition, c‑Kit, 
VEGFR and B‑Raf pathways regulate the expression of 
MMPs and VLAs (28‑30). The present study identified that 
sorafenib inhibited the mRNA expression levels of MMP‑9 
and MMP‑14, whereas sorafenib did not significantly decrease 
the mRNA expression of MMP‑1 and MMP‑2. In addition, 
sorafenib decreased the mRNA expression levels of VLA‑1, 

Figure 5. Sorafenib treatment has a significant effect on overall survival  in mice by inhibiting metastasis and tumor growth in vivo. (A) B16BL6 cells were 
inoculated into the right hind footpad of mice. The tumor in the footpad was excised surgically and treated with sorafenib (10, 30 and 50 mg/kg). The number of 
metastatic nodules in the lungs were counted. Data are presented as the mean ± SD of two independent experiments (n=10). (B) B16BL6 cells were inoculated 
into the right hind footpad of mice and treated with sorafenib (10, 30 and 50 mg/kg). Tumor volume was measured daily using calipers. Data are presented as 
the mean ± SD of two independent experiments (n=9). *P<0.05 vs. control. (C) B16BL6 cells were injected into tail vain of mice and treated with sorafenib (10, 
30 and 50 mg/kg). Data are presented as the mean ± SD of two independent experiments (n=10; P<0.05, log‑rank test).

Figure 6. Sorafenib inhibits the expression of p‑c‑Kit, p‑PDGFR, p‑VEGFR, 
p‑B‑Raf and p‑c‑Raf in vivo. B16BL6 cells were inoculated into the right 
hind footpad of mice and treated with sorafenib (10, 30 and 50 mg/kg). After 
21 days, the mice were sacrificed, and the right footpads were harvested. The 
expression levels of p‑ and total c‑Kit, PDGFR, VEGFR, B‑Raf and c‑Raf 
were analyzed via western blotting. β‑actin was used as internal control. All 
determinations were made in western blotting from three different experi‑
ments. p‑, phosphorylated; PDGFR, platelet derived growth factor receptor.
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Figure 7. Sorafenib decreases the mRNA expression of MMPs in vivo. B16BL6 cells were inoculated into the right hind footpad of mice, and treated with 
sorafenib (10, 30 and 50 mg/kg). After 21 days, the mice were sacrificed, and the right footpads were harvested. The mRNA expression levels of (A) MMP‑1, 
(B) MMP‑2, (C) MMP‑9 and (D) MMP‑14 were measured using reverse transcription‑quantitative PCR. Data are presented as the mean ± SD of three 
independent experiments. *P<0.05 vs. control.

Figure 8. Sorafenib decreases the mRNA expression of VLAs in vivo. B16BL6 cells were inoculated into the right hind footpad of mice, and treated with 
sorafenib (10, 30 and 50 mg/kg). After 21 days, the mice were sacrificed, and the right footpads were harvested. The mRNA expression levels of (A) VLA‑1, 
(B) VLA‑2, (C) VLA‑3, (D) VLA‑4, (E) VLA‑5 and (F) VLA‑6 were measured using reverse transcription‑quantitative PCR. Data are presented as the 
mean ± SD of three independent experiments. *P<0.05 vs. control. VLA, very late antigen.
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VLA‑2, VLA‑4 and VLA‑5. These results suggest that 
sorafenib suppresses metastasis by decreasing the expression 
of MMPs and VLAs via suppressing c‑Kit, PDGFR, VEGFR, 
B‑Raf and c‑Raf pathways.

In the present study, there was a significant effect of 
sorafenib treatment on OS. Sorafenib is currently the only 
Food and Drug Administration (FDA)‑approved first‑line 
therapy for patients with hepatocellular carcinoma (31). 
According to several clinical studies, the mean plasma 
concentration of sorafenib was between 5‑16 µM, the FDA 
recommended daily dose (400 mg, orally, twice daily), and 
the most commonly used dose in patients with cancer (32‑35). 
The dose of 30 mg/kg sorafenib for in vivo administra‑
tion could reach plasma concentrations of ~10 µM (36,37). 
Therefore, doses of 30 mg/kg sorafenib in mice correspond 
to the peak plasma levels in humans. This data suggests 
that sorafenib is therapeutically useful for the treatment of 
melanoma.

Melanomas can be divided into specific clinical subtypes 
of mucosal, acral, occurring on skin with CSD and occurring 
on skin without CSD (38). Recent research into the molecular 
genetics of melanomas has revealed that these subtypes are 
characterized by distinct genetic mutations. In particular, 
mutations in B‑Raf were most frequently found in lesions 
from non‑CSD (39). The B‑Raf inhibitor vemurafenib has 
shown an objective response rate of 48% and a survival benefit 
in patients with melanoma harboring a B‑Raf mutation (40). 
However, the incidence of BRAF mutations is relatively low 
in mucosal, acral and CSD melanomas (41). Interestingly, 
KIT mutations and/or increased copy number were found 

in 39% of mucosal melanoma, 36% of acral melanomas and 
28% of CSD melanoma, but were less frequent mutations 
in BRAF and NRAS (42). The present study used B16BL6 
and MEWO cells. Other studies have reported that B16 cell 
lines express wild‑type B‑Raf, and offer a model system for 
studying alternative mechanisms that give rise to malignant 
melanoma (43‑46). MeWo cells were also reported to express 
c‑Kit (47). The current study demonstrated that sorafenib 
inhibited the viability, migration and invasion of B16BL6 and 
MeWo cells. Therefore, these results suggest that sorafenib 
may be a therapeutic strategy in patients with CSD, acral and 
mucosal melanoma with c‑Kit aberration.

Future studies should investigate the effect of sorafenib on 
clinical samples that have a c‑Kit aberration. In addition, the 
effect of sorafenib in melanoma with c‑Kit mutation such as 
L576P, V559A and K642E (7) should be studied in vitro and 
in vivo.

In conclusion, the present study identified that sorafenib 
prolonged survival time in mice by inhibiting metastasis and 
tumor growth. The decrease in tumor growth and metastasis 
could be attributed to inhibition of c‑Kit, PDGFR, B‑Raf and 
c‑Raf signaling pathways. In addition, sorafenib inhibited 
the expression levels of MMP‑9, MMP‑14, VLA‑1, VLA‑2, 
VLA‑4 and VLA‑5 (Fig. 9). Thus, sorafenib may have potential 
clinical applications for the treatment of metastatic melanoma 
with c‑Kit aberration.
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