
ONCOLOGY LETTERS  23:  119,  2022

Abstract. Cancer stem cells (CSCs), also termed cancer‑
initiating cells, are a special subset of cells with high 
self‑replicating and self‑renewing abilities that can differ‑
entiate into various cell types under certain conditions. A 
number of studies have demonstrated that CSCs have distinct 
metabolic properties. The reprogramming of energy metabo‑
lism enables CSCs to meet the needs of self‑renewal and 
stemness maintenance. Increasing evidence supports the view 
that alterations in lipid metabolism, including an increase in 
fatty acid (FA) uptake, de novo lipogenesis, formation of lipid 
droplets and mitochondrial FA oxidation, are involved in CSC 
regulation. In the present review, the metabolic characteristics 
of CSCs, particularly in lipid metabolism, were summarized. 
In addition, the potential mechanisms of CSC lipid metabo‑
lism in treatment resistance were discussed. Given their 
significance in cancer biology, targeting CSC metabolism may 
serve an important role in future cancer treatment.
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1. Introduction

The occurrence and development of tumors is a complicated 
process involving numerous factors. Cancer stem cells (CSCs) 
are considered to be the seed of the tumor and are character‑
ized by self‑renewal and differentiation (1). CSCs serve an 
important role in maintaining the proliferation, invasion, drug 
resistance, metastasis and recurrence of malignant tumors (2). 
In recent years, the CSC model has received increasing 
attention.

Energy metabolism serves a significant role in the process 
of substance metabolism. Metabolic reprogramming is one of 
the most important hallmarks of cancer (3). Tumor‑initiating 
cells (TICs) and CSCs exhibit different biology behaviors 
compared with non‑stem cancer cells  (4). The metabolic 
regulation of ATP synthesis and biological building block 
formation in CSCs is different compared with that in differ‑
ential non‑stem cancer cells, but similar to that in normal 
tissue‑derived stem cells (5). In the past decade, the role of 
metabolism in CSC biology has developed into an active area 
of research, particularly in lipid metabolism. Previous studies 
have shown that lipid metabolism serves an important role in 
maintaining the stemness of CSCs (6) and meeting their energy 
needs, ultimately leading to cancer growth and invasion. In 
the present review, the origin and evolution of the CSC model 
are summarized. In addition, the characteristics and mecha‑
nisms of lipid metabolism of CSCs, as well as their role in 
radiotherapy and chemotherapy resistance are discussed.

2. CSCs

Concept and origin of CSCs. Rudolf Virchow observed 
similarities between tumor tissues and embryonic tissues 
~150 years ago, establishing the Embryonic‑Rest hypothesis 
of tumor formation  (7). Subsequently, his student Julius 
Cohnheim extended this theory, suggesting that tumors 
originate from stem cells remaining from embryonic develop‑
ment and sustained in the tissues (7). Since the 19th century, 
significant progress has been achieved in understanding CSC 
biology and the existence of CSCs has also been confirmed in 
a variety of solid tumor types, including breast carcinoma (8), 
ovarian carcinoma  (9), colon carcinoma  (10), pancreatic 
carcinoma (11) and liver cancer (12).

CSCs, also termed tumor‑initiating cells, display significant 
self‑renewing abilities (13). As well as being responsible for 
the origin and development of tumors (14), CSCs are resistant 
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to chemotherapy and radiotherapy  (15), which allows for 
recurrence and metastasis (16). 

Epigenetics in CSCs. Epigenetic regulation of the genome is 
associated with tumor progression. A variety of epigenetic 
pathways can contribute to the development and progres‑
sion of tumors, especially in CSC maintenance and survival. 
Abnormal epigenetic changes may transform normal stem 
cells into CSCs. DNA methylation and histone modifications 
are two key factors involved in the developmental program‑
ming of stem cells to specific cell and tissue differentiation 
lineages  (17). The important role of DNA methylation in 
maintaining CSC properties has been reported in leukemia, 
lung and colon stem cells (18,19). DNA methylation serves a 
critical role in this transformation process in the presence of 
DNA methyltransferases (20). Increasing evidence indicates 
that the silencing of tumor suppressor genes and activation 
of various cancer genes, which contribute to the formation of 
CSCs, are closely related to DNA hypermethylation (21). 

In addition, epigenetic mechanisms regulate a number of key 
CSC pathways, including the Wnt/β‑catenin, Hedgehog (Hh) 
and Notch signaling pathways. Specifically, the Wnt/β‑catenin 
signaling pathway serves an important role in normal tissue 
development and maintenance, as well as in the self‑renewal 
and differentiation of CSCs (22,23). The Hh signaling pathway 
also regulates the proliferation and maintains the stemness 
of progenitor cells and CSCs in several tissues (24). Notch 
signaling is an evolutionarily conserved pathway that regulates 
proliferation and differentiation in a wide range of cell types 
and different stages of cell lineage progression, as well as in 
CSC differentiation and self‑renewal (25). 

Role of CSCs in tumor biology. CSCs are considered to be the 
seed in tumor initiation, angiogenesis and maintenance. As 
aforementioned, CSCs are also an important factor in tumor 
therapy resistance and metastasis (26). Compared with non‑stem 
cancer cells, CSCs are more resistant to radiotherapy and chemo‑
therapy (27). The following characteristics contribute to CSC 
chemotherapy or radiotherapy resistance (28): Quiescent pheno‑
type, efficient DNA repair, high expression of drug efflux pumps 
and antiapoptotic protein expression.

The target of radiotherapy and/or chemotherapy is primarily 
focused on fast growing cells (29). CSCs and normal stem 
cells are quiescent, thus CSCs may be insensitive to traditional 
radiotherapy and/or chemotherapy (15). CSCs express a high 
level of ATP‑binding cassette transporters (ABC transporters), 
which contributes to the efflux of chemotherapeutic agents, 
leading to multidrug resistance (15,30). 

CSCs are inherently resistant to DNA damage. The innate 
defense system of CSCs protects them against DNA‑targeted 
chemicals and radiotherapy  (31). Moreover, even under a 
radiation dose that causes DNA damage, CSCs can repair 
the damaged DNA more quickly  (26). Indeed, checkpoint 
kinase (Chk)1 and Chk2, DNA damage and replication Chks, 
become activated on genotoxic stress to initiate cell cycle 
arrest and attempt repair or induce apoptosis if the damage 
is too great (32,33). Chk1 and Chk2 are highly expressed in 
CSCs. Inhibition of the Chk1/2 kinases with a small molecule 
inhibitor disrupted the radioresistance of CSCs (34). Moreover, 
overamplifying apoptotic inhibitor proteins also contributes to 

CSC treatment resistance. Various CSCs express higher levels 
of apoptosis protein inhibitors, including X‑linked inhibitor 
of apoptosis protein (XIAP) isoform, which are associated 
with poor therapeutic responses (35). XIAP can alleviate the 
radioresistance of CSCs by promoting apoptosis (36).

Numerous other mechanisms also account for CSC resistance 
to therapy, including the increased production of free‑radical scav‑
engers and molecular metabolism mediators (37). Furthermore, 
certain mutated genes, including tumor suppressors P53, can 
help to rescue CSCs under stress conditions, including radiation 
therapy, tissue damage and exposure to toxins (38). 

Therefore, to target CSCs more effectively, the molecular 
mechanisms of CSCs in proliferation and survival require 
further investigation. 

3. Metabolic properties of CSCs

Due to the heterogeneity of tumor cells, the energy metabo‑
lism of cancer cells is distinct from that of normal cells and 
they are heavily dependent on glucose and aerobic oxidation 
for their energy supply  (39). Metabolic reprogramming is 
one of the hallmarks of cancer cells (3). Cancer cells display 
a disrupted metabolism; even under oxygen‑rich conditions, 
these cells still depend on glycolysis for energy and survival, 
a phenomenon termed the Warburg effect (40). Compared to 
oxidative phosphorylation (OXPHOS), glycolysis results in 
rapid production of ATP and an increase in metabolic inter‑
mediates for anabolic reactions (41). Although the metabolic 
characteristics of CSCs have been researched in recent years, 
the exact metabolism of CSCs remains to be elucidated. 

A number of studies have reported that CSCs preferentially 
utilize glycolysis for survival, while others have shown that 
CSCs may also rely on OXPHOS (42,43). Ciavardelli et al (42) 
demonstrate that inhibiting the glycolysis of CD44+ CD24‑ breast 
CSCs reduces their proliferation, indicating that this population is 
glycolytic (42). Nasopharyngeal carcinoma, ovarian cancer, osteo‑
sarcoma, glioblastoma (GBM) and colon cancer are primarily 
dependent on mitochondrial OXPHOS for energy (44‑48).

Increasing evidence has indicated that non‑stem cancer 
cell population dedifferentiation to CSCs is accompanied by 
the transformation of metabolic pathways from mitochondrial 
OXPHOS to glycolysis (49). Therefore, CSCs display highly 
metabolic heterogeneity and plasticity abilities that allow them 
to adapt to the changing tumor microenvironment.

4. Lipid metabolism of cancer stem cells

Role of lipid metabolism in cancer cells. Despite the 
dependence of cancer on glycolysis, glycolytic inhibitors, such 
as 2‑deoxyglucose, exhibit minimal effects on tumor growth 
inhibition. Therefore, other metabolic pathways are also 
critical to cancer cell survival, such as lipid metabolism (50). 
In addition to providing and storing energy as nutrients, lipids 
also function as the major component of the cell and signal 
molecules. Phospholipids, including glycerophospholipids 
and sphingolipids and cholesterol are the main components 
of the cell membrane (51). Changes in lipid metabolism could 
directly affect cell membrane synthesis and proliferation. 

In addition, various lipid molecules and their metabolic inter‑
mediates participate in cell signal transduction, proliferation, 



ONCOLOGY LETTERS  23:  119,  2022 3

cell adhesion and movement, inflammation and vascular regula‑
tion (51). The unlimited proliferation of cancer cells requires more 
fatty acids (FAs) and increased lipid droplet metabolism (52).

Unlike normal cells that preferentially utilize free FAs, 
cancer cells are dependent on reconstituted FAs, thus display 
enhanced de novo synthesis of FAs. A series of lipid synthesis 
enzymes are upregulated in cancer cells, including sterol‑
regulatory element binding proteins (SREBPs), acetyl‑CoA 
carboxylase (ACC), FA synthase (FASN) and stearoyl‑CoA 
desaturase 1 (SCD1) (53‑60). In addition, citrate derived from 
the citrate (TCA) cycle can be used to produce acetyl‑groups for 
FA synthesis (61). Therefore, lipid metabolism is also critical for 
the maintenance of cancer cell malignant biological behaviors. 

Lipid metabolism of CSCs. In contrast to the dedifferentiation 
of non‑stem cancer cells, increasing studies have reported that 
lipid metabolism is highly related to the stemness of CSCs (62). 
In addition to energy generation, biosynthesis and redox 
homeostasis, FA metabolism has a vital role in determining the 
fate of CSCs (63‑65). FA synthesis and oxidation are essential 
for the maintenance of CSCs. For example, NANOG, a critical 
regulator of CSCs, can promote mitochondrial FA oxidation 
(FAO) to satisfy energy requirements for TICs (66). NANOG 
promotes the self‑renewal abilities, tumor‑initiation properties 
and generation of stem‑like TICs, as well as the hepatocellular 
carcinoma (HCC) oncogenesis of TICs through metabolic 
reprogramming from OXPHOS to FAO  (66). Peroxisomal 
proliferation‑activated receptors (PPARδ) have significant 
effects on lipid metabolism and are strongly associated with 
NANOG expression (67). Overexpression of PPARδ or NANOG 
in TICs increases the probability of FAO occurring (66).

FAs are strictly regulated by CSCs to maintain their 
self‑renewal ability and therapy resistance (65). As a critical 
intracellular organelle for the storage of excess lipids (68), 
the content of lipid droplets (LDs) is significantly increased 
in several solid tumor CSCs, including colorectal, breast, 
prostate  (69‑71) and ovarian CSCs  (64). Of note, de novo 
lipogenesis is more active in GBM CSCs compared with that 
in non‑stem cancer cells (72).

Key modulators of lipid metabolism in CSCs
De novo lipogenesis. A number of studies (73,74) have demon‑
strated higher intracellular lipid accumulation in various 
CSCs (Table I), which mainly results from de novo lipogen‑
esis activity. The majority of the key regulators of de novo 
lipogenesis are also critical for CSCs. SCD1, an enzyme that 
converts saturated FAs into monounsaturated FAs (MUFAs) (75), 
is expressed at a high level in various tumors and is closely 
related to the progression and undesirable clinical outcomes of 
various types of cancer. SCD1 is critical for CSC/TIC genera‑
tion and stemness maintenance (76) in ovarian (64), breast (77) 
and liver cancer (78,79). SCD1 overexpression also promotes 
CSC proliferation and prevents apoptosis (77,80). The enhanced 
activation of SCD1 and the consequent production of MUFAs 
could be considered as hallmarks of CSCs.

Sterol regulatory element binding protein 1 (SREBP1) 
belongs to the SREBP transcription factor family and serves an 
important role in the biosynthesis of FAs and cholesterol (81). 
SREBP1 is the major transcriptional regulator of lipogenesis 
and directly regulates several lipogenic enzymes, including ATP 

citrate lyase (ACLY), ACC1 and FASN (57,81). Overexpression 
of SREBP1 can promote the growth of various tumors and 
maintain the stemness of CSCs (81). On the other hand, SREBP1 
can also induce the expression of SCD1, which further induces 
CSC generation and stemness maintenance (82).

FAO. It has been reported that elevated FAO could help 
nutrient‑deficient and hypoxic cancer cells survival, especially 
those with glycolytic deficiency (83,84). On the one hand, FAO 
plays a key role in meeting the heightened energy demands 
of CSCs. On the other hand, FAO could reduce intracellular 
reactive oxygen species production and maintain an internal 
steady state (84).

Mevalonate pathway. 3‑hydroxy‑3‑methylglutharyl‑coenzyme 
A reductase is the rate‑limiting enzyme in the mevalonate 
pathway and the molecular target of statins (85). The meva‑
lonate pathway represents a metabolic pathway leading to the 
production of steroid hormones, cholesterol and non‑sterol 
isoprenoids. The mevalonate cascade culminates in the 
production of farnesyl pyrophosphate and geranylgeranyl 
pyrophosphate, which are essential for correct membrane 
anchoring of Rho family of small guanosine triphosphatases 
(GTPases). A number of oncogenic receptor tyrosine kinases 
require Ras proteins for signaling and EGFR signaling is 
particularly important for CSC maintenance. Furthermore, 
Rho GTPases maintain stemness by activating the Hippo 
transducers yes1 associated transcriptional regulator/tafazzin 
and by promoting the degradation of P27kip, leading to 
inhibition of retinoblastoma protein activation, which is 
ultimately conducive to the differentiation of CSCs (86).

5. Lipid metabolism of several solid cancer CSCs

HCC. Liver cancer is the second leading cause of cancer 
mortality in the world. Among primary liver cancer, HCC is 
the major histological subtype (87). HCC CSCs are currently 
considered as a specific subpopulation with significant 
tumorigenic potential and contribute to the development and 
recurrence of HCC (88). At present, several special markers 
have been identified for HCC CSCs, including CD133. Studies 
have demonstrated that CD133+ HCC CSCs show a significant 
enhancement of FAO rate and glycolysis, as well as a significant 
decrease in mitochondrial OXPHOS capacity (66,89). 

In addition, inhibiting the prolongation of FAs in HCC CSCs 
results in a reduction in the content of polyunsaturated FAs, which 
is critical for HCC CSC ferroptosis resistance (66). NANOG is a 
critical regulator of HCC CSC lipid metabolic reprogramming. 
Knockdown of NANOG in HCC CSCs promotes the expres‑
sion of FASN and ACLY, which is accompanied by increased 
OXPHOS and inhibition of glycolysis (66). Overexpression of 
NANOG induces CD133‑ HCC cancer cell dedifferentiation to 
CD133+ HCC CSCs and enhanced FAO activity, indicating that 
NANOG serves a vital role in regulating FA metabolism in liver 
CSCs (66). Overall, these studies show that liver CSCs suppress 
OXPHOS. In general, HCC CSCs favor FAO to support their 
stemness, self‑renewal ability and therapy resistance.

Colorectal cancer (CRC). CRC is the third most frequently 
diagnosed cancer and one of the most lethal types of cancer 
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in both men and women worldwide (90). CRC CSCs induce 
tumorigenesis, proliferation, migration and metastasis of CRC. 
CRC CSCs are defined by a group of cell‑surface markers, 
including CD44, CD133, CD24, epithelial cell adhesion factor 
molecule, leucine rich repeat containing G protein‑coupled 
receptor 5 and Lin‑28 homolog A (91). CRC CSCs also display 
a special lipid metabolism pathway. Genes associated with FA 
biosynthesis are downregulated, whereas genes involved in 
glycolysis, the TCA cycle and one‑carbon metabolism pathway 
are upregulated in CD133+ CRC CSCs, suggesting a strong 
preference to glycolysis but suppression of FA biosynthesis (92). 
Tirinato  et  al  (69) found that CD133+ CSCs contain more 
lipids. The lipid content in cancer cells is also positively corre‑
lated with the expression level of CD133 and Wnt/β‑catenin 
pathway activity, which are markers of CSCs (69). CD133high 
cells possess more LDs compared with CD133low cells. Using 
the label‑free Raman spectroscopy technology, researchers 
reported that the number of LDs in CRC CSCs was related 
to their tumorigenicity. The higher the number of LDs, the 
stronger the tumorigenicity (69). LDs may potentially open a 
new horizon for more specific ex vivo CRC CSCs diagnostics.

GBM. As the most common primary malignant brain tumor, 
GBM is extremely aggressive, with a median overall survival of 
<15 months (93). GBM CSCs contribute to the aggressive behav‑
iors of GBM. GBM CSCs are considered to locate in a special 
environment, including perivascular, hypoxic and necrotic 
niches, as well as tumor border regions. Identified by the incor‑
poration of 14 [C]‑glucose and 14 [C]‑acetate into the lipids, GBM 
CSCs are reported to have a higher rate of de novo lipogen‑
esis compared with differentiated non‑stem cancer cells (72). 
Increased de novo lipogenesis and extracellular lipid uptake 
result in LD accumulation in GBM CSCs (94). Moreover, GBM 
CSCs express a higher level of FASN protein, which facilitates 
the synthesis of FAs. Increased de novo lipogenesis may also 

contribute to the upregulation of FASN, thus maintaining the 
stemness of GBM CSCs (72). Inhibition of FASN expression 
decreased the expression of stemness markers and inhibited the 
proliferation and migration of GBM CSCs (72). 

Pancreatic cancer. Pancreatic carcinoma is the fourth leading 
cause of mortality  (95). Pancreatic CSCs were identified 
in 2007  (96). Metabolism reprogramming is reported as 
a critical factor in pancreatic CSC survival and stemness 
maintenance  (97). Higher FA synthesis and activation of 
the mevalonate pathway are observed in pancreatic CSCs 
compared with pancreatic carcinoma non‑stem cancer 
cells (65). Acetoacetyl‑CoA transferase (ACAT2) synthesizes 
acetoacetyl CoA in the mevalonate pathway and leads to the 
elevation of cholesterol, which is significantly upregulated in 
pancreatic CSCs (65). Inhibition of FASN and ACAT2 reduces 
FA and cholesterol synthesis, which further decreases pancre‑
atic CSC viability (65). Furthermore, the prognosis of patients 
with PDAC with high FASN expression levels is significantly 
worse and it has been proven that it depends on the induction 
of EGFR/ERK signaling, which is critical for pancreatic CSC 
maintenance (98).

6. Summary

CSCs, with their self‑renewal and tumor‑initiating abili‑
ties, serve an important role in metastatic dissemination, 
radioresistance, chemoresistance and recurrence. A review on 
metabolomics demonstrated the contribution of lipid metabo‑
lism to the generation and maintenance of CSCs (76). Lipid 
metabolism reprogramming, including de novo lipogenesis and 
the formation of LDs and FAO, is involved in CSC generation 
and stemness maintenance (Fig. 1). 

Thus, understanding the mechanisms underlying CSC 
lipid metabolism reprogramming, as well as identifying the 

Figure 1. Diagram of four key pathways with related modulators of cancer stem cells. Increasing de novo lipogenesis, lipid desaturation, FAO and lipid storage partici‑
pate in maintaining the properties of cancer stem cells. FAO, fatty acid oxidation; NANOG, Nanog Homeobox; LDs, lipid droplets; SCD1, stearoyl‑CoA desaturase 1; 
SREBP1, sterol regulatory element‑binding protein 1; ACLY, ATP citrate lyase; ACC1, acetyl‑CoA carboxylase; FASN, fatty acid synthase; CSCs, cancer stem cells. 
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differences in lipid metabolism between CSCs and non‑stem 
cancer cells will be of significance for improving the current 
clinical treatment of cancer. Several therapeutic targets of 
lipid metabolism have been developed to enhance antitumor 
effects (99). For instance, SCD1 inhibitors, CAY10566 and 
A939572, targeting FA desaturation process effectively 
suppress cancer stemness and tumor progression  (64). As 
CSCs have been widely investigated, the development of 
effective agents targeting lipid metabolism and ameliorating 
radioresistance or chemoresistance is important.
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