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Abstract. Hepatocellular carcinoma (HCC) is one of the 
most common types of cancer diagnosed worldwide. After a 
decade of stagnation, several novel compounds have recently 
been shown to be effective in the treatment of HCC. Since 
immunotherapy is associated with important clinical benefits 
in some, but not all patients, it is essential to identify reliable 
predictive biomarkers. As the complex interplay between 
hepatocytes and immune cells is highly dependent on the 
tumor microenvironment, the tumor microenviroment has 
been suggested to be an important factor associated with the 
response to therapy and is currently being extensively investi‑
gated. Within this network, several important factors should 
be highlighted. Most of the cells are hepatocytes, but fibro‑
blasts, endothelial cells, and immune cells are also present. 
Tumor‑infiltrating leukocytes include several populations 
of cells and each of them plays a role in forming the tumor 
environment. Some of these cells may have antitumor effects, 
whereas others may be associated with the progression of the 
disease. The most important subsets include tumor‑associated 
macrophages, tumor‑associated neutrophils, and lymphocytes. 
These groups are described in the present review. The immune 
response is controlled by immune checkpoint molecules. One 
of the most important molecules involved in this checkpoint 
process seems to be the programmed death‑1 (PD‑1) receptor, 
which typically is induced on activated T cells, natural killer 
(NK) cells, B cells, and antigen‑presenting cells. On the other 
hand, programmed death ligand 1 (PD‑L1) is expressed by 
tumor cells, hepatocytes and hepatic stellate cells, and Kupffer 
cells or liver sinusoidal cells. Complex interactions between 
ligands and receptors are dependent on the signals from the 
microenvironment leading to either cancer development 

or apoptosis. Evidence from several studies indicates that 
patients with higher expression levels of PD‑L1 on tumor cells 
or immune cells are more likely to achieve beneficial results 
from treatment with checkpoint blockers. This review focuses 
on the basic information regarding the microenvironment and 
its components, particularly on immune system involvement.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
types of cancer diagnosed worldwide (1). For several years, 
the only treatment option for patients with advanced disease 
was sorafenib (2,3). However, more recently, promising results 
have been obtained from trials with immunotherapy. For 
example, the use of atezolizumab with bevacizumab provided 
better outcomes than sorafenib (4). Since immunotherapy 
may be associated with clinical benefits in certain patients, it 
is essential to identify reliable predictive biomarkers of treat‑
ment response. Therefore it is crucial to better understand 
the molecular and microenvironmental characteristics of the 
tumor.

Carcinogenesis is associated with cirrhosis, chronic inflam‑
mation, injuries, and regeneration of hepatocytes (5). The 
interplay between hepatocytes and immune cells depends on 
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the tumor microenvironment which forms the complex network 
involved in hepatocarcinogenesis. Within this network most 
of the cells are hepatocytes, but fibroblasts, endothelial cells 
and immune cells [such as tumor‑associated macrophages, 
T lymphocytes] also play a critical role. The microenviron‑
ment also includes growth factors, enzymes, and extracellular 
matrix proteins, and cytokines may also contribute to carcino‑
genesis (6). Due to the association between the gut and liver, 
the microbiome may also play a role in forming the tumor 
microenvironment (7).

In this review, we have summarized the basic data 
regarding immune cells and their role in hepatocarcinogen‑
esis. Tumor‑infiltrating leukocytes (TILs) include several 
populations of cells with different roles. Some of these may 
have antitumor effects, while others may be associated with 
the progression of the disease. The most important subsets 
include tumor‑associated macrophages (TAMs), tumor‑asso‑
ciated neutrophils (TANs), and T lymphocytes, and are briefly 
described in Table I. Furthermore, we briefly focused on the 
prognostic and predictive factors associated with outcomes of 
immunotherapy.

2. Myeloid‑derived suppressor cells (MDSCs)

MDSCs are a heterogeneous subset of myeloid cells that 
play an essential role in the immunosuppressive network. 
MDSCs may differentiate into granulocytes, dendritic cells, 
and macrophages. Due to the hypoxic microenvironment, 
the process of differentiation can be prevented in HCC (8,9). 
It was observed that in patients with HCC, MDSCs inhibit 
T‑cell proliferation and induce T‑regulatory cells (10). The 
proliferation of T cells is inhibited through the depletion of 
arginine due to increased arginase activity. Furthermore, the 
production of matrix metallopeptidase 9 (MMP‑9) by MDSCs 
contributes to increased neoangiogenesis through increasing 
vascular endothelial growth factor (VEGF) bioavail‑
ability (11). MDSCs can secrete IL‑10, which results in M2 
polarization as well as inhibition of natural killer (NK) cells, 
CD4+ and CD8+ lymphocytes through the expression of trans‑
forming growth factor β (TGF‑β) (12,13). In a mouse model, 
targeting MDSCs was associated with a better response to 
sorafenib (14). A recent meta‑analysis highlighted several 
observations. Firstly, the percentage of MDSCs in HCC 
patients was higher than in healthy individuals or patients with 
other chronic liver diseases. Moreover, higher quantities of 
MDSCs were inversely correlated with overall survival (OS) 
and relapse‑free survival (RFS).

3. Tumor‑associated macrophages (TAMs)

The population of liver macrophages includes Kupffer cells 
that reside within the liver and originate from the yolk sack 
and infiltrating hematopoietic stem cells/bone marrow‑derived 
monocytes. TAMs are derived from monocytes recruited at 
the tumor site by molecules produced by neoplastic or stromal 
cells (15). However, they may be associated with a poorer 
prognosis, as some TAMs exhibit antitumor properties. There 
are two subsets of TAMs.

M1 macrophages are activated by cytokines such as 
interferon (IFN)‑γ, tumor necrosis factor (TNF)‑α, and 

granulocyte‑macrophage colony‑stimulating factor (GM‑CSF), 
or in response to microbial infection. This mechanism is vital 
for pro‑inflammatory and antitumor responses. Production 
of interleukin (IL)‑12 and other pro‑inflammatory cytokines 
leads to the initiation of a Th‑1 dependent immune response. 
They are also capable of cytotoxic activity against cancer 
cells (16,17).

Conversely, M2 macrophages play an anti‑inflammatory 
role and are associated with the promotion of tumor progres‑
sion. They may be alternatively activated by IL‑4, IL‑10, 
IL‑13, or macrophage colony‑stimulating factor (M‑CSF), and 
glucocorticoid hormones. M2‑like macrophages are further 
sub‑divided into four subtypes, with different roles (18,19). 
M2a macrophages are involved in tissue repair as well as 
cell growth and endocytic processes. M2b cells regulate the 
immune response. M2c cells are responsible for apoptosis. 
Finally, M2d macrophages enhance tumor growth and angio‑
genesis (20). TAMs may secrete pro‑angiogenic cytokines 
such as VEGF, TGF‑β, or platelet‑derived growth factor 
(PDGF) which contributes to the progression of cancer (21). 
Promoting tumor progression by M2 macrophages is associ‑
ated with increased recruitment of regulatory T cells leading 
to the suppression of T effector cells. This mechanism results 
from the secretion of cytokines such as IL‑10, TGF‑β, or 
chemokines such as C‑C motif chemokine ligand (CCL)17, 
CCL18, CCL22, and CCL24 (22).

A high count of M2 cells is associated with enhanced 
angiogenesis and metastasis, which leads to a poorer prog‑
nosis. Moreover, the production of IL‑17 by M2 TAMs has 
been shown to suppress oxaliplatin‑induced apoptosis in 
HCC (23,24).

It was suggested that CD206+ M2, but not CD68+ TAMs 
may be used as a prognostic biomarker in HCC (25). A recently 
published study indicated that CD68+ M1 TAMs are associated 
with the induction of programmed death‑ligand 1 (PD‑L1) in 
HCC cells, which suggest they possessed a pro‑tumor role (26). 
Another analysis showed that CD68+ TAMs were associated 
with a poor prognosis (27). These results highlight the need for 
further investigations.

There are several mechanisms involved in immune 
suppression associated with TAMs. One of these is the 
interaction with PD‑L1, which was confirmed in vivo in 
mouse models where TAM‑derived PD‑L1 contributed more 
significantly to suppressing antitumor immunity than the 
host‑derived PD‑L1 (28). PD‑L2 expressed by TAMs is also 
involved in suppressing the host antitumor response in the 
murine microenvironment (29).

It is suggested that TAMs are involved in resistance to 
sorafenib through sustaining tumor growth and metastasis by 
secreting hepatocyte growth factor (HGF). This in turn may 
activate the HGF/c‑Met, ERK1/2/MAPK, and PI3K/AKT 
pathways in tumor cells. An interesting concept would be 
combining sorafenib with HGF inhibitors such as cabozantinib 
to improve treatment outcomes (30).

Most of the TAMs within the tumor microenvironment 
are M2 macrophages. Since M2 cells promote tumor devel‑
opment, downregulate M1 functions and adaptive immunity, 
and favor angiogenesis and regeneration of tissues, they could 
be a potential target for novel therapies. In a rat model, zole‑
dronic acid treatment enhanced the effects of transarterial 
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chemoembolization by inhibiting TAM infiltration and tumor 
angiogenesis (31).

As TAMs may influence tumor progression, several studies 
have attempted to neutralize their role. One of the approaches 
is to re‑educate TAMs using the M‑CSF receptor with pexidar‑
tinib (PLX3397), which inhibited tumor growth and increased 
the CD8+ lymphocyte count (32). In a preclinical setting, 
another agent that proved efficacious was baicalin (8‑bromo‑7
‑methoxychrysin) (33). Tocilizumab inhibits IL‑6 produced by 
TAMs, which may contribute to the suppression of tumorigen‑
esis (34). Inhibition of TAM recruitment was also suggested as 
a therapeutic option; this has been tested in studies targeting 
chemokine receptor type 2 (CCR2) antagonists and showed 
promising results (35,36).

4. Tumor‑infiltrating leukocytes (TILs)

TILs may be involved in the antitumor responses through the 
direct mechanisms of the adaptive immune system and modu‑
lation of the innate response or angiogenesis (37). Various 

cell subsets play different roles. First, NK cells and cytotoxic 
T lymphocytes are able to target tumor cells and thus prevent 
their progression, especially in the early stages. Later, the 
antitumor response is less pronounced, which correlates with 
patient prognosis (38).

Another subset of cells, regulatory T lymphocytes 
(Tregs, CD4+), may promote immune tolerance and inhibit 
the antitumor roles of other cells. One of these mecha‑
nisms is the secretion of TGF‑β and IL‑10, which inhibits 
CD8+ T‑cells (39). One subset, Th‑17 cells, secrete IL‑17 and 
this promotes disease progression by inducing angiogenesis, 
which is associated with poorer outcomes (36).

One of the roles of cytotoxic CD8+ lymphocytes is to 
prevent tumor progression by killing cancer cells. However, in 
the case of prolonged exposure to antigens, CD8+ lymphocytes 
differentiate into so‑called exhausted CD8+ cells with impaired 
cytotoxic functions (40). These exhausted CD8+ cells may be 
associated with decreased expression of cytokines, but also 
with increased expression of inhibitory receptors, including 
programmed cell death 1 (PD‑1), lymphocyte‑activation 

Table I. Summary of immune cells and their potential impact on the treatment and prognosis of HCC.

  Potential  
  prognostic/ 
Cell type Impact predictive factor (Refs.)

MDSCs Negative impact on immunoregulation Yes (10‑14)
 Increased neoangiogenesis  
 M2 polarization  
 Targeting MDSCs are associated with  
 increased response to sorafenib  
 Higher MDSC levels are inversely   
 correlated with overall and relapse‑free  
 survival  
TAMs   
  M1 macrophages (pro‑inflammatory) Antitumor response, but CD68+ M1  Yes (16,17,26)
 TAMs may be associated with the induction  
 of PD‑L1 in HCC cells (pro‑tumor role)
  M2 macrophages (anti‑inflammatory) Promotion of tumor progression Yes (18,19,23,24,30)
 Enhanced angiogenesis and metastasis  
 Poorer prognosis  
 Resistance to sorafenib  
TILs   
  NK cells Targets tumor cells to prevent tumor Yes  (38)
  Cytotoxic T lymphocytes (CD8+) progression Yes  (38,43)
  Regulatory T lymphocytes (CD4+) May promote immune tolerance and inhibit Yes  (36,39)
 the anti‑tumor‑promoting roles of other cells  
 Promotes disease progression by promoting  
 angiogenesis  
TANs Able to promote or inhibit the progression of Yes  (51,52)
 the disease  
 Resistance to sorafenib 

HCC, hepatocellular carcinoma; MDSCs, myeloid‑derived suppressor cells; TAMs, tumor‑associated macrophages; PD‑L1, programmed death 
ligand 1; TILs, tumor‑infiltrating lymphocytes; NK, natural killer; TANs, tumor‑associated neutrophils.
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gene 3, cytotoxic T lymphocyte‑associated antigen (CTLA‑4), 
and T cell immunoglobulin domain (41,42). TILs with high 
levels of PD‑1 expression exhibit higher expression levels of 
genes regulating T‑cell exhaustion (43).

The low presence of intratumoral Tregs with high intra‑
tumoral activated CD8+ cytotoxic cells (CTLs) was found to 
be associated with improved disease‑free survival (DFS) and 
OS (44). This is supported by the observation, that increased 
levels of regulatory T cells were correlated with CD8+ T‑cell 
impairment and poor survival in HCC patients (45). Low 
CD8+ cell counts were found to be associated with poorer 
survival in another study (46). It was also observed, that CD8+ 
infiltration was associated with a so‑called ‘immune cell 
stroma’ HCC type, which in comparison with ‘conventional 
stroma’, is characterized by the lack of catenin β1 (CTNNB1) 
mutations, global hypermethylation, expression of PD‑1 and 
PD‑L1 in TILs, and expression of PD‑L1 in tumors. This 
type was also associated with an improved prognosis (47). 
The results of several studies indicate that the inhibition of 
Treg‑induced suppression may be effective in restoring anti‑
tumor immune responses in several types of cancer (48‑50).

5. Tumor‑associated neutrophils (TANs)

The role of TANs in carcinogenesis is complex. TANs can 
promote as well as inhibit the progression of the disease, 
dependent on the cytokines released. The secretion of 
CCL‑2 or CCL17 is associated with poorer outcomes. Those 
cytokines may also promote the infiltration of Tregs and 
macrophages. This infiltration negatively correlates with 
survival. It is suggested that TANs are involved in sorafenib 
resistance (49). In vitro, when HCC cell lines were cocultured 
with TANs, colony formation, cell migration, invasion, and 
sphere formation were enhanced, while apoptosis was inhib‑
ited.

There is growing evidence, that miRNAs may regulate 
tumor progression in HCC. For example, miR‑301b‑3p was 
correlated with the tumor size and advanced stages of the 
disease. Knockdown of miR‑301b‑3p reduced proliferation, 
induced cell cycle arrest in the G2/M phase, and induced 
apoptosis. Furthermore, TANs secrete bone morphogenetic 
protein 2 and TGF‑β2 and increased miR‑301‑3p expression 
in HCC cells, which subsequently suppressed gene expression 
of limbic system‑associated membrane protein (LSAMP) 
and CYLD lysine 63 deubiquitinase (CYLD), and increased 
the acquisition of stem cell characteristics in HCC cells. 
TAN‑induced HCC stem‑like cells were hyperactive and 
further increased TAN infiltration, suggesting a positive 
feedback loop. In clinical HCC samples, increased quantities 
of TANs were correlated with elevated miR‑301b‑3p levels, 
decreased LSAMP and CYLD expression, and increased 
nuclear p65 accumulation and C‑X‑C motif chemokine 
ligand 5 (CXCL5) expression, all of which were associated 
with patient outcomes (50).

6. Tumor microenvironment and the response to systemic 
treatment

Sorafenib has been the standard of care for advanced HCC 
for several years. However, there are several challenges 

associated with sorafenib treatment, including low response 
rates, toxicity, and acquisition of drug resistance. The tumor 
microenvironment plays an essential role in mechanisms 
associated with resistance. Several studies have demonstrated 
that the infiltration of TANs and TAMs may be correlated 
with the sensitivity to sorafenib (51). Furthermore, treatment 
with sorafenib results in hypoxia related to the depletion of 
pericytes and a decreased number of vessels. It is suggested 
that sorafenib‑induced hypoxia may be associated with 
subsequent exosome‑mediated resistance to sorafenib (52). 
Characterization of the tumor microenvironment has led to the 
division of HCC into four immune subclasses. About 20% of 
patients present with an immunogenic subclass characterized 
by massive T cell infiltration and activation of the immune 
checkpoint pathway. These patients exhibit the best response 
not only to immunotherapy, but also to sorafenib (53).

In 2018, the results of a phase III trial with lenvatinib 
showed it to be effective in the first‑line treatment of HCC. 
It was also evaluated in combination with immunotherapy. 
Lenvatinib reduced the number of TAMs and increased 
the percentage of activated CD8+ T cells secreting IFN‑γ+ 
and granzyme B. It is worth noting that the exhaustion of 
CD8+ lymphocytes is one of the mechanisms involved in 
immune escape and cancer development. On the other hand, 
it is regulated by the PD‑1 signaling (54). These findings 
provide a scientific rationale for the combination therapy 
of lenvatinib with PD‑1 blockade (55). In a mouse model 
of HCC, the immunomodulatory activity of lenvatinib led 
to an enhanced response to anti‑PD‑1 treatment. In 2021, it 
was also suggested in a small retrospective study in which 
patients with HCC received lenvatinib with pembrolizumab 
or nivolumab (56,57).

7. Immune checkpoint inhibition

Immune checkpoint molecules control the immune response. 
One of the most important seems to be the PD‑1 receptor, 
which typically is induced on activated T cells, NK cells, 
B cells, and antigen‑presenting cells. Conversely, PD‑L1 is 
expressed by tumor cells, hepatocytes, hepatic stellate cells, 
and Kupffer cells or liver sinusoidal cells (58). PD‑L2 is 
another known ligand for PD‑1, and it is present on dendritic 
cells. Complex interactions between ligands and receptors 
dependent on the signals from the microenvironment lead to 
either cancer development or apoptosis.

Evidence from several studies indicates that patients with 
higher expression of PD‑L1 on tumor cells or immune cells are 
more likely to achieve benefits from treatment with checkpoint 
blockade (59,60).

The impact of PD‑1/PD‑L1 on the prognosis and treat‑
ment outcomes in HCC has been studied in several studies. 
However, the results have proven to be conflicting, and the 
underlying mechanism is not fully understood. It has been 
shown that patients with high expression of PD‑L1 and a high 
TIL presence tend to have better prognoses, whereas low 
expression of PD‑L1 and galectin‑9 and low CD8+ TIL counts 
are associated with poor HCC‑specific survival (46). On the 
other hand, the results of another study, where the PD‑L1 
expression was correlated with clinical and pathological 
features suggested that PD‑L1 expression by either neoplastic 
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or intratumoral inflammatory cells was associated with tumor 
aggressiveness (61). These conflicting results clearly show the 
need for further investigation of the immune landscape of the 
HCC microenvironment.

Of note, it has been suggested that stratifying tumors 
according to the expression of PD‑L1 and TILs could be 
helpful for predicting the response to treatment. Type 1 
cancers are characterized by PD‑L1+TILs+, and benefit from 
the single‑agent anti‑PD‑1/L1 blockade. Type 2 cancers 
(PD‑L1‑TIL‑) have been predicted to have poor responses to 
single‑agent immunotherapy and poorer prognoses. In type 3 
cancers (PD‑L1+TIL‑), PD‑L1 positivity is not a single predic‑
tive factor for determining the response to anti‑PD‑1/PD‑L1 
treatment, as without TILs, a reaction to blocking PD1/L1 
is unlikely. Finally, other suppressive mechanisms may be 
dominant for type 4 cancers (PD‑L1‑TIL+) (62). Thus, a simple 
distinction between the presence or absence of TILs or PD‑L1 
may not be sufficient. It is well established that other immune 
checkpoint molecules may be co‑expressed on T cells. For 
example, lymphocyte activation gene‑3 (LAG‑3), a nega‑
tive regulator of T cells is also expressed on T cells and its 
inhibition increases the antitumor response (63). It has been 
shown that HCCs may contain CD8+ T cells that express 
different levels of PD‑1. Those cells with a discrete population 
of PD‑1 high CD8+ T cells express T cell immunoglobulin 
and mucin‑domain‑containing protein‑3 (TIM‑3) or LAG‑3 
and can produce low levels of IFN‑γ or TNF in response to 
anti‑CD3. Incubation of these cells with antibodies against 
PD1 and TIM‑3 or LAG‑3 further restored proliferation and 
production of cytokines. The results of this study indicate that 
HCCs with a discrete population of PD1‑high CD8+ T cells 
may be more susceptible to combined immune checkpoint 
blockade‑based therapies (43).

Kurebayashi et al suggested that the tumor microen‑
vironment can be classified into three subtypes based on 
immunohistochemical analyses of the immune regulatory mole‑
cules; namely, Immune‑high, Immune‑mid, and Immune‑low. 
The Immune‑high subtype is characterized by increased 
B‑/plasma‑cell and T‑cell infiltration. The Immune‑high 
subtype and B‑cell infiltration were identified as independent 
positive prognostic factors. Furthermore, the Immune‑high 
subtype was found to be associated with poorly differentiated 
HCC, cytokeratin 19 (CK19)+, or Sal‑like protein 4 (SALL4)+ 
high‑grade HCC, and Hoshida's S1/Boyault's G2 subclasses. 
Finally, patients with high‑grade HCC of the predominant 
Immune‑high subtype had significantly better prognoses. 
The Immune‑mid subtype is characterized by moderately 
increased T‑cell and other immune cell infiltration with lesser 
B‑ and plasma‑cell infiltration, while the Immune‑low subtype 
is associated with even lower levels of infiltration. Depending 
on the Treg/CD4+ ratio, the Immune‑low type was subdivided 
into 2 classes (1‑lower Treg/CD4+ ratio; 2‑higher) (64).

As mentioned above, TIM‑3 is another regulatory 
molecule that plays a role in tumor progression. Its levels 
may be increased in CD4+ and CD8+ cells or TAMs, and 
this is correlated with a poorer prognosis. On the other 
hand, its suppression resulted in an increased antitumor 
response (13).

8. Immune checkpoint inhibitors assessed for treatment of 

HCC

Recently several immune checkpoint inhibitors have been 
evaluated as treatments for HCC. Most of the studies have 
focused on PD‑1/PD‑L1 inhibitors and CTLA‑4 inhibitors. 
Anti‑PD‑1 treatment with monoclonal antibodies was found to 
result in the blockade of PD‑1 interaction with PD‑L1 or PD‑L2 
expressed in antigen‑presenting cells, which is involved in the 
T‑cell antitumoral response. Checkpoint inhibition enhances 
T‑cell response and normalizes the immune response within 
the microenvironment (65).

From a clinical point of view, the most important inhibitors 
assessed were atezolizumab (anti‑PD‑L1) and bevacizumab 
(anti‑VEGF) in the ImBrave150 trial, which showed a signifi‑
cant response to the combined treatment, and has since become 
the recommended standard of care (66,67). Bevacizumab was 
shown to reduce tumor microvessel density and modulate the 
immune microenvironment through the reduction of infiltra‑
tion of tumor‑associated macrophages and the increase in 
tumor‑associated neutrophils (68). VEGF‑A produced in the 
tumor microenvironment enhances the expression of PD‑1 and 
other inhibitory checkpoints involved in CD8+ T‑cell exhaustion, 
and this could be inhibited using anti‑angiogenic agents targeting 
VEGF‑A and/or VEGFR (69). Thus, anti‑VEGF therapy leads 
to the reduction of immunosuppressive factors within the tumor 
and its microenvironment and is associated with increased T‑cell 
infiltration, which together enhances the response to immuno‑
therapy. Atezolizumab is a monoclonal antibody that directly 
binds to PD‑L1 and provides a dual blockade of the PD‑1 and 
B7.1 receptors, releasing PD‑L1/PD‑1 mediated inhibition of the 
immune response, including the reactivation of the antitumor 
immune response without inducing antibody‑dependent cellular 
cytotoxicity. The effect of anti‑VEGF and anti‑PD‑1/PD‑L1 
treatment is illustrated in Fig. 1.

Of note, combined treatment with bevacizumab and 
atezolizumab was associated not only with improved survival 
[median progression‑free survival (PFS) was 6.8 months vs. 
4.3 months in the sorafenib group; hazard ratio (HR) 0.59; 
95% confidence interval (CI), 0.47‑0.76; P<0.001], but also 
with the maintenance of the quality of life (11.2 months vs. 
3.6 months in patients treated with sorafenib; HR 0.63; 95% 
CI, 0.46‑0.85) (70).

The Check‑Mate 459 trial compared nivolumab (anti‑PD‑1) 
with sorafenib as a first‑line treatment for HCC. Although the 
objective response rate was higher in the investigational arm, 
the increase in OS was not significant (71). Nivolumab was also 
evaluated in combination with ipilimumab (anti‑CTLA‑4) in 
the phase 1/2 trial CheckMate 040, where manageable safety, 
promising objective response rates, and durable responses 
were shown (72).

Pembrolizumab is a humanized monoclonal antibody that 
blocks the interaction of the PD‑1 receptor with PD‑L1 and 
PD‑L2, which results in the enhancement of the antitumor effect 
of the immune system associated with T‑cell responses (73). 
Based on the promising results of the phase II trial Keynote 
224 (74), pembrolizumab was evaluated as a second‑line treat‑
ment for HCC in the Keynote 240 trial. However, the results 
did not show a notable clinical benefit (75).

Combined treatment with tremelimumab, an anti‑CTLA4 
antibody, and durvalumab showed promising results in patients 
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with advanced HCC in a phase I/II trial (76). It is also being 
investigated in the phase III HIMALAYA trial (77).

Several other immunotherapeutic agents are under evalu‑
ation in various combinations with tyrosine kinase inhibitors 
or other immunotherapeutic drugs. Select phase III trials are 
summarized in Table II (78‑91). The results of the already 
published trials suggest that there are groups of patients that 
may benefit more from immunotherapy compared with others. 
Currently, it seems to be crucial to identify predictive factors 
for the response to targeted therapy. It is suggested that the 
microenvironment may play an important role in the response 
to the treatment.

A very interesting topic is the use of immunotherapy in 
patients that qualify for liver transplants. There are limited 

data regarding the use of immunotherapy for downstaging 
or bridging therapy from clinical case reports (92,93). The 
use of adoptive immunotherapy with liver allograft‑derived 
NK cells was evaluated in a study presented during the 2015 
American Transplant Congress, and it was suggested that this 
approach may improve RFS (94). Immunotherapy was also 
used for recurrent HCC treatment after liver transplantation. 
Interestingly, a case report where ipilimumab was used in a 
patient with recurrent HCC after liver transplantation described 
a durable response and no rejection of the organ (95). However, 
it should be noted that immunotherapy may increase the risk 
of liver rejection and therefore should be considered rather as 
a salvage therapy rather than a first‑line approach (96). Clearly, 
there is a need for additional data.

Figure 1. Anti‑VEGF and anti‑PD‑1/PD‑L1 treatment: Mechanism of action. PD, programmed death; PD‑L1, programmed death‑ligand 1; VEGF, vascular 
endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.
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9. Immune microenvironment factors associated with the 
response to immunotherapy

The response to treatments depends on several mechanisms 
and the specific characteristics of the tumor, the local micro‑
environment, as well as the host itself. Firstly, since most of the 
immunotherapeutics that showed clinical efficacy are check‑
point inhibitors, it has been suggested that the expression of 
PD‑1 may be a reliable predictive factor. It has been shown that 
in patients with head and neck cancers (97), melanoma (98), 
or lung cancer (99), increased PD‑1 expression was associated 
with better treatment outcomes.

Interestingly, in the Check‑Mate 040 trial, expression of 
PD‑L1 in >1% of the tumor cells was detected in 20% of patients. 
However, the objective response between patients with higher 
expression of PD‑L1 in comparison to those with low expres‑
sion did not differ significantly: 26 vs. 19% (95% CI 13‑26). 
This suggests that other mechanisms may be involved in the 
response to immunotherapy (66). Potentially, this could be 
related to the expression of PD‑1 and PD‑L1 on tumor‑infil‑
trating lymphocytes.

Furthermore, in a small phase II trial where patients 
with advanced HCC were treated with pembrolizumab after 
sorafenib failure, the response was not correlated with either 
PD‑L1 tumor staining, prior sorafenib therapy or a history of 
hepatitis. Correlative studies revealed high baseline plasma 

TGF‑β levels (≥200 pg/ml) were significantly correlated with 
poor treatment outcomes after pembrolizumab. Tumor PD‑L1 
and plasma PD‑L1/PD‑1 levels were associated with plasma 
IFN‑γ or IL‑10. However, those results need caution due to the 
low number of patients (n=28) (100).

Recently it was demonstrated that androgen receptors may 
inhibit the expression of PD‑L1 in HCC. It was found that the 
androgen receptor is overexpressed in the nucleus of ~37% 
of HCC tumors, which is significantly associated with an 
advanced disease stage and poorer survival rates. It has also 
been suggested that the overexpression of androgen receptors 
may be related to a worse response to PD‑L1 inhibitors (101).

Studies conducted in non‑small cell lung cancer high‑
lighted the role of EGFR signaling in the regulation of the 
host immunity and tumor microenvironment. Cell lines with 
mutant EGFR exhibit increased expression of PD‑L1 compared 
to wild‑type EGFR cells (102).

There are several questions regarding the potential use 
of PD1/PD‑L1 expression as a predictive factor. Firstly, the 
expression of PD‑L1 could be present on tumor cells or on 
immune cells, which may play an essential role in the response 
to immunotherapy (103). In patients with HCC, a low baseline 
intratumoral CD4+/CD8+ T‑cell ratio was associated with a 
better OS. Response to PD‑1/PD‑L1 therapy showed a trend 
of high baseline frequency of intratumoral PD‑1 CD8+ T cells. 
However, LAG‑3 and TIM‑3 upregulation was also observed 

Table II. Selected phase III trials with various immunotherapy approach for HCC.

Clinicaltrials.gov   
number Design Status (Refs.)

NCT02851784 Combination therapy of microwave ablation and expanding activated Completed (78)
 autologous lymphocytes   
NCT02562755 Vaccinia virus‑based immunotherapy (Pexa‑Vec) followed by sorafenib vs. Completed (79)
 sorafenib 
NCT05033522 Living allogeneic Th1‑like cells with anti‑CD3/CD28 microbeads attached Not yet recruiting (80)
 derived from precursors purified from healthy blood donors that are 
 differentiated and expanded ex‑vivo vs. FOLFOX regimen 
NCT02576509 Nivolumab vs. sorafenib as first‑line treatment  Active, not recruiting (81)
NCT02678013 RFA+highly‑purified CTL vs. RFA alone for recurrent HCC Active, not recruiting (82)
NCT04167293 Combination of sintilimab and stereotactic body radiotherapy Recruiting (83)
NCT03949231 Infusion of PD‑1/PDL‑1 inhibitor via hepatic arterial vs. vein  Recruiting (84)
NCT04229355 DEB‑TACE plus lenvatinib or sorafenib or PD‑1 inhibitor for Recruiting (85)
 unresectable HCC  
NCT00699816 Adjuvant adoptive immune therapy using a CIK cell agent Completed (86)
 (Immuncell‑LC) vs. non‑treatment group in HCC 
NCT02709070 Resection+highly purified cytotoxic T lymphocytes vs. resection alone Active (87)
NCT04268888 Nivolumab in combination with TACE/TAE  Recruiting (88)
NCT03867084 Adjuvant pembrolizumab vs. placebo in HCC with complete Recruiting (89)
 radiological response after surgical resection or local ablation 
NCT04682210 Adjuvant sintilimab plus bevacizumab in HCC after resection Not yet recruiting (90)
NCT01749865 Adjuvant cytokine‑induced killer cell  treatment in HCC after resection Completed (91)

HCC, hepatocellular carcinoma; RFA, radiofrequency ablation; CTL, cytotoxic T lymphocytes; HCC, hepatocellular carcinoma; PD, programmed 
death; L, ligand; CIK, cytokine‑induced killer cell; DEB‑TACE, drug‑eluting bead transarterial chemoembolization; TAE, trans‑arterial embo‑
lization.
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in circulating T cells in patients who did not respond to 
PD‑1/PD‑L1 pathway blockade (103).

Furthermore, currently, there is no standard for assessing 
the cut‑off value for PD‑L1 positivity and there are various 
kits used, which makes the comparison between studies more 
difficult. It was also shown that the expression of PD‑L1 may 
change during the disease (104,105). On the other hand, it 
has been suggested that other factors associated with the 
tumor microenvironment may be necessary for predicting 
the response to immunotherapy. Recently, a classification of 
tumor microenvironments based on TILs and PD‑L1 expres‑
sion was described. Furthermore, it is suggested, that there 
is an immune class of HCC tumors which may be further 
divided into two subtypes, characterized by markers of an 
adaptive T‑cell response or exhausted immune response. 
The exhausted immune response subclass expresses several 
genes regulated by TGF‑β1 that mediate immunosuppres‑
sion. According to the authors, these findings indicate 
that some HCCs may be susceptible to therapeutic agents 
designed to block the regulatory pathways in T cells, such as 
PD‑L1, PD‑1, or TGF‑β1 inhibitors (106). In another study, a 
high number of PD‑1+ TILs was shown to be associated with 
prolonged OS and DFS in patients with HCC who received 
surgery and adjuvant cytokine‑induced killer cells treat‑
ment (107).

Of note, it was suggested that the response to immuno‑
therapy may depend on the specific liver disease background, 
such as a viral infection. However, a recently published 
meta‑analysis of 8 studies suggested that there was no 
significant difference in objective response rate between 
virally infected HCC and non‑viral HCC patients [OR=1.03 
(95% CI, 0.77‑1.37; I2=30.9%, pH=0.152)]. Similarly, there was 
no difference between HBV‑HCC and HCV‑HCC patients in 
terms of objective response rate [OR=0.74 (95% CI, 0.52‑1.06; 
I2=7.4%, pH=0.374)]. The infiltration of immune cells in the 
tumor microenvironment did not differ by etiology except for 
M0 macrophages, M2 macrophages, regulatory T cells, naive 
B cells, follicular helper T cells, activated dendritic cells, 
activated mast cells, and plasma cells. Despite differences in 
infiltration observed in specific cell types, the immune score 
and stromal score were generally comparable among the 
different etiological groups (108).

Interestingly, it was suggested that immune checkpoint 
inhibitors may be ineffective in non‑alcoholic steatohepatitis 
(NASH)‑related HCC. This was observed in a preclinical 
model as well as in a meta‑analysis of three randomized 
phase III clinical trials that tested inhibitors of PD‑L1 or 
PD‑1 in >1,600 patients with advanced HCC. According to the 
results, immunotherapy did not improve survival in patients 
with non‑viral HCC. In two additional cohorts, patients with 
NASH‑driven HCC who received anti‑PD‑1 or anti‑PD‑L1 
treatment showed reduced OS compared with patients with 
other aetiologias (109).

10. Additional potential biomarkers and predictive factors 
for the response to immunotherapy

Since radical treatment options are limited, and the prognosis 
for patients with advanced HCC remains poor, there is a need 
to identify reliable biomarkers of HCC to better tailor patient 

therapy. Several potential biomarkers for the response to 
immunotherapy have been investigated in HCC.

Several other mechanisms may be involved in the response 
to immunotherapy. The gut‑liver axis and the colon micro‑
biome are some of the suggested factors associated with the 
response to immunotherapy. In a small study, where 8 patients 
with progressive disease after sorafenib failure were treated 
with nivolumab, fecal samples were collected and analyzed at 
baseline, after 1 week, and every 3 weeks after that. Variations 
in the gut bacteria were analyzed by metagenomic sequencing. 
It was observed that fecal samples from patients responding 
to immunotherapy showed higher taxa richness and increased 
gene counts than non‑responders (110). Another mechanism 
potentially involved in the response to immunotherapy 
includes exosomes due to their role in the communication 
between host and tumor cells. Exosomes are involved in the 
transfer of proteins, DNA, and RNA. Exosomes could serve 
as biomarkers for early‑stage HCC and as a possible target 
for therapy (111). There are several exosomal biomarkers for 
the prediction of survival in HCC, i.e. proteins involved in 
angiogenesis (S100A11, S100 calcium‑binding protein A11) 
and numerous microRNAs such as miR‑29b‑3p, miR‑30d‑5p 
which are involved in cell migration, or miR‑210 which is 
associated with angiogenesis (112,113). Another example 
may be exosomal circulating RNA (circPTGR1) which was 
suggested to promote HCC metastasis. Finally, exosome‑based 
strategies to deliver drugs into tumors and the microenviron‑
ment showed promising results in preclinical and clinical 
trials (114‑116). The complexity of the interplay between host 
and tumor requires further studies to identify reliable predictive 
factors. Other factors include tumor mutational burden (TMB), 
defined as the total number of mutations in the tumor exome. 
However, it seems to be relatively rare in HCC; in a recently 
published report median TMB was 4 mutations/Mb and only 
6 tumors (0.8%) were classed as TMB‑high. Out of 542 cases 
assessed for microsatellite instability (MSI), one (0.2%) was 
MSI‑high and TMB‑high. TMB may be associated with 
MSI or DNA mismatch repair gene deficiency. In a recently 
published analysis, the most commonly altered genes were 
TERT (44%), TP53 (35%), CTNNB1 (31%), ARID1A (12%), 
and MYC (12%) (117).

Currently, there are a vast group of biomarkers being 
investigated for HCC. They include post‑translational modifi‑
cations such as phosphorylation, glycosylation, ubiquitination, 
or acetylation. These changes are involved in various physi‑
ological processes, but also in disease progression (118). Next, 
generation sequencing techniques (NGS) are proving to be 
very powerful and valuable methods. Potentially, thanks 
to NGS profiling, patient responses to treatments may be 
predictable. An analysis showed that in patients with HCC, the 
WNT/β‑catenin pathway (45%) and TP53 (33%) alterations 
were frequent and represented mutually exclusive molecular 
subsets. In sorafenib‑treated patients (n=81), oncogenic 
PI3K‑mTOR pathway alterations were associated with lower 
disease control rates (DCR, 8.3 vs. 40.2%), shorter median 
PFS (1.9 vs. 5.3 months), and shorter median OS (10.4 vs. 
17.9 months). Conversely, patients treated with immune check‑
point inhibitors (n=31) activating altered WNT/β‑catenin 
signaling had lower DCR (0% vs. 53%), shorter median 
PFS (2.0 vs. 7.4 months), and shorter median OS (9.1 vs. 
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15.2 months) (119,120). Potential factors involved in response 
to immunotherapy are summarized in Fig. 2.

Since histological specimens may not always be available 
in HCC, factors that could be assessed from blood examina‑
tions would be of value. A number of soluble factors such as 
cytokines are of interest. In a phase II study, where several 
circulating biomarkers were evaluated, low baseline levels of 
TGF‑β were significantly associated with improved OS and PFS 
after treatment with pembrolizumab in advanced, unresectable 
HCC (100,120). However, a detailed analysis is beyond the 
scope of this review. A recently published analysis showed that 
in patients with unresectable HCC, treated with nivolumab or 
pembrolizumab, an early decrease in α‑fetoprotein levels was 
associated with an increased objective response and increased 
survival. Moreover, albumin/bilirubin grade and Child‑Pugh 
classification determined survival based on immunotherapy 
treatment (121).

11. Conclusions

This review briefly summarizes the current body of knowledge 
regarding immune cells within the tumor microenvironment 
in HCC. However, other factors may play important roles, such 
as tumor mutational burden or microsatellite instability (122). 
The changing landscape of the treatment possibilities in 
advanced HCC makes the role of predictive factors rise. Thus, 
there is a need to identify reliable factors that may help tailor 
treatments to the specific disease characteristics presented.
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