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Abstract. As the risk of harmful environmental exposure 
is increasing, it is important to find suitable targets for the 
diagnosis and treatment of the diseases caused. Isocitrate 
dehydrogenase 2 (IDH2) is an enzyme located in the mito‑
chondria; it plays an important role in numerous cell processes, 
including maintaining redox homeostasis, participating in 
the tricarboxylic acid cycle and indirectly taking part in the 
transmission of the oxidative respiratory chain. IDH2 muta‑
tions promote progression in acute myeloid leukemia, glioma 
and other diseases. The present review mainly summarizes 
the role and mechanism of IDH2 with regard to the biological 
effects, such as the mitophagy and apoptosis of animal or 
human cells, caused by environmental pollution such as 

radiation, heavy metals and other environmental exposure 
factors. The possible mechanisms of these biological effects 
are described in terms of IDH2 expression, reduced nico‑
tine adenine dinucleotide phosphate content and reactive 
oxygen species level, among other variables. The impact of 
environmental pollution on human health is increasingly 
attracting attention. IDH2 may therefore become useful as a 
potential diagnostic and therapeutic target for environmental 
exposure‑induced diseases.

Contents

1.	 Introduction
2.	� IDH2 mutations that result in 2‑HG accumulation 

promote the development of hematopoietic diseases
3.	� Associations between IDH2 gene status and other 

pathological processes 
4.	� IDH2 level is affected by exposure to environmental 

hazards
5.	� Regulation of IDH2 level is a multi‑factor and 

multi‑pathway process
6.	 Prospects

1. Introduction

Isocitrate dehydrogenase (IDH) is a key enzyme in the 
tricarboxylic acid cycle  (1) and plays an important role 
in various metabolic functions and epigenetic cellular 
processes  (2,3). There are three isoenzymes of IDH. The 
IDH1 and IDH2 genes are located in chromosomes 2q33 and 
16q26, respectively (4). At the same time, the IDH3 protein 
is encoded by the IDH3A, IDH3B and IDH3G genes, which 
are located in chromosomes 15q25, 20p13 and Xq28 respec‑
tively. Structurally, IDH1 and IDH2 proteins are composed 
of a large domain, a clasp domain and a small domain (5). 
IDH mutations result in gain‑of‑function and reduction of 
α‑ketoglutarate (α‑KG) to 2‑hydroxyglutarate (2‑HG)  (6). 
Mutated IDH may lead to the development of cancer, 
especially acute myeloid leukemia (AML) (7).
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The expression of IDH2 is affected by exposure factors 
such as ionizing radiation. IDH2 plays a crucial role in disor‑
ders caused by exposure factors (8,9). Therefore, the present 
study provides an overview of the effect of IDH2 on circula‑
tory system diseases and other system diseases with regard to 
exposure factors. IDH2 is a mitochondrial enzyme that cata‑
lyzes the oxidative decarboxylation of isocitrate to α‑KG (10) 
and protects the body from oxidative stress by converting 
nicotinamide adenine dinucleotide phosphate (NADP+) to 
reduced NADP (NADPH) (11). Multiple internal and external 
factors may contribute to mutations of the IDH2 gene, which 
may lead to the loss of enzyme activity or obtaining new 
enzymatic functions (change‑of‑function) (12). The mutant 
IDH2 consumes a‑KG and NADPH, and produces 2‑HG and 
NADP+ (12) (Fig. 1). Mutations in the IDH2 potein often occur 
in arginine residues R140 and R172, and are closely associated 
with the development and progression of AML and glioma (13). 
Moreover, one study has revealed the effect of wild‑type IDH2 
on the molecular mechanism of Epstein Barr virus‑mediated 
disease. EBV can cause nasopharyngeal carcinoma in humans, 
and wild‑type IDH2 promotes the survival of nasopharyngeal 
carcinoma cells  (14). Details on the different functions of 
IDH2 are expounded in the following sections.

2. IDH2 mutations that result in 2‑HG accumulation 
promote the development of hematopoietic diseases

Over past decades, studies have shown that IDH2 is associ‑
ated with hematological tumorigenesis or disorders, including 
AML, myelodysplastic syndrome (MDS) and chronic myelo‑
monocytic leukemia (CMML). The frequencies of IDH2 
mutations in diseases of the hematopoietic system, such as 
AML (15‑17), MDS (18,19) and chronic mononuclear leukemia, 
are 8.0‑19, 4‑4.6 and 7.8‑8.8%, respectively (18,20). Although 
the frequency of diseases with an IDH2 gene mutation is 
low, it is crucial to understand the association between IDH2 
mutations and disease occurrence. Therefore, the following 
sections will review the role of IDH2 in various physiological 
or pathological processes.

Obstructed hematopoietic differentiation caused by IDH2 
gene mutations triggers development of hematopoietic 
neoplasms. IDH2 gene mutations contribute to hematopoietic 
neoplasms, such as AML and CMML  (21,22). AML is a 
hazardous, enervating and invasive disease with a poor prog‑
nosis (23,24). IDH2 and PHD finger protein 6 mutations exert 
synergistic effects on leukemia formation through excessive 
production of 2‑HG and damage to DNA repair  (25). The 
mutated IDH2 enzyme exhibits gain‑of‑function activity and 
catalyzes the conversion of α‑KG to 2‑HG, which is involved 
in the pathogenesis of AML (26,27). The 2‑HG metabolite is 
oncogenic and closely associated with the hypermethylation 
of DNA and histones, which alters the expression of different 
mRNAs and hematopoietic cell differentiation (28,29). IDH2 
gene mutations are crucial for the maintenance of AML 
progenitor cells, but these mutations may not be the key 
preliminary step for AML development (30,31). Therefore, 
further studies are needed to confirm the role of IDH2 muta‑
tions in the occurrence of AML. IDH2‑mutated cells have 
significantly increased sensitivity to IL‑1β signaling, which 

may be a potential therapeutic target (32). Furthermore, there 
are drugs in various stages of clinical development for the treat‑
ment of AML with mutated IDH2 proteins, such as AG‑221 
(enasidenib) (33), AGI‑6780 (34), CP‑17 (34), TQ05310 (35) 
and AG‑881 (36). AG‑221 is an oral, valid, selective inhibitor 
of mutated IDH2 that has been approved by the US Food 
and Drug Administration for the treatment of relapsed or 
refractory leukemia with IDH2 gene mutations. AG‑221 
binds to the IDH2 dimer interface and blocks the production 
and accumulation of 2‑HG, thereby allowing hematopoietic 
cells to differentiate from terminal or ancestral mutant 
clones (37,38). For patients who are unable to benefit from 
treatment with AG‑221 alone, the addition of all‑trans‑retinoic 
acid may enhance the response rate of AG‑221 therapy (39). 
Additionally, AG‑221 in combination with azacitidine is more 
effective than azacitidine alone, and is a tolerated and effective 
treatment option for relapsed or refractory AML that promotes 
cell differentiation and overall response rates (33,40). There 
are usually no clinical signs of concurrent infection or clinical 
features of IDH inhibitor‑associated differentiation syndrome, 
which is characterized by dyspnea, hypoxia, fluid retention and 
weight gain (41). AG‑221 was found to exhibit a poor inhibi‑
tory effect on the IDH2R140Q mutation. However, AGI‑6780, a 
preclinical inhibitor, is a selective inhibitor of the IDH2R140Q 
protein and may be an effective targeted drug therapy for this 
mutation (34,42,43). In addition, SH1573 is a potential inhibitor 
of IDH2R140Q, and has been demonstrated to be novel, safe and 
effective, and is currently in clinical trials (44). Furthermore, 
CP‑17 acts as a potent inhibitor of the IDH2R140Q mutant 
and may be a lead compound for developing drugs against 
AML (34). Furthermore, TQ05310 showed selective specificity 
that targeted both IDH2R140Q and IDH2R172K mutant enzymes 
but had no effect on wild‑type IDH or mutated IDH1 (35). 
AG‑881 has lower specificity than the aforementioned drugs 
and may be useful as an inhibitor of IDH1 and IDH2 mutations 
for treating associated diseases (37). It is important to note that 
prognosis can be judged according to the IDH2 mutation site 
and whether other genes are mutated (2). Moreover, it has been 
reported that an IDH2 mutation is a marker for poor prognosis 
in patients with AML, and the overall survival (OS) time of the 
patients with wild‑type IDH2 was greater than that of patients 
with an IDH2 mutation (45). However, another study found that 
patients with IDH2R172K mutations have improved relapse‑free 
survival (RFS) and OS times compared with patients with the 
wild‑type (46). Therefore, this topic remains controversial, 
and more experimental data are needed to confirm which view 
is correct. CMML is a myelodysplastic/myeloproliferative 
neoplasm. IDH2 can be used as an indicator of poor prognosis 
in CMML patients to a lesser extent. One study indicated that 
patients with IDH2 mutations in CMML had inferior OS rates 
than wild‑type IDH2 patients (17,47).

IDH2 mutations promote the progression of other diseases 
in the hematopoietic system. IDH2 status not only plays an 
important role in hematopoietic neoplasms, but also regulates 
the development of other diseases in the hematopoietic system. 
Previous studies have discovered that a small number of 
patients with MDS have IDH2 mutations. The most common 
IDH2 mutant subtype in MDS is IDH2R140Q, and as aforemen‑
tioned, this mutation results in enzymatic gain‑of‑function and 
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inhibition of hemopoietic cell differentiation (48,49). The IDH2 
mutation rate in patients with advanced MDS is higher than 
in those with early MDS (14). Mutations in IDH1 and IDH2 
are mutually exclusive (50). Similarly, analysis of patients 
with MDS showed IDH2 and tet methylcytosine dioxygenase 
2 (TET2) gene mutations do not exist simultaneously (51). 
IDH2 mutations may be involved in the development but not 
the progression of MDS (52). Moreover, high 2‑HG serum 
levels predict the presence of IDH2 mutations; thus, mutated 
IDH2 proteins can be used as targets for pre‑transplantation 
and post‑transplantation treatment of MDS  (53,54). For 
effective treatment of MDS with IDH2 gene mutations, the 
mutated protein can be specifically targeted (19). For example, 
AG‑221 is an effective drug for the treatment of MDS with 
IDH2 mutations, including use in those patients for whom the 
use of hypomethylating agents has been unsatisfactory (55). 
There is a poor OS time among patients with MDS and IDH2 
mutations under low‑risk stratification in the International 
Prognostic Scoring System (53,56). In summary, IDH2 plays 
an extremely important role in the generation and progression 
of some diseases of the hematopoietic system, and can be used 
as a molecular marker and target for therapy.

3. Associations between IDH2 gene status and other 
pathological processes

IDH2 is closely associated with therapeutic effectiveness and 
sensitivity. IDH2 is not only associated with blood circulation 
disorders, but also with other diseases, such as glioma (57), 
non‑small cell lung cancer (58), solid papillary carcinoma with 

reverse polarity (SPCRP)  (59), angioimmunoblastic T‑cell 
lymphoma (AITL) (60), high‑grade chondrosarcoma (61) and 
undifferentiated sinus carcinoma (62).

IDH2 gene mutations participate in nervous system diseases, 
especially in gliomas. IDH2 mutations play an important 
role in some diseases of the nervous system, such as gliomas 
and 2‑hydroxyglutaric aciduria. Studies have shown that 
IDH2 mutations are a driving factor in gliomas, especially in 
low‑grade gliomas and glioblastomas (57,63). Glioma subtypes 
with IDH2 gene mutations have unique clinical characteristics. 
For instance, IDH2 mutations are more common in younger 
individuals and are more likely to occur in low‑risk surgical 
areas (64). Furthermore, IDH2 can be used as a biomarker with 
diagnostic, prognostic and predictive implications (65,66). In 
gliomas, IDH2 mutations were found to be mutually exclusive 
with IDH1, phosphatase and tensin homolog, cellular tumor 
antigen p53 and α‑thalassemia retardation syndrome X‑linked 
mutations (63). Injecting mutated IDH2 into glioma mice accel‑
erated tumor growth and increased mortality rate compared 
with that in mice with wild‑type IDH2 (67). Moreover, IDH2 
mutations are significantly correlated with the incidence of 
preoperative glioma‑related epilepsy, and affect the surgical 
resectability of gliomas (68,69). IDH2 mutations may also 
trigger the development of 2‑hydroxyglutaric aciduria and 
Parkinson's disease (70,71).

Tumor cell growth is promoted by wild‑type IDH2. In addition 
to playing an important role in the progression of neurological 
diseases, IDH2 gene status promotes the development of 

Figure 1. IDH family participates in metabolic processes and epigenetic regulation. (A) α‑KG and 2‑HG are involved in epigenetic modification. (B) Tricarboxylic 
acid cycle in the mitochondria. The isocitric acid turns into α‑KG via the IDH enzyme family. The IDH enzyme family catalyze the oxidative decarboxylation 
of isocitrate and therefore play key roles in the Krebs cycle. (C) Glycolysis of glucose in the cytoplasm. G‑6‑P, glucose‑6‑phophate; F‑6‑P, fructose‑6‑phos‑
phate; F‑1,6‑2P, 1,6‑fructose‑diphosphate; α‑KG, α‑ketoglutarate; 2‑HG, 2‑hydroxyglutarate; IDH, isocitrate dehydrogenase; Gln, Glutamine; Glu, glutamic 
acid; NADH, nicotinamide adenine dinucleotide; Jmjc, jumonji C. 
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certain respiratory diseases. Studies have shown that the 
IDH2 protein plays a role in specific lung cancer types; for 
example, IDH2 plays an important role in non‑small cell lung 
cancer (58). The expression level of IDH2 in the serum of 
patients with non‑small cell lung cancer is higher than that 
of the normal population, and after treatment, the expression 
of serum IDH2 in patients with non‑small cell lung cancer 
decreases (58). Notably, the IDH2 rs11540478 genetic variant 
represents a novel susceptibility locus for lung cancer; it 
can change the level of IDH2 protein, and affect cancer cell 
viability and disease evolution (72). Compared with patients 
with lung cancer, healthy individuals have lower levels of IDH2 
mRNA in peripheral blood lymphocytes (66). Wild‑type IDH2 
promotes the development of lung cancer, and an increased 
level of IDH2 protein is a characteristic of poor survival (73). 
Overall, IDH2 may represent a target for lung cancer treat‑
ment. Furthermore, IDH2 is important for the progression 
of lung injury. IDH2 has different effects depending on the 
cause of the lung injury. IDH2 can reduce acrolein‑induced 
lung injury by providing NADPH (74), and as a provider of 
the pro‑inflammatory metabolite α‑KG, IDH2 is indirectly 
involved in lipopolysaccharide‑induced acute lung injury. 
Therefore, targeting the IDH2 enzyme may be a treatment 
strategy for systemic inflammatory response syndrome (75).

Status of the IDH2 gene affects peripheral T‑cell lymphoma. 
AITL is a subtype of peripheral T‑cell lymphoma that is 
affected by IDH2 gene status. It has been reported that IDH2 
expression is significantly upregulated in patients with myelo‑
proliferative neoplasia (MPN)‑AITL compared with that 
in AITL patients without MPN (76). Meanwhile, it has also 
been reported that mutated IDH2 and TET2 proteins usually 
occur together in AITL  (60,77). In one study, AITL with 
the IDH2R172 mutation displayed a limited gene expression 
profile that correlated with cellular differentiation, and genes 
associated with interleukin‑12 stimulation were significantly 
enriched (78). Moreover, an AITL case with mutated IDH2 
protein presented with high intracellular levels of 2‑HG 
without an increase in circulating 2‑HG. This case suggests 
that levels of circulating 2‑HG may not accurately reflect the 
presence of IDH2 gene mutations (79). In 20‑30% of patients 
with AITL, IDH2 has diagnostic value and is a potential 
therapeutic target. Next‑generation sequencing technology 
and allele‑specific quantitative polymerase chain reaction 
show good sensitivity for the detection and diagnosis of IDH2 
mutations (80). As expected, compared with the TET2 gene 
mutation alone, TET2/IDH2 co‑mutations conferred longer 
progression‑free survival times to affected patients (81).

Course of other diseases is also affected by IDH2 gene status. 
IDH2 status is important in other diseases, such as SPCRP, 
prostate and colon cancer. A previous clinical study determined 
that 77% of SPCRP cases had an IDH2 hot spot mutation at 
amino acid site 172 (59). One study indicated that the IDH2R172 
mutation was highly specific for SPCRP in various subtypes of 
breast cancer, and that it may be a suitable diagnostic marker 
for SPCRP and guide effective treatment (82). Furthermore, 
high expression levels of IDH2 mRNA or protein were asso‑
ciated with a poor outcome in patients with invasive breast 
cancer  (83). Enzymatic malfunction of IDH2 in prostate 

cancer cells disrupted oxidative bioenergetics, enhanced reac‑
tive oxygen species (ROS) generation and increased 
mitochondrial dynamics  (84). Frequent IDH2 gene muta‑
tions have recently found in central chondrosarcomas, which 
resulted in longer RFS and metastasis‑free survival times in 
high‑grade chondrosarcomas; however, no association with 
OS was observed (61). Undifferentiated sinus carcinoma is 
an infrequent, aggressive, highly malignant tumor with finite 
therapy choices (85,86), and women with this disease have 
a higher frequency of IDH2 mutations compared with men 
with the disease (87). IDH2 mutated undifferentiated sinus 
carcinoma subtypes have high levels of DNA methylation and 
a poor prognosis (62). As a prime component in anti‑oxidative 
damage, wild‑type IDH2 protects cochlear hair cells from 
ROS and prevents age‑related hearing loss by providing 
NADPH (88,89). Moreover, IDH2 is vital for conditions that 
develop from ROS exposure or mechanical damage (90). For 
example, IDH2 has a protective effect against ultraviolet B 
radiation‑induced skin damage and is involved in skin wound 
healing (90,91). Downregulation of IDH2 protein is likely one 
of the mechanisms underlying 5‑hydroxymethylcytosine loss 
in melanoma (92). Studies have shown that IDH2 knockout 
can inhibit the growth of colon cancer cell lines. Thus, the 
IDH2 enzyme has an important impact on the generation and 
progression of colon carcinoma (93,94). IDH2 may be a target 
to treat skin pigmentation, as IDH2 deficiency can cause skin 
pigmentation (95). Additionally, IDH2 may be a therapeutic 
target for adipose inflammation (96,97). In summary, IDH2 
gene status drives the process of multiple diseases and may 
serve as a biomarker and/or therapeutic target (Table I).

4. IDH2 level is affected by exposure to environmental 
hazards

IDH2 protects cells from radiation damage by producing 
NADPH. IDH2 not only greatly contributes to the progression and 
treatment of diseases, but it is also involved in the maintenance 
of cellular metabolism under conditions of environmentally 
induced damage. IDH2 can protect cells from damage caused 
by excessive ROS production after cells are exposed to ionizing 
radiation  (98). ROS are natural products of mitochondrial 
metabolism and can trigger oxidative damage (99). The protec‑
tive effect of IDH2 on cells is based on the reduction of NADP+ 
to NADPH, which is a precondition for some cellular defense 
systems to reduce oxidative damage  (100,101). Imbalance 
between mitochondrial oxidation and reduction reactions causes 
cell death in organisms exposed to ionizing radiation. When 
organisms are exposed to ionizing radiation, the level of ROS 
increases and the NADPH regulated by IDH2 to the antioxidant 
system decreases  (102,103). Wild‑type IDH2 protects cells 
against γ‑irradiation by maintaining NADPH levels that buffer 
against radiation‑induced ROS and protect cells from apop‑
tosis. The latest studies and clinical data from the European 
Organization for Research on Treatment of Cancer trial have 
verified that gliomas with IDH2 gene mutations are extremely 
sensitive to radiotherapy (104‑106). Furthermore, IDH2 not only 
protects the cells from ionizing radiation, but also protects the 
cells from non‑ionizing radiation. Under the non‑ionizing radia‑
tion environment, IDH2 has a protective effect on ultraviolet 
B‑induced skin damage (90).
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IDH2 activity is regulated by binding to heavy metal ions 
and toxic substances. Environmental heavy metals affect the 
enzymatic activity of IDH2. When organisms are exposed 
to heavy metals, such as cadmium (Cd2+) (107), CoCl2 (108), 

mercury (109) or copper (8), the expression of IDH2 may be 
altered. Cd2+ ions have a dual effect on cells. Cd2+ activates 
IDH2, and activated IDH2 provides NADPH for cellular 
defense, as aforementioned. However, Cd2+ ions have a high 
affinity for thiols and contribute to the combination between 
Cd2+ ions and cysteine residues, which trigger IDH2 inacti‑
vation. Therefore, cells exposed to cadmium are prone to 
apoptosis (107,110). Removing cadmium from the environ‑
ment with microorganisms is difficult due to its toxicity. The 
yeast Pichia kudriavzevii has been used as a model organism 
for cadmium removal, and acid stress can reduce the toxicity 
of Cd2+ and upregulate genes associated with ATP synthesis, 
such as IDH2 (111). CoCl2 can indirectly affect IDH2 expres‑
sion. Hypoxia was induced by CoCl2 treatment increasing the 
expression of IDH2 in breast cancer cells after radiation (108). 
Jejunal epithelial cells induce mitochondrial dysfunction and 
mitosis through the Mitomir‑1285‑IDH2 axis during copper 
exposure Mitomir‑1285 aggravates copper‑induced mitochon‑
drial dysfunction by inhibiting IDH2 expression (8) (Fig. 2). 
Exposure to arsenic in pregnant rats indirectly induces 
anxiety‑like behavior in adult offspring through downregu‑
lation of IDH2 expression in the fetal brain (9). Moreover, 

some lower animals, such as bivalves and corals, may also 
be affected by heavy metals, resulting in a change in IDH2 
activity. For example, bivalves exposed to mercury alone 
showed a reduction in IDH2 activity and a subsequent altera‑
tion in cellular energy production (109). When corals were 
exposed to copper, IDH2 activity was inhibited, and aerobic 
and oxidative metabolism was reduced (112) (Fig. 2) (Table II).

5. Regulation of IDH2 level is a multi‑factor and 
multi‑pathway process

IDH2 is involved in protecting cells from oxidative 
stress‑induced by ROS (113). Deficiency causes abnormal 
mitochondrial function, which increases the production of 
ROS, promotes cell senescence by inducing cell‑cycle arrest, 
impairs cell function and stimulates development of age‑related 
diseases (89,114). As IDH2 makes a significant contribution 
to homeostasis and cellular differentiation, the following 
sections will discuss the factors and associated mechanisms 
that regulate IDH2 expression and activity.

Sirtuin3 (SIRT3) expression is positively associated with 
IDH2 activity. IDH2 is regulated by SIRT3 and other factors. 
SIRT3 is regulated by acetylation, which is a post‑translational 
modification that alters its activity (115,116). IDH2 activity is 
increased significantly after deacetylation by SIRT3, which is 

Table I. Associations between status of IDH2 and multiple diseases.

A, Mutation

Disease	 Effect of pathological progression	 Prognosis	 (Refs.)

AML	 Maintain tumor cells and promote	 Negative prognostic marker	 (30,45)
	 disease progression		
CMML		  Unfavorable molecular prognostic factor	 (17,47)
MDS	 Participating in what happens does	 Poor	 (48,53)
	 not promote progress
Glioma	 Driving factors 	 Longer OS and PFS times	 (66,67)
AITL	 Promote disease progression	 Longer PFS time	 (84)
SPCRP	 Driving factors	 Patients with high expression of IDH2 have	 (59,83)
		  poor outcome in IBC
High‑grade		  Longer relapse‑ and metastasis‑free	 (61)
chondrosarcoma		  survival times
Undifferentiated		  Higher survival rate	 (62,87)
sinus carcinoma

B, Upregulated expression of wild‑type IDH2

Disease	 Effect of pathological progression	 Prognosis	 (Refs.)

Lung cancer	 Contribute to cancer cell growth	 Poor	 (58,73)
	 and survival

IDH2, isocitrate dehydrogenase 2; AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic 
syndrome; AITL, angioimmunoblastic T‑cell lymphoma; SPCRP, solid papillary carcinoma with reverse polarity; OS, overall survival; PFS, 
progression‑free survival.
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Table II. Effect of different exposure environments on IDH2.

Exposure environment	 Related effect	 Model	 (Refs.)

Ionizing radiation
  γ‑ray	 IDH2 protects cells from oxidative stress	 Mouse, NIH3T3 cells	 (100)
	 IDH2 knockdown triggers radiation‑reduced	 Esophageal squamous cell	 (98)
	 metabolism disorder in mitochondria	 carcinomacell lines	
	 IDH2 expression is negatively correlated	 Mouse	 (102)
	 with radiation therapy sensitivity
Non‑ionizing radiation
  UVB	 UVB‑induced apoptosis and inflammation	 Mouse	 (90)
	 in the skin of IDH2‑deficient mice
Heavy metals and
toxic substances			 
  Cd2+	 Dual effect: Activates IDH2 by providing two ions,	 Escherichia coli	 (107,110)
	 and inactivates IDH2 via high affinity for thiols
  CoCl2	 Can enhance IDH2 expression	 Breast cell line MCF‑7	 (108)
  Arsenic	 Downregulation of IDH2 expression	 Pregnant rats	 (9)
  Mercury	 Suppresses IDH2 expression	 Bivalves	 (109)
  Copper	 Suppresses IDH2 expression	 Coral	 (112)

IDH2, isocitrate dehydrogenase 2; UVB, ultra violet B; Cd2+, cadmium.

Figure 2. Pathway diagram for the regulation of IDH2. Internal or external factors (such as radiation and metals in the environment) cause changes in the 
expression or activity of IDH2, resulting in skin damage and mitochondrial autophagy, among others. MPP+, methyl‑4‑phenylpyridinium; TET, methylcytosine 
dioxygenase; α‑KG, α‑ketoglutarate; 5‑hmc, 5‑hydroxymethylcytosine; mtROS, mitochondria reactive oxygen species; MDA, malondialdehyde; As3+, arsenic; 
UV, ultraviolet; GPX4, glutathione peroxidase 4; GSH, glutathione; SIRT3, sirtuin 3; IDH2, isocitrate dehydrogenase 2. 
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a deacetylase in mitochondria. A decrease in SIRT3 protein 
reduces IDH2 enzymatic activity by decreasing IDH2 dimer 
formation (117,118) (Fig. 2). For example, in one study, during 
therapy for multiple myeloma, the combination of carfilzomib 
with SIRT3 inhibitors decreased IDH2 activity and increased 
multiple myeloma cell death (118). Overexpression of nicotin‑
amide mononucleotide adenylate transferase 3 in bone marrow 
mesenchymal stem cells enhanced the ability of specific 
antioxidant stress by enhancing SIRT3 activity and decreasing 
IDH2 acetylation level (119).

Other moderating factors that regulate levels and activity 
of IDH2. To avoid damage caused by oxidative stress, 
the antioxidant activity of IDH2 can be enhanced by 
SUMOylation  (120). A previous study showed that the 
activity of IDH2 is affected by post‑translational modifica‑
tion. Under oxidative stress, IDH2 ubiquitination deficient 
cells had more apoptosis than normal cells, suggesting that 
ubiquitination is an important means of regulating IDH2 
activity  (120). Furthermore, IDH2R140Q and cytoplasmic 
nucleophosmin mutation increase myeloid ecotropic viral 
integration site 1 and homeobox A9 gene expression, 
respectively, which activates the hypoxia pathway in AML 
cells  (121). Cells expressing the mutant IDH2 protein are 
deficient in their capacity for reductive carboxylation and the 
ability to produce acetyl‑CoA may be impaired under hypoxic 
conditions. Acetyl‑CoA is involved in certain metabolic 
processes in the body, such as cholesterol synthesis, fatty 
acid generation and glucose metabolism (122). In addition, 
decreased IDH2 expression may promote ferroptosis through 
the coordination of erastin (ferroptosis inhibitor) with the 
NADPH‑glutathione‑glutathione peroxidase 4 (GPX4) axis 
(Fig.  2)  (123). Taken together, these factors provide new 
insight into the treatment of diseases involving the IDH2 
gene.

6. Prospects

The present review summarizes the existing knowledge relating 
to various aspects of IDH2 expression and activity. IDH2 and its 
associated diseases, mechanisms of action and alterations after 
exposure to radiation and heavy metals are described. A number 
of environmental exposure factors can inhibit IDH2 expression 
or activity, indirectly leading to decreased GPX4 expression, 
which may lead to ferroptosis, but the specific mechanism is 
not clear. Further research may provide therapeutic methods 
for some diseases so that patients can obtain more accurate 
and effective treatment plans. In addition, it is possible to find 
other factors that regulate normal levels of IDH2 and maintain 
homeostasis in response to radiation exposure, a strategy that 
may have great application value. Furthermore, IDH2 is prom‑
ising as a marker of environmental exposure for circulatory 
diseases. On the basis of the important role of IDH2 in blood 
circulatory system disorders, it is feasible to recommend IDH2 
as a novel biomarker for environmental exposure in blood circu‑
latory system disorders both theoretically and practically.
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