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Abstract. N6‑methyladenosine (m6A) is the most common 
type of RNA methylation and is considered to participate in 
various biological and pathological processes, specifically 
in the regulation of tumorigenesis and metastasis. However, 
the exact prognostic role of m6A methylation regulators in 
early‑stage clear cell renal cell carcinoma (ccRCC) is currently 
unknown. In the present study, a prognostic model consisting 
of m6A RNA methylation regulators in early stage ccRCC was 
constructed and the reliability of the signature was assessed 
by proteomics and immunohistochemistry. Additionally, 
the relationship between the prognostic model and tumor 
infiltrating immune cells within the tumor microenvironment 
was investigated. Gene mutation and RNA sequencing data of 
19 m6A methylation regulators for early‑stage ccRCC patients 
were extracted from The Cancer Genome Atlas (TCGA) data‑
base with the corresponding clinical information. Univariate 
and multivariate Cox regression analysis were applied to 
construct a prognostic model and the proteomic data as well 
as immunohistochemistry were used to validate the result. 
The correlations between the prognostic model and tumor 
infiltrating immune cells were assessed using Spearman's rank 
correlation analysis. A total of 192 early stage ccRCC gene 
mutation data as well as 261 RNA sequencing data with rela‑
tive clinical data were extracted from the TCGA. The overall 

mutation frequency of the 19 m6A RNA methylation regula‑
tors was relatively low with 4.69%. The transcriptome data 
revealed that 11 genes were differentially expressed between 
cancer tissues and relatively normal tissues. Survival analysis 
highlighted four specific genes as having a significant influ‑
ence on overall survival. An established model with four genes 
demonstrated the best predictability for early‑stage ccRCC. 
After integrating clinical characteristics into the multivariate 
analysis, the model remained effective at predicting ccRCC 
prognosis. Spearman's rank analysis suggested several tumor 
infiltrating immune cells such as dendric cells, CD4+ cells, 
CD8+ T cells and macrophages were significantly correlated 
with the model. Proteomic data analysis as well as immuno‑
histochemistry from the Human Protein Atlas showed that 
all the genes used to construct the model were differentially 
expressed between ccRCC and normal tissues. In conclusion, a 
novel m6A methylation regulators‑based prognostic signature 
was established and validated with proteomics and immu‑
nohistochemistry. In addition, the model was significantly 
correlated with multiple infiltrating immune cells in tumor 
microenvironment.

Introduction

Renal cell carcinoma (RCC) is one of the most common 
malignant tumors in urinary system, third only to prostate 
cancer and bladder cancer (1). According to the latest survey, 
there were ~76,000 new cases in the United States, including 
48,780 men and 27,300 women, which accounts for 3‑5% of all 
malignant tumors (1,2). Prognosis for RCC is relatively favor‑
able when identified at an early stage with five‑year survival 
rates for localized and locally advanced RCC ranging from 
70‑90% (1). However, once distant metastasis takes place, the 
five‑year survival rate decreases dramatically and can be as 
little as 10% (1). It is therefore necessary to investigate all 
possible methods to stratify the RCC patients upon disease 
initiation and make more individualized follow‑up strategies. 
Clear cell renal cell carcinoma (ccRCC) is the most common 
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pathological type and accounts for between 60‑80% of all 
types (3). With radiographic imaging becoming common 
place in routine diagnostics, a dramatic rise in the number of 
small and early‑stage ccRCC cases has also been observed. 
Tumor, Node, Metastasis (TNM) staging system remains 
the most commonly used method for determining prognosis 
of ccRCC. However, for early‑stage RCC, the TNM staging 
system alone is insufficient to determine postoperative treat‑
ment and survival prognostics due to its lack of sensitivity 
and specificity (4). According to the NCCN clinical practice 
guidelines, for stage I and II RCC, post‑operative surveillance 
is recommended (5). However, if postoperative surveillance 
or treatment could be more precise for ccRCC patients, 
the clinical outcomes could be more favorable. That's the 
reason why certain other staging systems, such as the UISS, 
Kattan, Yaycioglu and Cindolo model, are being explored and 
investigated in clinical research (4). It remains of the utmost 
importance to construct and validate a prognostic model for 
early‑stage RCC. 

Recently, accumulating evidence has suggested that as the 
most common type of RNA modification, N6‑methyladenosine 
(m6A) affects tumorigenesis in various types of cancers and 
could even hold a function in regulating the tumor immune 
microenvironment (6‑10). In addition, they could also serve 
as diagnostic and prognostic biomarkers (11). Thus, the gene 
mutation data and transcriptional sequencing data of The 
Cancer Genome Atlas (TCGA) database as well as immunohis‑
tochemistry staining were combined with our proteomic data 
detected by high‑performance liquid chromatography‑mass 
spectrometry (HPLC‑MS) to construct a prognostic model 
consisting of m6A methylation regulators for early‑stage RCC. 
The relationship between the model and tumor infiltrating 
immune cells was evaluated, so as to preciously stratify the 
ccRCC patients and provide new ideas for the inner mechanism 
related to RCC.

Materials and methods

Data collection and analyzation of 19 m6A methylation 
regulators from the TCGA database. The gene mutation 
files and RNA sequencing data (count value) with the corre‑
sponding clinical information from ccRCC patients were 
downloaded from TCGA database (https://portal.gdc.cancer.
gov/repository). Based on the clinical data, the 192 somatic 
mutation data and 261 RNA transcriptomes with early‑stage 
ccRCC (pT1) were selected for inclusion. Data with VarScan2 
analysis of somatic mutation and tumor mutation burden were 
downloaded from TCGA database. The result was displayed 
with the R packages ‘maftools’ (12). RNA sequencing counts 
in tumor tissues and adjacent relatively normal tissues were 
standardized and analyzed using the DESeq2 package (13).

Proteomic examination of 27 paired early‑stage ccRCC 
tissues. To assess the reliability of the m6A methylation 
regulator expression across protein levels, 27 paired 
early‑stage ccRCC tissues were then collected and analyzed 
by means of HPLC‑MS. The present study was approved 
(approval no. KS2021034) by the Institutional Review Board 
of Peking Union Medical College Hospital, Chinese Academy 
of Medical Science and Peking Union Medical College 

(Beijing, China). Formal written consent was requested and 
signed by all patients to signify approval to participate. All 
patients received the partial or radical nephrectomy during the 
period of June 2019 to September 2019 and the ccRCC diag‑
nosis was determined by at least two independent specialists 
for pathological analysis in our center. The HPLC‑MS process 
was divided into the following steps: 

i) Sample collection and preparation: A total of 27 paired 
ccRCC tissues, including 27 paired tumor and non‑cancerous 
normal tissues (NATs), were collected for further analysis. 
The ccRCC tissues were resected from the center of the tumor 
without necrotic regions. NATs were defined as tissues at least 
5 mm away from the cancer capsule and no tumor invasion 
was identified under microscopy. All tissue samples were 
collected from the operation room and transferred directly 
into the ‑80˚C refrigerator for storage until final analysis took 
place.

A total of ~25‑120 mg of each cryo‑pulverized renal 
tumor tissue or NATs were homogenized separately in an 
appropriate volume of lysis buffer [i.e. 2% SDS, 20 mM 
Tris, Cocktail (1:100), DNAse (1:100), RNAse (1:1,000)] by 
repeated vortexing. Protein concentration was determined 
using Pierce™ BCA assay protein assay kit (Thermo Fisher 
Scientific, Inc.). A total of 100 mg of protein was reduced with 
20 mM dithiothreitol (DTT) for 5 min at 95˚C and subse‑
quently alkylated with 50 mM iodoacetamide for 45 min at 
room temperature in the dark. Protein digestion was carried 
out using a filter‑aided sample preparation technique method. 
Proteins were loaded onto 30‑kDa filter devices (Pall Life 
Sciences). Trypsin (Trypsin Gold, mass spec grade, Promega 
Corporation) was added at an enzyme to protein ratio of 1:50, 
and samples were incubated at 37˚C overnight.

ii) ESI‑LC‑MS/MS for proteome library generation: The 
pooled peptide samples (30 µl) of each group were separated 
by high‑pH RPLC columns (4.6x250 mm, C18, 3 µm; Waters 
Corporation). Each pooled sample was loaded onto a column 
in buffer A1 (‘H2O’, pH 10). The elution gradient was between 
5‑30% buffer B1 (90% ACN, pH 10; flow rate, 1 ml/min) for 
30 min. Eluted peptides were collected at one fraction per min. 
After lyophilization, 30 fractions were resuspended in 0.1% 
formic acid, before being concatenated into 10 fractions by 
combining fractions 1, 11, 21 and so forth. 

In order to generate a spectral library, fractions from 
RPLC were analyzed in the DDA mode. Parameters were set 
as follows: the MS was recorded at 350‑1,500 m/z at a resolu‑
tion of 60,000 m/z; the maximum injection time was 50 ms, 
the auto gain control (AGC) was 1e6, and the cycle time was 
3 sec. MS/MS scans were performed at a resolution of 15,000 
with an isolation window of 1.6 Da and a collision energy at 
32% (HCD); the AGC target was 50,000, and the maximum 
injection time was 30 ms.

iii) ESI‑LC‑MS/MS for proteome data‑independent 
acquisition analysis: Digested peptides were dissolved in 
0.1% formic acid and separated on an RP C18 self‑packing 
capillary LC column (75 µm x 150 mm, 3 µm). The eluted 
gradient was 5‑30% buffer B2 (0.1% formic acid, 99.9% ACN; 
flow rate, 0.3 µl/min) for 60 min. For MS acquisition, the 
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variable isolation window DIA method with 38 windows was 
developed. The specific window lists were constructed based 
on the DDA experiment of the pooled sample. The full scan 
was set at a resolution of 120,000 over the m/z range of 400 
to 900, followed by DIA scans with a resolution of 30,000; the 
HCD collision energy was 32%, the AGC target was 1E6 and 
the maximal injection time was 50 ms.

iv) Spectral library generation: To generate a compre‑
hensive spectral library, a pooled sample from each group 
was processed. DDA data were processed using Proteome 
Discoverer software (Thermo Fisher Scientific, Inc.) and 
searched against the human UniProt database (https://sparql.
uniprot.org/) appended with the iRT fusion protein sequence 
(Biognosys AG). 

A maximum of two missed cleavages for trypsin were used, 
cysteine carbamidomethylation was set as a fixed modifica‑
tion, and methionine oxidation deamination and +43 on Kn 
(Carbamyl) were used as variable modifications. Parent and 
fragment ion mass tolerances were set to 10 ppm and 0.02 Da, 
respectively. The applied false discovery rate (FDR) cutoff 
was 0.01 at the protein level. The results were then imported to 
Spectronaut Pulsar software (Biognosys AG) to generate the 
spectral library. 

Additionally, DIA data were imported into Spectronaut 
Pulsar software and searched against the human UniProt data‑
base to generate DIA library. The final library was generated 
by combining DDA and DIA libraries of ccRCC and controls.

v) Data analysis: DIA‑MS data were analyzed using 
Spectronaut Pulsar (Biognosys AG) with default settings. All 
results were filtered with a Q‑value cutoff of 0.01 which corre‑
sponded to an FDR of 1%. Proteins identified in more than 
50% of the samples in each group were retained for further 
analysis. Missing values were imputed based on the k‑nearest 
neighbor method. Raw proteomics data were transformed 
using log2 and then centralized. Wilcoxon signed rank test was 
implemented with the software R version 4.1.1 (R‑project.org).

Selection of m6A RNA methylation regulators: After inte‑
grating RNA sequencing and proteomic data, 19 m6A RNA 
methylation regulators were included for further analysis and 
included: ALKBH5, CBLL1, ELAVL1, FMR1, FTO, FXR2, 
HNRNPA2B1, HNRNPC, METTL 14, METTL 3, RBM15, 
RBM15B, RBMX, RBMXL1, WTAP, YTHDC1, YTHDC2, 
YTHDF2 and YTHDF3.

Uni‑variate survival analysis and establishment of prognostic 
model based on the 19 m6A methylation regulators. To assess 
the survival impact of every single m6A methylation regula‑
tors on early stage ccRCC, univariate survival analysis was 
applied. Firstly, pROC package (14) was applied to determine 
the optimal threshold of every single gene expression and 
then all the ccRCC patients were divided into two subgroups, 
namely high and low subgroups. Then, Kaplan‑Meier survival 
analysis with log rank test was calculated and displayed with 
package ‘survminer’ (15). 

Aiming to construct a comprehensive prognostic model, 
all 19 m6A methylation regulators were included into multi‑
variate Cox's regression analysis with risk scores for each 

sample being calculated. Prognostic risk scores for ccRCC 
patients were calculated using the following formula: Risk 
score=∑ðβi x Exp iÞ, with i representing the number of 
prognostic m6A expression levels. 

According to the median of risk score, all samples were 
divided into two subgroups: high risk and low risk, and survival 
curves and time‑dependent ROC curves were generated. The 
Human Protein Atlas (16) was searched to assess the protein 
expression level of m6A methylation regulators within the 
prognostic model.

Multivariate Cox analysis and nomogram development for 
survival predictions. In order to assess the independence of 
the diagnostic model, certain critical clinical parameters of the 
patients were included into the multivariate analysis, including 
sex, age, tumor side, pathological T stage, N stage and tissue 
grade. Furthermore, these factors were applied using the ‘rms’ 
package (17) to develop a survival time nomogram.

Correlations between the prognostic model and tumor 
infiltrating immune cells. To assess the relationship between 

Table I. Baseline information of enrolled patients from TCGA 
database and our cohort.

Clinicopathological TCGA Our paired sample
characteristics (n=261) (n=27)

Survival status  
  Alive 217 27
  Dead 44 0
Sex  
  Male 158 20
  Female 103 7
Age 59 (26‑90) 57 (24‑71)
Laterality  
  Left 116 10
  Right 145 7
Pathological stage  
  G1 13 4
  G2 155 19
  G3 86 4
  G4 7 0
T stage  
  T1a 135 13
  T1b 105 14
  T1 21 0
N stage  
  NX 159 0
  N0 102 27
Neoadjuvant therapy  
  Yes 7 0
  No 254 27

TCGA, The Cancer Genome Atlas.
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Figure 1. Gene mutation pattern, transcriptome and proteome expression level of m6A methylation regulators in early stage clear cell renal cell carcinoma. 
(A) The gene mutation pattern of the m6A molecules in the TCGA database. (B) The RNA expression level of the m6A molecules in the TCGA database. 
(C) The protein expression level in our cohort. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. TCGA, The Cancer Genome Atlas; TMB, tumor mutation 
burden; NS, not significant.
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prognostic model and tumor purity, R package ‘estimate’ (18) 
was used to calculate tumor purity, the scores of stromal cells 
and the infiltration level of immune cells. To further explore the 
immune cell composition within the tumor microenvironment, 
Tumor Immune Estimation Resource (TIMER, http://timer.
cistrome.org/) was used to compute the proportion of six kinds 
of immune cells. Spearman's correlation analysis was used 
to investigate correlations between risk score and immune 
infiltrating cells. In addition, associations between clinical 
characteristics, tumor purity and risk scores were analyzed 
using the standard Kruskal‑Wallis test for multi‑group (Dunn's 
test was used for the post hoc analysis) and Wilcoxon signed 
rank test for two‑group comparisons, respectively.

Statistical analysis. All the data analysis and the figures 
were completed by R (version 4.1.1) as well as corresponding 
R packages illustrated in the Methods. The non‑parametric 
Spearman's rank correlation analysis was used to calculate 
the correlation coefficient. All the tests were two‑sided, and 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Baseline information. Clinical characteristics for 261 TCGA 
participants and 27 paired proteomic samples have been provided 
in Table I. At the end of the follow‑up period, 44 of 261 patients 
had succumbed while none of the 27 patients had experienced 
tumor recurrence or succumbed. The number of men in this 
cohort was slightly greater than women with a ratio of 158:103 
for TCGA and 20:7 in the proteomic sample. In addition, the 
average age within the two datasets was similar at 59 years for 
the TCGA group and 57 years for the proteomic sample.

Expression levels of 19 m6A RNA methylation regulators 
in genome, transcriptome and proteome. Firstly, the gene 
mutation pattern of the 19 m6A methylation regulator genes 
was examined (Fig. 1A). It was identified that the mutation 
frequency was relatively low with a rate of 4.69%. Among 
the 9 mutated samples, YTHDC2 demonstrated the highest 
mutation frequency at 2% and was followed by WTAP with 
1%. Furthermore, missense mutation was the most common 
mutation type with a rate of 3.6%.

Figure 2. Single variate COX analysis and survival analysis of all the 19 m6A methylation regulators. (A) The forest plot of single variate analysis based on 
every m6A methylation regulators. (B‑D) The survival curves of (B) RBMXL1, (C) YTHDF3 and (D) FMR1.
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Expression levels for RNA sequencing and proteomic data 
were presented in Fig. 1B and C, respectively. It was revealed 
that there existed 11 differentially expressed genes, including 
4 upregulated and 7 downregulated m6A regulators (Fig. 1B). 
According to the level of proteins, 15 aberrantly expressed 
m6A regulators were detected, except for FMR1, FTO, 
METTLE14 and METTLE3 (Fig. 1C).

Identification of survival‑related m6A methylation regulators. 
In order to identify survival‑related m6A methylation 
regulators, single‑variate Cox analysis was performed and the 
results were provided in a forest plot (Fig. 2A). It could be 
clearly observed that the expression of FMR 1, METTL14, 

RBMXL1 and YTHDF 2 were significantly associated with 
early‑stage ccRCC survival. Notably, all 4 regulators were 
negatively associated with ccRCC overall survival having 
hazard ratios (HR) of less than 1. After calculating the best 
cut‑off value of each gene with ROC curves, the survival 
curves for m6A regulators were plotted. The results suggested 
that 8 gene expression levels, namely RBMXL1, YTHDF3, 
FMR1, METTLE14, YTHDF2, ELAVL1, FXR2 and RBM 15 
were associated with ccRCC patient survival and the top three 
are revealed in Fig. 2B‑D.

Construction and validation of m6A methylation regulators‑ 
based prognostic signature. In order to comprehensively 

Figure 3. Survival analysis of the m6A methylation regulators based on the prognostic model. (A) The survival curve of the prognostic model. (B) ROC curve 
of the prognostic model. (C) Forest plot of multi‑variate analysis with prognostic model and critical clinical parameters included.
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Figure 4. The relationship between risk score and (A) sex, (B) age, (C) tumor site, (D) survival status, (E) pathological grading and (F) pathological T staging.
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describe the predictability of m6A methylation regula‑
tors, all 19 m6A regulators were included to construct a 
prognostic model. After applying multivariate Cox regres‑
sion analysis, a risk score algorithm was established: Risk 
score=(‑0.54) x expr (YTHDF2) + 0.67 x expr (YTHDC2) 
+ (‑1.05) x expr (FMR1) + 1.43 x expr (ELAVL1). Then, all 
261 patients were classified into two subgroups according 
to the median risk score, namely high risk and low risk. 
Through survival analysis plots, it could be clearly observed 
that a higher risk score was significantly associated with 
poorer ccRCC survival (Fig. 3A). To assess the YTHDF2, 
YTHDC2, FMR1 and ELAVL1 expression, it was found that 
the immunohistochemistry results from the Human Protein 
Atlas were in accordance with the risk score. Compared 
with normal kidney tissue, the expression levels of YTHDF2 
and FMR1 within tumor cells were low. In contrast to this 
situation, the YTHDC2 and ELAVL1 expression levels were 
upregulated, suggesting the unfavorable role in predicting 
ccRCC survival (Fig. S1). 

To further assess the accuracy of the prognostic model, a 
ROC curve was generated with an AUC of 65.46% (Fig. 3B). 
To examine the independency of the model, multivariate Cox 
analysis with several confirmed critical clinical characteristics 
was performed and the results showed that the model remained 
an independent indicator of the survival risk (Fig. 3C).

Furthermore, the association between risk scores and clin‑
ical characteristics were also assessed (Fig. 4A‑F). The results 
suggested that risk scores are significantly associated with 
survival status. A cluster heat map was generated to show RNA 
expression level for all regulators included in the model (Fig. 5).

Establishing a prognostic nomogram for early‑stage ccRCC. 
To predict survival status more comprehensively and easily, 
a nomogram was constructed after integrating prognostic 
risk score and clinical information such as sex, age, laterality, 
pathological grade, T stage and N stage (Fig. 6). It was revealed 
that the nomogram is suitable for predicting 1‑year, 2‑year, 
3‑year and 5‑year survival for ccRCC patients.

Figure 5. Clustering heat map of the m6A methylation regulators included in the prognostic signature.
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Correlations between risk scores and immune cells in tumor 
microenvironment. m6A methylation regulators participate 
in the regulation of tumor microenvironment immune status 
during tumorigenesis (6). After comparing the tumor purity 
within different risk subgroups, it was found that the higher 
risk group was significantly associated with higher immune 
score (P<0.001) and lower tumor purity (P=0.0066). However, 
the stromal score within high and low risk groups did not show 
significant difference (P=0.68) (Fig. 7A‑C).

To further confirm which kind of immune cells maybe 
associated with the prognostic model, Spearman's correlation 
analysis was implemented to assess the association between 
risk scores and immune cell composition (Fig. 7D‑I). The 
results revealed that risk scores were statistically associated 
with various immune cells, including dendritic cells, CD4+ 
T cells, CD8+ T cells and macrophages as opposed to B cells 
and neutrophils.

Discussion

As the most common type of renal cancer, the prognosis of 
ccRCC remains poor with both a high incidence and mortality. 
Epigenetic modifications, particularly RNA modifications 
have proven to play various functions in the bioprocess 
of tumorigenesis and therefore produce a frame of tumor 
biomarkers (19). This should not be overlooked as a key 
element in the quest to identify elements which will enable 
clinicians to identify cases early and to determine those who 
are more likely to require swift interventions. As the most 

prevalent type of RNA post‑translational modification, m6A 
has drawn an increasing attention since the identification of 
the first RNA demethylase in 2011, the fat mass and obesity‑ 
associated protein (FTO), revealing that the RNA methylation 
is a reversible process (20). Numerous studies (21,22) have 
revealed that FTO is closely related to BMI, which is closely 
related to the tumorigenesis of ccRCC. But after assessing the 
relationship between BMI and the proteomic expression of 
FTO with our cohort, no significant correlation was observed 
(Fig. S2). Due to the incomplete clinical data of TCGA data‑
base, the correlation within the 261 patients was not analyzed, 
which is a disadvantage of the aforementioned analysis. 

In the present study, multi‑omics were applied to 
reveal the prognostic role of m6A methylation regulators 
in early‑stage ccRCC. To the best of our knowledge, the 
present study is the first one to suggest that m6A could 
predict the prognosis for pT1 stage ccRCC patients. From 
the 19 m6A methylation regulators, the expression of four 
genes were significantly associated with overall survival 
for ccRCC patients, namely: FMR1, METTL14, RBMXL1 
and YTHDF2. To fur ther predict survival, a mode 
consisting of YTHDF2, YTHDC2, FMR1 and ELAVL1 
was constructed based on Cox's regression analysis, which 
was verified from immunohistochemistry. Additionally, 
multivariate Cox analysis revealed that the signature was 
an independent predictor of ccRCC. In order to render 
our model more applicable, a nomogram that could be 
more easily adopted into clinical practice was estab‑
lished, although this is also only an initial study. Previous 

Figure 6. Prognostic nomogram based on the prognostic model and clinical characteristics.
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studies found that ccRCC is an immune‑rich tumor since 
multiple kinds of immune‑ infiltrating cells exist in the 
tumor microenvironment (10,23,24). Therefore, the rela‑
tionship between the generated prognostic model and 
immune cells were also assessed with the help of online 
TIMER software and ‘ESTIMATE’ package. The results 
suggested that the m6A methylation prognostic model was 
significantly associated with dendritic cells, CD4+ T cells, 
CD8+ T cells and macrophages. This may provide new 
evidence for the role of m6A methylation in regulating 
tumor immune‑infiltrating microenvironment; however, of 
course further interdisciplinary research is required. 

In our analysis and relative study (25), the molecule 
YTHDF2 appears to play a critical role since this was not 
only associated with survival status but also made up a 
proportion of the prognostic signature. Additionally, protein 

expression for YTHDF2 between cancer and non‑cancerous 
normal tissues remains differential in the samples examined 
in the present study. As a member of m6A‑binding proteins 
(i.e. readers), YTHDF2 possesses a YTH binding capability 
which may interact with m6A modifications for specific 
RNAs. Therefore, this ability may play a critical role in 
improving target mRNA translation efficiency (26). 

Previous studies have reported that YTHDF2 may 
participate in the progression of various malignant tumors. 
For example, Zhang et al (27) found that by maintaining m6A 
methylation of the OCT4 mRNA, YTHDF2 enhances its 
protein expression and therefore promotes liver cancer stem 
cell phenotype. This appears to suggest that YTHDF2 acts 
as an oncogene in the progression of hepatic cell carcinoma 
(HCC). However conversely, another study has demonstrated 
that YTHDF2 is a novel tumor suppressor for HCC since it 

Figure 7. Relationship between prognostic model and the immune cell compositions within the tumor microenvironment. (A‑C): The relationship of (A) immune 
cell scores, (B) stromal cell scores and (C) tumor purity within different risk groups. (D‑I): The correlation between immune cell composition with the risk 
score of the prognostic model using the Spearman's correlation analysis.
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mechanistically suppresses STAT3 phosphorylation and 
tumor growth by degrading IL‑6 family cytokine‑encoded 
mRNAs (28). Similarly, in glioma studies, YTHDF2 has been 
found to downregulate the expression of LXRα and HIVEP2 
through m6A‑dependent mRNA decay and therefore may 
impact on the survival of glioma patients (29). Xie et al (30) 
revealed that METTL3/YTHDF2 m6A axis may directly 
degrade mRNAs of tumor suppressors such as SETD7 and 
KLF4, which can lead to carcinogenesis and progression of 
bladder cancer.

Another important molecule in the prognostic model is 
FMR1, which has been found to be involved in the negative 
regulation of mRNA translation. Recently, the FMR1 was 
identified as a putative m6A reader which means that it binds 
to m6A containing transcripts. For example, Edens et al (31) 
showed that FMRP, the protein encoded by FMR1, prefer‑
entially binds m6A‑modified mRNAs and thereby promotes 
their nuclear export through CMR1, thus regulating neutral 
differentiation (32). Notably, FMRP could also bind to m6A 
sites in targets and interact with YTHDF2, which is yet 
another ‘m6A reader’, in an RNA‑independent manner. The 
results suggested that the function of FMR1 was maintaining 
the stability of its mRNA targets while YTHDF2 focused on 
the degradation of these transcripts (33).

As an m6A writer, METTL14 mainly performed its 
function through combining with METTL3 and forming an 
m6A‑METTL complex (MAC). In contrast to the evidenced 
catalytic function of METTL3, METTL14 appears to be 
mainly responsible for maintaining MAC integrity and 
mediating RNA bind (34). Although recently, METTL14 has 
also been reported to participate in crosstalk between histone 
modification and RNA methylation. METTL14 thereby 
could recognize H3K36me3 and facilitate binding between 
m6A MTC and the adjacent RNA polymerase II, thereby 
writing m6A into actively transcribed nascent RNAs (35). 
Zhang et al (36) reported that METTL14‑mediated m6A 
modification negatively regulates mRNA stability of 
bromodomain PHD finger transcription factor, therefore 
facilitating the tumor metastasis and reprogramming 
glycolysis of RCC. This suggested that the functions of 
METTL14‑mediated m6A are likely to be multifaceted and 
demand further research.

Another reader, ELAVL1 also participated in the composi‑
tion of the prognostic model. Embryonic lethal abnormal visual 
protein 1 (ELAVL1), known as RNA binding proteins, also 
called human antigen R (HuR) has been reported to participate 
in various processes, including nervous system development, 
cellular proliferation and migration (37). Through binding 
to specific RNAs, ELAVL1 could increase mRNA stability 
of target genes. Ronkainen et al (38) reported that ELAVL1 
was associated with reduced RCC‑specific survival and inner 
mechanism study revealed that the HuR protein could regulate 
the expression of COX‑2 in RCC cells, which maybe a putative 
mechanism of action for the progression of RCC. In addition, 
Danilin et al (39,40) identified that knockdown of HuR in RCC 
cell lines could inhibit proliferation and induce apoptosis, the 
process of which was mediated by inhibiting the PI3K/Akt 
and MAPK oncogenic signaling pathways. All the evidences 
suggested that the molecular ‘HuR’ may be potential drug 
target for ccRCC. 

As a retrospective study, it is necessary to discuss the 
limitations involved. First, the sample size for the present study 
was relatively small which inhibits our ability to generalize 
findings to a broader community. A total of 261 cases with 
early‑stage ccRCC were initially enrolled from the TCGA 
database and all the subsequent analysis was based on this 
data. Even though the data is reliable, the sample size remains 
small for high‑throughput omics research. Second, the favor‑
able prognosis, which may be due to a short follow‑up period 
and pathologically pT1 ccRCC, is another shortcoming of 
the present study. Regarding the survival of enrolled patients 
from our center, the final event was not found until now since 
they received the surgery within the period of June 2019 to 
September 2019. In addition, all the enrolled patients were pT1 
ccRCC with pT2 excluded due to the fact that tumorigenesis is a 
gradual process and pT1 ccRCC may reflect the original status 
of ccRCC, highlighting the significance of molecular changes of 
pT1 ccRCC. In the future, our follow‑up time will be extended, 
more patients will be enrolled and the clinical outcomes will 
be reported to the journal if necessary. To sum up, a larger 
cohort with much longer follow‑up period is required. Third, 
the lack of external validation of the established prognostic 
model is also another limitation. GEO dataset, one of the most 
widely used dataset, has been searched. Nevertheless, it was 
found that no studies have complete prognostic information as 
well as RNA sequencing data regarding pT1 ccRCC. Finally, 
all our analysis was based on the multi‑omics data. In order to 
explore the concrete effect of critical m6A RNA methylation 
regulators on ccRCC tumorigenesis, more in vitro and in vivo 
experiments are required to validate the result in the future.

In conclusion, a prognostic model of early‑stage ccRCC 
with m6A methylation regulators was established. The 
evidence‑based model could predict survival for early stage 
ccRCC patients and is closely related to various tumor 
infiltrating immune cells.
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