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Role of STK11 in ALK-positive non-small cell lung cancer (Review)
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Abstract. Anaplastic lymphoma kinase (ALK) inhibitors
have been shown to be effective in treating patients with
ALK-positive non-small cell lung cancer (NSCLC), and
crizotinib, ceritinib and alectinib have been approved as
clinical first-line therapeutic agents. The availability of these
inhibitors has also largely changed the treatment strategy for
advanced ALK-positive NSCLC. However, patients still inevi-
tably develop resistance to ALK inhibitors, leading to tumor
recurrence or metastasis. The most critical issues that need to
be addressed in the current treatment of ALK-positive NSCLC
include the high cost of targeted inhibitors and the potential
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for increased toxicity and resistance to combination therapy.
Recently, it has been suggested that the serine/threonine kinase
11 (STK11) mutation may serve as one of the biomarkers for
immunotherapy in NSCLC. Therefore, the main purpose of this
review was to summarize the role of STK// in ALK-positive
NSCLC. The present review also summarizes the treatment
and drug resistance studies in ALK-positive NSCLC and the
current status of STK// research in NSCLC.
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1. Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide, with non-small cell lung cancer (NSCLC) being
the most common subtype (1). The majority of patients with
NSCLC are diagnosed at an advanced, inoperable stage (2)
and have an overall 5-year survival rate of just 5% (3). This
poor prognosis may be associated with tumor heterogeneity,
acquisition and intrinsic resistance to therapeutic agents
in NSCLC (4). If the most appropriate treatment is identi-
fied early and drug resistance is addressed to a satisfactory
degree, patient survival can be significantly improved. Current
non-surgical treatments for NSCLC in clinical practice
include systemic chemotherapy, radiotherapy, targeted therapy
and immunotherapy (IO). In recent years, rapid developments
have been made in cellular and molecular biotechnology, and
targeted gene therapy and 10 are gradually gaining traction (5).
Molecular testing is commonly used in NSCLC, and the
detection of epidermal growth factor receptor (EGFR), B-Raf
proto-oncogene, serine/threonine kinase (BRAF) and MET
proto-oncogene, receptor tyrosine kinase (MET) mutations, as
well as anaplastic lymphoma kinase (ALK), ROS proto-onco-
gene 1, receptor tyrosine kinase (ROSI), ret proto-oncogene
(RET) and neurotrophic receptor tyrosine kinase 1 (NTRK]I)
translocations have been incorporated into the diagnostic
criteria for NSCLC, and inhibitors of these kinases are now
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routinely used in the clinic (6). An increasing number of
signaling pathways and driver genes are being identified, and
therapeutic drugs for NSCLC are emerging (7,8). Targeted
drugs can bind specifically to the oncogenic site and induce
cancer cell-specific death (9). Targeted drugs have a higher
efficacy and fewer side effects than chemotherapy (10,11).
However, each generation of targeted drugs shows different
degrees of resistance; therefore, identifying new therapeutic
targets following resistance is crucial. Multiple mutations
are not uncommon in clinical practice in recent years, and
exploring serine/threonine kinase 11 (§TK1I) co-mutations in
ALK-positive NSCLC patients is important.

A number of recent studies have linked the presence of
STK 11 mutations to the lack of response to IO in NSCLC (12-16).
In addition, several clinical studies have further elucidated the
biological role of STK// mutations leading to primary resis-
tance to 10 (17-19). The implementation of STK// mutations
as a routine biomarker in NSCLC remains controversial and is
not performed in daily practice (20).

Therefore, the aim of the present study was to investigate
the role of STK/I in ALK-positive NSCLC, review the treat-
ment of patients with ALK-positive NSCLC, and compare the
clinical efficacy, resistance mutations and appropriate resis-
tance solutions of three generations of ALK inhibitors.

2. Current research advances in ALK-positive NSCLC

ALK and NSCLC. As areceptor tyrosine kinase of the insulin
receptor (IR) subfamily, ALK has been found to play an impor-
tant role in various types of cancer, particularly in anaplastic
large cell lymphoma (ALCL), NSCLC and neuroblastoma (21).
In 2007, the echinoderm microtubule-associated protein like
protein 4 (EML4)-ALK fusion gene was identified in a group of
NSCLC patients (22). This fusion is the result of an inversion
of the short arm of chromosome 2, where the human EML4
and ALK genes are present (23). EML4 contains a coiled
oligomeric structural domain, which mediates the dimeriza-
tion and structural activation of ALK. Like in ALCL, many
different ALK fusions have been identified, but EML4-ALK
is the most common variant (24). ALK has been reported to
regulate several different pathways involved in cell prolif-
eration and survival, such as the phosphatidylinositol-3-kinase
(PI3K)/AKT/mammalian targets of rapamycin (mTOR),
RAS/RAF/MAP kinase-extracellular signal-regulated kinase
(ERK) kinase (MEK)/ERK and JAK/STAT pathways (Fig. 1),
once it is dimerized and activated by autophosphorylation
upon binding to its ligands, pleiotrophin and midkine (25,26).
Direct evidence for the oncogenic potential of EML4-ALK in
lung carcinogenesis has been found in mice. The transgenic
overexpression of EML4-ALK in type II alveolar cells via
the surface activated protein-c or Clara cell secretory protein
promoter leads to the rapid development of tumors with
features of lung adenocarcinoma (27,28). A total of 3-7% of
NSCLC (mainly adenocarcinoma subtypes) cases are char-
acterized by ALK rearrangements, which occur in a mutually
exclusive manner with KRAS and EGFR mutations (29,30).
Of note, a previous study developed in vivo induction models
by inducing EML4-ALK rearrangement, which leads to
lung carcinogenesis. These models have shown a sensitivity
to ALK inhibition, thus serving as valuable tools to explore

the mechanisms of EML4-ALK-induced lung cancer and
response to ALK-targeted therapy (31). Of note, ALK-positive
NSCLC patients have a healthy weight, are non-smokers or are
young (32).

Current targeted therapies for patients with ALK-positive
NSCLC.Priortothediscovery of the EML4-ALK fusion protein,
chemotherapy was the first-line treatment option (33). ALK
inhibitors have shown potent clinical activity in patients with
NSCLC (34). Three generations of ALK inhibitors have been
approved for clinical use (2). Ten years ago, the first-generation
ALK inhibitor crizotinib was approved for clinical treatment.
Table I documents clinical studies associated with ALK inhibi-
tors (35-46). In a series of subsequent clinical trials, crizotinib
demonstrated good clinical efficacy, including in 149 patients
with NSCLC and ALK mutations (PROFILE1001), with an
objective remission rate (ORR) of 60.8% and progression-free
survival (PFS) of 9.7 months in 143 patients evaluated; several
other phases of clinical trials also achieved useful results (35)
(Table I). However, since crizotinib cannot easily cross the
blood-brain barrier, it leads to brain metastases and resistance
in patients (24). The rapid development of resistance during
the treatment cycle is the main limiting factor associated
with crizotinib (47). Since then, progeny ALK inhibitors have
demonstrated significant efficacy and better central nervous
system (CNS) activity compared with crizotinib (48-50).
Among the clinical studies of second-generation ALK inhibi-
tors, the ASCEND series was a series of studies evaluating the
safety and efficacy of ceritinib. Based on this series, ceritinib
was approved by the food and drug administration (FDA) for
clinical treatment in 2014, mainly for patients who were intol-
erant to crizotinib or whose disease progressed after taking
crizotinib in ALK-positive patients (33). As a result, the FDA
approved brigatinib for patients who had failed prior ALK
inhibitor therapy (33). In the J-Alex study in Japan, alectinib
was compared head-to-head with crizotinib. The latest data
from this trial demonstrated a PFS of 34.1 and 10.2 months
in the alectinib and crizotinib groups, respectively (42). In
the global ALEX study, a new record was set with a PFS of
34.8 months for first-line treatment with alectinib (Table I),
which was approved for the treatment of pure ALK-positive
patients based on the results of the randomized phase III
ALEX trial. In addition, alectinib was effective in preventing
the development of brain metastasis and significantly reduced
the risk of CNS progression in patients by 84% (43,44). The
ALTA-I1L study was a study comparing the efficacy and safety
of brigatinib with those of crizotinib as first-line treatment
for patients with ALK-positive metastatic NSCLC (51). The
final results showed that when multiple targeted drugs cause
resistance, patients can still benefit from brigatinib. Thus,
brigatinib has a unique advantage in follow-up therapy. The
third-generation ALK inhibitor lorlatinib was found to inhibit
both the ALK and ROS! pathways and overcome the multi-
resistance associated with first- and second-generation ALK
inhibitors, while also crossing the blood-brain barrier (45).
Regarding IO, irrespective of the histological type, patients
treated with atezolizumab showed a significantly longer overall
survival than platinum-based chemotherapy in patients with
NSCLC with a high programmed cell death-ligand 1 (PD-L1)
expression, with a significantly superior efficacy (52).
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Figure 1. Signaling pathway of EML4-ALK activation. EML4, echinoderm
microtubule-associated protein like protein 4; ALK, anaplastic lymphoma
kinase; ERK, extracellular signal-regulated kinase; PI3K, phosphatidylino-
sitol-3-kinase; mTOR, mammalian targets of rapamycin; JAK, Janus kinase;
STAT, signal transducer and activator of transcription; P, phosphorylated.

Mechanisms of ALK inhibitor resistance. Although ALK
inhibitors are clinically effective, patients still experience
various types of drug resistance. This usually occurs in the
form of ALK kinase structural domain mutations, ALK site
amplification or activation of ‘bypass’ signaling pathways, ~1/3
of which are ALK kinase structural domain mutations (53). The
first mutations identified were the L1196M and C1156Y (54),
and L1196M is a residue known as the ‘gatekeeper’ that
controls the entry of small-molecule ALK inhibitors into a
hydrophobic pocket within the catalytic site and can spatially
block inhibitor binding (55). Meanwhile, LI1196M is the most
common mutation in which patients develop resistance to
crizotinib (47), while C1156Y develops resistance through other
different mechanisms. Cysteine is similar to the catalytically
important aC-helix within the structural domain of ALK tyro-
sine kinase, so its substitution for tyrosine is thought to prevent
inhibitor binding by stabilizing the activity of ALK (47). Other
resistant mutations that map to the same region with the same
mechanism of resistance include 7151Tins, F1174C/L, L1198P,
L1152R/P (47,56,57) and L117IT (12,13,58). Acquired resis-
tance to crizotinib usually emerges after 1 year of treatment.
ALK-E1210K mutations have been detected in patients treated
with crizotinib (14). Other secondary mutations that occur
following crizotinib treatment include LI1196M, GI269A,
GI202R, S1206Y, GI269A, L1152R, DI203N, 11171T, V118OL
and C1156Y (13,47). The second-generation ALK inhibitors
ceritinib, alectinib and brigatinib were found to show a stronger
anti-ALK activity compared with crizotidnib (16). In addition,
they exhibited greater CNS permeability and the ability to
target multiple secondary ALK mutations. The direct applica-
tion of second-generation ALK tyrosine kinase inhibitors has
been shown to result in better therapeutic outcomes. In addition
to ALK, ceritinib inhibits insulin-like growth factor 1 (IGF1),
ROS! and the IR (17,18). In addition, ceritinib inhibits multiple

Table I. Clinical studies associated with ALK inhibitors.

Clinical study Drug mPFS (month) ORR (%)
PROFILE 1001 (35) Crizotinib 9.7 60.8
PROFILE 1005 (36) Crizotinib 8.4 540
PROFILE 1007 (37) Crizotinib 7.7 65.0
PROFILE 1014 (38) Crizotinib 109 74.0
ASCEND-1 (39) Ceritinib 18.4 720
ASCEND-2 (40) Ceritinib 5.7 38.6
ASCEND-4 (41) Ceritinib 16.6 72.5
J-ALEX (42) Alectinib 34.1 920
ALEX (43.44) Alectinib 348 829
ALTA-1L (45) Brigatinib 240 710
B7461001 (46) Lorlatinib 9.6 46.0

ALK, anaplastic lymphoma kinase; mPFS, median progression-free
survival; ORR, objective response rate.

ALK mutations resistant to crizotinib, including L1196M,
G1269A and S1206Y (47). However, C1156Y/T, 11151Tins and
L1152P/R mutations have been associated with the emergence
of ceritinib resistance (19). Alectinib has a better efficacy
against GI269A, L1196M, F1174L and C1156Y mutations (20);
however, alectinib treatment has been shown to cause the
emergence of resistance mutations ([7171T/N/S, VIIS80OL
and GI202R) (14,58), and the activated bypass signaling
pathway to be mediated by hepatocyte growth factor (HGF)
and MET (59). Epithelial-mesenchymal transition (EMT) is a
potential mechanism of alectinib resistance, characterized by
the loss of E-cadherin and increased expression of waveform
proteins (60). Brigatinib is a novel inhibitor of ALK, ROSI
and EGFR. Brigatinib inhibits crizotinib-resistant mutations,
including ALK L1196M and EGFR T790M (51). Lorlatinib can
be used to treat all known ALK inhibitor-induced resistance
mutations and is the treatment of choice for patients with
alectinib resistance (61). The L//98F mutation was recently
reported to exhibit resistance to lorlatinib mainly by interfering
with drug binding through spatial site block. It has also been
reported that L//98F mutation enhances the binding of crizo-
tinib, reduces the effect of C//56Y and enhances susceptibility
to crizotinib resistance (62). However, as for how to overcome
L1198F mutation, the clinical efficacy and resistance mecha-
nisms of lorlatinib need to be elucidated.

Known mechanisms of resistance include point mutations,
fusion gene amplification and bypass signaling through the
activation of other oncogenes (Fig. 2) (63), and AMPK, which
is closely associated with STK// mutation and is one of the
important pathways in the mechanism of ALK inhibitor resis-
tance (30).

3. Current research progress on STK11

Function of STKI11. STK1I is considered an important
tumor-suppressor gene with a wide range of metabolic
functions (64). It encodes the serine/threonine kinase
liver kinase B1 (LKBI), which activates a family of 12
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Figure 2. Mechanisms of resistance to ALK inhibitors. ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein like protein 4;
AMPK, AMP-activated protein kinase; MEK, MAP kinase-ERK kinase; ERK, extracellular signal-regulated kinase.

downstream kinases, including AMPK, and plays a role in
essential biological functions, including cellular energy
regulation (65). It is also involved in several physiological
processes, including the regulation of cellular metabolism,
cell polarity and DNA damage response (65,66). Tumor cells
with inactivated or lost STK// are unable to activate adenosine
monophosphate-activated protein kinases, and are therefore
particularly vulnerable to energy stress states (67). STK1]
inactivation was initially identified in human tumors associ-
ated with Peutz-Jeghers genetic syndrome (68). STK/! also
negatively regulates mTOR signaling through its substrate
AMPK, and STKI1I loss leads to the aberrant activation of
mTOR in a variety of tissues. mTOR inhibitor everolimus
has been shown to be effective (69,70). STK11/LKBI loss
of function has been found in several cancer types, mainly
through somatic alterations in the STK// gene, such as
nonsense mutations, loss of heterozygosity, insertions,
intragenic deletions or chromosomal deletions (71-79), while
in Asian populations, STK/! is mainly inactivated through
focal deletions (80,81). Although STKII is inactivated
by a large spectrum of truncating mutations and behaves
like a tumor-suppressor gene in different tumor models
through mTOR repression (77,82,83), recent studies have
shown that STK// may also acquire oncogenic properties.
Subsequently, somatic STK// mutations have been reported
in other cancer types (69), including NSCLC (71,84,85). It
has now been demonstrated that the loss of LKBI affects
tumor progression through energy metabolism, cytokine
inhibition, tumor immunosuppression and altered cell
viability (86-90). Several types of tumors exhibit aberrant
mutations in the STK//] gene. For example, STK/] deletion
in cervical cancer and melanoma is associated with extensive
and high-grade metastasis, and a heterozygous deletion of
the STK11 locus in primary breast cancer is associated with
metastasis (91,92). STK1I-mutant lung cancer constitutes
a genetic subgroup of aggressive NSCLC with an in vitro
inhibition of mitogen-activated protein kinase and mTOR
signaling-increased sensitivity (93). STKII abnormalities
have also been associated with cancer-related immune

dysfunction. For example, STK/I/-mutant lung cancer
suppresses immune surveillance responses (94) and STK/11
deficiency decreases PD-L1 expression (95).

STKI11 and NSCLC. STK11 is one of the most commonly
mutated genes in lung adenocarcinoma, and the LKB/ protein
encoded by the STK /I gene is the second most common tumor
suppressor in NSCLC, with mutations or genomic loss occur-
ring in 17-23% of NSCLC cases (84,96,97). In lung cancer, the
short STK11 isoform, lacking 124 N-terminal amino acids, is
defined as an oncogene (98). Indeed, it has been shown that
cytoplasmic STK1! interacts with estrogen receptor (ER)
a/SRC/PI3K to stimulate the AKT pathway and is associated
with a shorter survival (99). These findings suggested that
STK 11 may play a tumor-suppressor or oncogene function. This
dual mechanism may explain the lack of a clear association
between STK/] alterations and prognosis in lung cancer (100).
In vitro studies have shown that STK/] inactivation increases
the motility and invasiveness of lung cancer, and facilitates
epithelial-to-mesenchymal transition (EMT) in lung cancer,
thus enhancing metastatic potential (101,102). In addition, it
was shown that STK71/LKBI inactivation promotes cancer cell
growth and survival through the upregulation of hypoxia-induc-
ible factor 1 (HIF-1). The inactivation of STK///LKBI in lung
cancer cells leads to the upregulation of mTOR signaling,
providing a growth advantage associated with mitochondrial
dysfunction, due to autophagic injury (103,104). The aberrant
activation of the PI3K/AKT/mTOR pathway has been identified
in 90% of lung adenocarcinomas and 40% of squamous cell
carcinomas (105). The PI3K/AKT/mTOR signaling pathway is
mainly activated by receptor tyrosine kinases [e.g. epidermal
growth factor receptor (EGFR), insulin-like growth factor
receptor 1 (IGFR1), vascular endothelial growth factor receptor
(VEGFR) and platelet-derived growth factor receptor (PGFR)]
and is involved in a variety of biological functions, such as
proliferation, differentiation, survival, adhesion, motility,
invasion and cellular metabolism (106,107). In addition to the
activation of the PI3K/AKT/mTOR pathway by growth factors
and insulin, different nutritional and environmental signals,
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Table II. Chemotherapy and immunotherapy for STK11 mutation status in NSCL.

OS (month) PFS (month)

Variable STK11lm STK11wt STK11m STK11wt
Chemotherapy (130)

First-line 11.7 189 45 6.1

Second-line 13.1 152 42 45
Immunotherapy (131)

First-line 142 20.1 4.1 54

Second-line 6.6 13.6 2.2 3.1

NSCLC, non-small cell lung cancer; OS, overall survival; PFS, progression-free survival; STK11, serine/threonine kinase 11; STK11m, STK11

mutation; STK11wt, STK11 wild-type.

such as high levels of adenosine triphosphate (ATP), oxygen
and elevated serum amino acid levels can also increase the
activity of mTOR complex 1 (mTORC1). By contrast, intracel-
lular and environmental stress signals, such as low ATP levels,
hypoxia and DNA damage, inhibit mMTORC1 activity mainly
through AMPK activation (106). mTOR pathway activation has
been found to be associated with poor clinical outcomes, inva-
siveness and metastasis (108-111). It is important to highlight
that LKBI, encoded by STK11, is also associated with AMPK,
and that LKBI/AMPK may counteract oxidative stress by
inhibiting the synthesis of nicotinamide adenine dinucleotide
phosphate (NADPH)-consuming fatty acids and increasing the
oxidation of NADPH-producing fatty acids (112). At the same
time, activated AMPK phosphorylates and activates the tran-
scription factor nuclear related factor 2 (NRF2) (113). NRF2
then activates the transcription of antioxidant genes involved
in NADPH production. High NADPH levels, together with
autophagy, protect LKBI-savvy cancers from oxidative stress
and reactive oxygen species (ROS)-induced chemotherapy
(cisplatin, paclitaxel and adriamycin) (114). Thus, the activa-
tion of NRF?2 is associated with more aggressive lung cancers
and reduced patient survival (115). Of note, the activation of
the LKBI/autophagy pathway enables circulating tumor cells
to resist loss-of-nest apoptosis (116). Thus, cells lacking LKBI
undergo apoptosis in response to metabolic stress because
they are unable to respond to energy deficiency and restore
homeostasis in vivo (117). The regulation of STKII expres-
sion and its role in cancer cell proliferation remains highly
complex (118). For example, recent research has shown that
asparagine and aspartic acid can regulate AMPK-mediated
p53 activation by physically binding to LKBI and regulating
LKBI activity. P53 has been reported to control cell survival by
generating an auto-amplifying loop through asparagine-aspar-
tate-mediated LKBI-AMPK signaling to regulate asparagine
metabolism (118). In lung cancer, STK/1/LKBI alterations
are the only marker significantly associated with PD-L1
negativity in patients with high/medium tumor mutation
burden (TMB) (119). Both elevated TMB and increased PDL1
expression are associated with 10 response (120,121). Kelch
like ECH associated protein 1 (KEAPI) mutations or double
allelic deletions are enriched in patients with LKB/-mutant
NSCLC tumors. NRF2 is a transcriptional factor and KEAP1

is a negative regulator of NRF2 that binds to the antioxidant
response element on DNA and initiates the transcription of
several genes involved in the regulation of redox homeostasis
and cellular detoxification (122). Clinical studies have shown
that in KRAS-driven NSCLC, STK 1 mutations leading to loss
of function are associated with resistance to anti-programmed
death 1 (PD-1) monoclonal antibody therapy, but the molecular
mechanisms of pathogenesis are not yet clear (123). Despite
some uncertainties, STK// functional status is emerging
as a reliable biomarker for predicting a lack of response to
anti-PD-1 therapy in NSCLC patients. It has been reported
in the literature that STK/! is significantly and significantly
associated with decreased survival in meningiomas (124).
Although the evidence on the biological role of STK/! is not
sufficient, its prognostic significance in advanced NSCLC
needs to be confirmed; clarifying the role of STK71 will facili-
tate the analysis of STK/] mutational status, which may also
provide more options for targeted therapy and 10 (125). The
role and significance of STK// in NSCLC needs to be further
explored.

Current STK11 mutation therapies for NSCLC. Cancer typi-
cally evades immune surveillance by aberrantly expressing
immune checkpoints (e.g. PD-1) that isolate tumor cells
from the host immune system. Immune blockade using
monoclonal antibodies against the immune checkpoint PD-1
and its primary ligand PD-L1 can greatly improve survival
in advanced NSCLC, with the greatest impact in patients
with stage III and first-line stage IV lung cancer (126-128).
However, in patients with other types, the response rate was
just 20% (129). In a retrospective cohort study, data from the
Clinico-Genomic Database were used to identify patients
with metastatic NSCLC who received first-line IO (alone or
in combination) or chemotherapy in routine clinical practice.
The results suggested that in NSCLC, patients with STK1/
mutation (STK1Im) exhibit poorer overall survival (OS) and
PFS compared with patients with STK11 wild-type (STK1Iwt)
receiving IO or chemotherapy. Survival outcomes analyzed
by treatment line and type showed that OS and PFS were
worse in the 10 treatment group for STK/I/m vs. STKI1Iwt
(Table II) (130). The results of the study were not optimistic,
which further suggested that STK// mutations reduce the
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survival rate of patients with NSCLC. Most importantly, it is
unclear whether STK11 can be used as a predictive biomarker
to guide treatment selection, and prospective evaluation is still
lacking. Therefore, immunotherapy should not be adminis-
tered to patients with STK//-mutated tumors at the present
time (131). At the same time, it has also been reported that
LKBI encoded by the STK/I gene may be associated with
radioresistance in patients, and several previous studies have
shown the role of LKBI expression in regulating the response
to radiotherapy, based on preclinical experiments (132-134).
However, to the best of our knowledge, there are no clinical
trials on STKII mutations, so a comprehensive evaluation
of patients with STK// mutations in NSCLC could not be
performed.

4. Conclusions and perspectives

Both STK11 and ALK can regulate tumor proliferation and
growth through the mTOR pathway, and STKI/ can be
oncogenic in NSCLC through the AMPK pathway, which
is included in the mechanism of drug resistance in patients
with ALK-positive NSCLC. mTOR signaling is known to be
a master regulator of homeostasis and to integrate various
environmental signals to regulate cell growth, prolifera-
tion and metabolism. The deregulation of mTOR signaling,
particularly its overactivation, is frequent in human cancer.
Recent advances in molecular profiling have identified
certain genes involved in encoding the mTOR pathway,
including STK11, PIK3CA, PTEN and RPTOR independent
companion of MTOR complex 2 (RICTOR), whose amplifi-
cation or mutation induces mTOR pathway activation. AMPK
is a central metabolic sensor that coordinates cell growth and
energy balance. In terms of oncogenesis, LKBI (mentioned
previously) can directly phosphorylate and activate AMPK;
therefore, in cells with LKBI mutations, the AMPK protein
is oxidized and inactivated, leading to cell death. In terms
of drug resistance, if the AMPK pathway is abnormally
regulated, patients with ALK-positive NSCLC then become
resistant to the drug.

In conclusion, STKII plays an important role in the
treatment and drug resistance of patients with ALK-positive
NSCLC. Although there is no definitive evidence on how
STK11 affects the prognosis of ALK-positive patients with
NSCLC, the results of this review showed that STK1/ muta-
tions may reduce the survival of ALK-positive NSCLC patients.
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