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Abstract. In tumor research, the occurrence and origin of 
tumors are the fundamental problems. In the 1970s, the basic 
discussion of the developmental biology problem of tumors 
was proposed, and it was believed that tumorigenesis is closely 
related to developmental biology. Tumors are abnormal biolog‑
ical structures in organisms, and their biological behavior is 
very similar to that of the early embryo. Many tumor‑related 
genes also serve regulatory roles in the normal development 
and differentiation of embryos. However, it remains unclear 
whether gene expression in early embryos has any similari‑
ties with tumor cells. In this study, to compare the similarities 
and differences in gene expression between early embryos 
and tumor cells, reverse transcription‑quantitative PCR was 
conducted to determine and compare the relative expression 
levels of nine tumor‑related genes in the brain glioma cell line, 
T98G, and in the early embryo of Spodoptera litura, which is 
fast‑growing, low‑cost, easily accessible and easy to observe. 
The expression of tumor‑related genes in early embryos and the 
similarity of regulatory mechanisms between early embryonic 
development and tumor growth were explored. In conclusion, 
tumor growth may be regarded as an abnormal embryogenic 
activation that happens in the organs of adult individuals. 

Introduction

The treatment and prognosis of tumors has been a major 
focus of research in tumor‑related studies, and the study of 
tumor pathogenesis and mechanisms of tumorigenesis is even 
more difficult than the study of tumor treatment. In the 1970s, 
Pierce and colleagues proposed that tumors are a develop‑
mental biology problem, and he believed that tumorigenesis 
is closely related to developmental biology  (1,2). In 1892, 
Lobstein and Recamier presented a fundamental discussion 
on whether tumors are embryonic physiological disorders and 
their origin (3‑5). They argued that tumors are formed by the 
continuous proliferation of embryonic cells stored in the body 
for a long time and that there is a high degree of similarity 
between tumors and embryos (6). Moreover, a study has shown 
that genes related to tumors can affect the normal develop‑
ment and differentiation of cells (7). Tumors are the products 
of embryonic gene expression and the result of the activa‑
tion and expression of numerous oncogenes in the body (7). 
Early studies have confirmed that interconversion between 
tumor cells and early embryonic cells is possible under 
specific conditions (8,9). In 2000, Hanahan and Weinberg (2) 
proposed six major characteristics of tumor cells, including 
unlimited replication, tissue invasion, insensitivity to growth 
resistance, self‑sufficient growth, evasion of apoptosis and 
sustained angiogenesis. Subsequently, in 2011, they added four 
more features of tumor cells, including genomic instability, 
promotion of inflammation, avoidance of immune response 
and energy dysregulation (10). These characteristics are very 
similar to the biological features of early embryonic cells. For 
example, gene methylation and demethylation, cell implanta‑
tion, functional gene expression, cellular immune evasion and 
other such aspects in the early embryonic growth and develop‑
ment are strikingly like the biological function and behavior 
of tumor cells (11‑14). Both embryonic and tumor cells can 
be deprogrammed to achieve a proliferative stem cell state 
with potential for apoptosis and invasiveness. Therefore, it is 
hypothesized that the set of genes expressed in tumor cells may 
be the same as those expressed in embryonic cells, particularly 
those genes involved in deprogramming, proliferation and 
undifferentiation (4,15‑21).
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The present study focused on the similarity of gene expres‑
sion related to early embryonic development and tumor growth. 
Nine factors highly associated with tumor regulation, including 
MYC, MYB, BCL‑2, BCL‑2‑interacting protein 3 (BNIP3), 
p53, PTEN, PI3K, AKT and mTOR were selected as experi‑
mental research subjects. These nine factors occupy important 
positions in the large regulatory network of the body (22‑27). 
Changing of their expression may lead to changes or even 
loss of control of the regulatory network (22,26‑37). In addi‑
tion, these factors are highly related to the development and 
growth, regulatory mechanisms and microenvironment main‑
tenance of early embryos (4,6,17,30,38‑42). MYC (29,31,43), 
MYB  (26), BCL‑2  (44‑46), BNIP3  (47), p53  (27,48), 
PI3K (22,28), AKT (23,49) and mTOR (32,50‑53) are regarded 
as proto‑oncogenes that serve important roles in cell prolif‑
eration and differentiation, apoptosis, cell cycle regulation and 
metabolic processes. In previous studies of mouse embryonic 
development, high mRNA and protein expression levels of 
these proto‑oncogenes were also detected in mouse embryos. 
The expression of these proto‑oncogenes was highly associ‑
ated with the successful implantation of fertilized eggs into the 
uterus, which could be determined by observing whether the 
mice became pregnant (6,30,38‑42,45,54‑56).

The main function of the anti‑oncogenic biomarker, PTEN, 
is to promote apoptosis and hinder cell proliferation, migra‑
tion and local adhesion (57). Downregulation or loss of PTEN 
expression was found in a variety of tumors, such as non‑small 
cell lung cancer and glioma (37,57). A previous study showed 
that PTEN has low expression levels in the zygote and blasto‑
cyst stages in early embryonic development of mice (58).

Since the early embryos used in the present study were 
those before gastrulation, it was impossible to obtain human 
or large primate early embryos due to ethical restrictions. 
Furthermore, retrieving the early embryos of mice could be 
painful for the mice (59). Therefore, the insect model was 
chosen in the present study. Drosophila could be a good model 
as much of the research on humans has been conducted with 
Drosophila (60). However, the eggs of Drosophila are too 
small to clearly distinguish the embryonic development stage 
within them (61). 

Spodoptera  litura is an omnivorous and gluttonous 
lepidopteran pest and is closely related to Drosophila (62). 
Their eggs are ideal for early embryonic studies, as they are 
flat and hemispherical, with a diameter of about 0.4‑0.5 mm; 
they are yellow and white when they are newly laid, turning 
black before hatching, and the eggs are neatly stacked 
together (63,64). S. litura early embryonic development occurs 
between 1 and 8 h after egg laying, with the earliest divisions 
generally occurring at 2 h after egg laying  (63,64). In the 
present study, the newly laid eggs of S. litura were used to 
analyze the expression of genes related to tumor metabolism, 
to understand the similarities and differences between these 
early embryos and tumors.

Materials and methods

Materials. Experiments involved two different cell lines, T98G 
human glioma (65) and human astrocyte (HA) (66), which 
were provided by the Kunming Institute of Zoology, Chinese 
Academy of Sciences (Kunming, China). The original T98G 

cells were purchased from American Type Culture Collection 
(CRL‑1690) and the HA cells were purchased from ScienCell 
Research Laboratories, Inc. (#1800). S. litura was from the 
Key Laboratory of the University in Yunnan Province for 
International Cooperation in Intercellular Communications 
and Regulations, Yunnan University (Kunming, China).

S. litura breeding. S. litura were maintained in an artificial 
climate incubator in the following conditions: Temperature, 
27±1˚C; humidity, 60‑80%; and 12‑h light/dark cycle (67). 
Larvae were feed with artificial synthetic diet and adult moths 
were feed with 10% honey solution. The formulation of the arti‑
ficial diet was the same as that used by the Key Laboratory of the 
University in Yunnan Province for International Cooperation 
in Intercellular Communications and Regulations  (67). 
Provision of food and water was ad libitum. Both the larvae 
and adult moths were fed with a diet containing a large amount 
of water, so additional drinking water was not provided. The 
feed and honey solution were refreshed every 2 days. Larvae 
between first and sixth instar were kept in breathable boxes 
until pupation began. Larvae were transferred to a fine sand 
box for pupation. The pupae were separated from the male and 
female according to the position of the cloaca on the pupae. 
After emergence, the adult S. litura were placed in glass boxes 
with a 1:1 sex ratio to mate and lay eggs; they were fed with 
honey solution at the bottom of the boxes. The mating and 
spawning of the eggs were recorded. Two hours after oviposi‑
tion, the eggs for RNA extraction were harvested and put into 
liquid nitrogen for preservation. The hemocytes of 3rd instar 
larvae were extracted for use as a control. The hemolymph was 
allowed to escape by puncturing the hematopoietic cavity from 
the larval gastropods and collecting it in a 1.5‑ml Eppendorf 
tube containing 5 µl 5% reduced glutathione. After obtaining 
1  ml hemolymph, it was gently pipetted and centrifuged 
at 10,000 x g for 5 min at 4˚C. The precipitated fraction was 
hemocytes.

Cell culture. T98G and HA cells were thawed at 37˚C, centri‑
fuged at 500 x g for 1 min at room temperature to remove 
DMSO, and cultured as follows: The T98G cells were cultured 
at 37˚C in a 5% CO2 atmosphere in Eagle's Minimum Essential 
Medium containing L‑glutamine (Gibco; Thermo Fisher 
Scientific, Inc.) with the addition of 10% (v/v) fetal bovine 
serum (FBS) (Lonza Group Ltd.) and 1% (v/v) solution of 
penicillin and streptomycin (Gibco; Thermo Fisher Scientific, 
Inc.) (65). HA cells were cultured in HA medium containing 
DMEM/F12 (Gibco; Thermo Fisher Scientific, Inc.), 10% 
(v/v) FBS (Gibco; Thermo Fisher Scientific, Inc.), 2% B27 
supplements (Gibco; Thermo Fisher Scientific, Inc), 3.5 mM 
glucose (Sigma‑Aldrich), 10 ng/ml fibroblast growth factor 2 
(Alomone Labs), 10 ng/ml epidermal growth factor (Alomone 
Labs), and 1% penicillin/streptomycin (Gibco; Thermo Fisher 
Scientific, Inc.) (66).

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA samples for qPCR were extracted with RNA extraction 
kit (R6934‑01; Omega Bio‑Tek, Inc.), reverse transcription was 
carried out using a PrimeScript™ RT reagent Kit (RR047Q; 
Takara Bio, Inc.) according to the manufacturer's protocol and 
the concentration was determined. The relative expression 
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levels of nine tumor‑related genes and β‑actin in early embryos 
and hemocytes of S. litura, the T98G and HA cell lines were 
measured by qPCR using an Applied Biosystems 7500 Fast 
Real‑Time PCR System (Thermo Fisher Scientific, Inc.). The 
qPCR reaction procedure was as follows: 2 min at 50˚C and 
10 min at 95˚C to activate the enzyme; 5 sec at 95˚C and 35 sec 
at 60˚C for 40 PCR cycles; 15 sec at 95˚C, 1 min at 60˚C, 
30 sec at 95˚C and 15 sec at 60˚C to determine the melt curve. 
mRNA levels were quantified using the 2‑ΔΔCq method (68) and 
normalized to the internal quantitative reference gene β‑actin. 
The primers used for T98G and HA cells are listed in Table SI, 
and those used for S. litura are listed in Table SII.

Artemether (ART) treatment. Hatching rate measurement, head 
width measurement and ART treatment were conducted under 
S. litura breeding conditions. Newly laid eggs of S. litura were 
soaked for 10 sec at 27˚C in 1 ml ART solution [300 ng/µl 
dissolved in 0.1% (v/v)] three times each day until eggs started 

hatching. As a blank control, newly laid eggs were soaked for 
10 sec at 27˚C in 1 ml H2O, and as a negative control, newly 
laid eggs were soaked for 10 sec at 27˚C in in 1 ml 0.1% DMSO 
solution. ART itself is slightly soluble in water and 0.1% 
DMSO was added to the solution to increase the solubility of 
ART, so a 0.1% DMSO negative control group was set up in 
this experiment. The hatching rate of eggs was counted after 
2 days of treatment. For the experiment on larvae ART treat‑
ment, 270 healthy newly hatched larvae were reselected and 
were divided into three groups. The groups of larvae were fed 
with a normal diet, a diet containing 0.1% DMSO and a diet 
containing 300 ng/µl ART, respectively, for 14 days until they 
pupated. During the feeding period, the width of the larvae's 
head capsule was measured once a day. All ART treatment 
experiments included three independent replicates.

Neighbor joining (NJ) tree construction. The gene sequences 
of MYB, MYC, BCL‑2, BNIP3, p53, PI3K, AKT, mTOR and 

Figure 1. NJ phylogenetic tree of oncogenes and anti‑oncogenes in 20 species. NJ phylogenetic trees of the oncogenes (A) MYB, (B) MYC, (C) BCL‑2, 
(D) BNIP3, (E) p53, (F) PI3K, (G) AKT and (H) mTOR as well as for (I) the anti‑oncogene PTEN in 20 species, including Spodoptera litura and Homo sapiens. 
BNIP3, BCL‑2‑interacting protein 3; NJ, neighbor joining. 
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PTEN of S. litura, Homo sapiens and 18 other invertebrates 
and vertebrates were downloaded from the NCBI database 
(https://www.ncbi.nlm.nih.gov/gene/?term=). The accession 
numbers of all downloaded sequences are listed in Table SIII. 
The FASTA file was analyzed with MEGA7.0 (69), and the 
systematic cluster tree was constructed by NJ.

Statistical analysis. mRNA expression levels between 
T98G cells and HA cells, and between early embryos and 
larval hemocytes were compared by unpaired Student's 
t‑test. mRNA expression of H2O‑treated, DMSO‑treated 
and artemether (ART)‑treated eggs was compared using 
one‑way ANOVA and Tukey. The hatch rate of H2O‑treated, 
DMSO‑treated and ART‑treated eggs was compared using 
Fisher's test. The 14‑day measurements of larvae head 

capsule width in the H2O‑treated, DMSO‑treated and 
ART‑treated larvae were compared using two‑way ANOVA 
and Tukey. The 14‑day measurements of larvae head 
capsule width were also compared within all three groups 
using two‑way ANOVA and Tukey to confirm normal 
larval growth within the group  (70). GraphPad Prism 
9.0 (GraphPad Software, Inc.) was used for data analysis 
and graph plotting. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Gene building sequence alignment of S. litura. As shown in 
Fig. 1, MYB, MYC, BCL‑2, BNIP3, p53, PI3K, AKT, mTOR 
and PTEN genes are related between the 20 species, indicating 

Figure 2. Relative mRNA expression levels of eight oncogenes and an anti‑oncogene in T98G and HA cells. mRNA expression levels of the oncogenes 
(A) MYB, (B) MYC, (C) BCL‑2, (D) BNIP3, (E) p53, (F) pI3K, (G) AKT and (H) mTOR and (I) the anti‑oncogene PTEN in T98G human glioma and HA 
human astrocyte cells. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. BNIP3, BCL‑2‑interacting protein 3; ns, not significant. 
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the evolutionary developmental conservation of the nine 
tumor‑related factors.

mRNA expression levels of tumor marker genes in T98G cells. 
The mRNA expression levels of eight oncogenes including 
MYB, MYC, BCL‑2, BNIP3, p53, PI3K, AKT and mTOR in 
T98G and HA cells were detected (Fig. 2A‑H). The results 
demonstrated that the mRNA expression levels of the eight 
oncogenes in T98G cells were significantly higher compared 
with that in the control group. The mRNA expression level 
of the anti‑oncogene, PTEN, in T98G cells was significantly 
lower compared with that in the HA cell control group 
(Fig. 2I). These results demonstrated that seven of these nine 
genes may be excellent indicators of tumor cells. As soon as 
the expression of these marker genes is detected, it is possible 

to distinguish cells which are more like tumor cells, and which 
are not.

mRNA expression of tumor marker genes in early embryos and 
larval hemocytes of S. litura. The mRNA expression levels of 
the eight oncogenes (MYB, MYC, BCL‑2, BNIP3, p53, PI3K, 
AKT and mTOR) and the anti‑oncogene (PTEN) were deter‑
mined in S. litura early embryos and larval hemocytes (Fig. 3). 
The results demonstrated that the mRNA expressions of the 
eight oncogenes in early embryos were significantly higher 
compared with that in the larval control group (Fig. 3A‑H). 
mRNA expression of the anti‑oncogene, PTEN, in early 
embryos was significantly lower compared with that in the 
larval hemocytes control group (Fig. 3I). The expression levels 
of these oncogenes in early embryos of S. litura showed the 

Figure 3. Relative mRNA expression of eight oncogenes and one anti‑oncogene in early embryos and larval hemocytes of Spodoptera litura. mRNA expression 
levels of the oncogenes (A) MYB, (B) MYC, (C) BCL‑2, (D) BNIP3, (E) p53, (F) pI3K, (G) AKT and (H) mTOR, as well as (I) the anti‑oncogene, PTEN, in 
early embryonic and larval hemocyte cells. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. BNIP3, BCL‑2‑interacting protein 3. 
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same trend in T98G cells, suggesting that the metabolisms of 
tumor cells are more like S. litura early embryos than differ‑
entiated cells such as hemocyte.

Anti‑cancer drugs cause the death of eggs but not fully devel‑
oped larvae. In our previous studies, ART was demonstrated 
to exhibit excellent antitumor effects in vitro and in vivo via 
targeting several oncogenes and anti‑tumor genes (36,71‑75). 
The results demonstrated that the hatching rate of eggs was 
significantly decreased after ART treatment compared with 
H2O treatment and DMSO treatment (Fig. 4A). Furthermore, 
following ART treatment, the mRNA expression levels of 
PI3K, AKT, mTOR and p53 of early embryos were also signifi‑
cantly downregulated (Fig. 4B). However, when S. litura 1st 

instar larvae, which had completed their embryonic develop‑
ment and emerged from eggs, were fed the same concentration 
of ART solution for 14 days, the growth and development of 
larvae were not significantly affected (Fig. 4C). These results 
suggested that embryonic development may share some simi‑
larities with tumor cells in terms of gene expression, which can 
be altered by ART.

Discussion

Malignant glioma is one of the most serious tumors, yet little is 
known about the pathogenesis of malignant glioma and other 
tumors (36). The causes of tumor formation are a matter of 
developmental biology. In our perspective of view, oncogenic 

Figure 4. Viability of Spodoptera litura eggs and embryos following treatment with the anti‑tumor compound, ART. (A) Eggs looked still healthy and glossy 
after treatment with H2O and DMSO, but the eggs became no longer glossy and gradually turned black after treatment with ART, indicating that the eggs had 
started to die. The hatch rates of S. litura eggs were significantly decreased after ART treatment. ***P<0.001. (B) The mRNA expression levels of PI3K, AKT, 
mTOR and p53 in S. litura embryos treated with ART were reduced. *P<0.05; **P<0.01; ***P<0.001. (C) Head capsule width was measured and analyzed to 
evaluate the growth and the development of S. litura larvae in H2O‑treated, DMSO‑treated and ART‑treated larvae. To indicate normal larval growth within 
the group, the larval head capsule widths within a single group were also compared with those of newly hatched 1st instar larvae on day 1. All three groups of 
larvae showed the same growth trend. **P<0.01, ***P<0.001 and ****P<0.0001 vs. day 1 (same group). No significant differences in growth trends were observed 
among the larvae of the ART, DMSO and control groups. ART, artemether; ns, not significant. 
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factors in the environment and oncogenes in cells may initiate 
the rapid cell division, an ability obtained by cells after they 
became embryonic stem cells to ensure survival (76). In the 
absence of oncogenic stimulation, the rate of cell division 
would be reduced. Therefore, simply looking for carcinogenic 
factors and cancer suppressing drugs is not a solution to the 
cancer treatment problems such as side effects and drug resis‑
tance. From this perspective, the present study focused mainly 
on the similarity of the regulatory mechanisms between early 
embryonic development and tumor growth.

A number of in vitro systems have been established for the 
study of malignant gliomas, including the well‑known U87, 
U251 and T98G cell lines. The glioma cell line used in this 
study was T98G because, morphologically, it is a fibroblast 
and is more likely to form cell clusters, which are more similar 
to the cellular division and proliferation of early embryos (77). 
In addition, this study detected expression levels of p53. 
Therefore, T98G cells, which could stably express p53, was an 
excellent candidate (78). Since p53 in S. litura has two opposite 
functions of both promoting and inhibiting apoptosis (79,80), 
we hypothesized that it could be determined whether similar 
mutations had occurred in p53 in early embryos and hemo‑
cytes of S. litura using the sequences of wild‑type and mutant 
p53 in T98G cells as a reference. However, as the mutation 
sites could not be accurately identified by Sanger sequencing, 
transcriptome, proteome and SNP analyses will be performed 
in future studies.

Since the early embryos used in this study were those 
before gastrula, it was not possible to obtain human early 
embryos, as it is contrary to ethics and the original inten‑
tion of treating diseases. The most commonly used human 
embryonic cell lines are not at this stage. Therefore, human 
embryonic cell lines were not selected. Retrieving the early 
embryos of mice could also be extremely painful for mice, 
which should be avoided. Other vertebrates such as chicken 
were also considered; however, due to the lack of suitable 
husbandry facilities and larger breeding sites, and the diffi‑
culty and expense of obtaining other vertebrate materials, 
an insect model organism was finally chosen for the present 
research. Therefore, we chose the insect S. litura, which is 
closely related to Drosophila, as it grows fast, is inexpensive 
and is easy to obtain. Besides, S. litura lay larger eggs and 
it is easy to observe the embryonic stage in the eggs with a 
low magnification dissecting microscope (62,67). However, 
S.  litura is mainly used for specific innate immunity 
studies (67,70,79,81‑83), and, to the best of our knowledge, 
this is the first time that S. litura is being used in oncology 
research. Therefore, organisms, such as Drosophila, are 
also included in the NJ tree to show that S. litura is related 
to Drosophila and could potentially be used in oncology 
research.

Nine factors highly associated with tumor regulation, 
including MYC, MYB, BCL‑2, BNIP3, p53, PTEN, PI3K, 
AKT and mTOR, were selected for investigation. These nine 
factors occupy very important positions in the large regula‑
tory network as changes in their expression and function 
may lead to changes or even loss of control of the regulatory 
network  (22‑27). There is an obvious difference between 
the present and previous studies‑the use of invertebrates as 
experimental materials (23,25‑27,29,37,45,84) According to 

the NJ phylogenetic trees of 20 species presented in this study, 
these nine tumor‑related key regulators are evolutionarily 
conserved in these species, suggesting that their functions may 
also be conserved.

The results of the present study revealed high expression 
levels of MYC, MYB, BCL‑2 and BNIP3 mRNA in T98G cells, 
which was also observed in early embryos. The oncogenes MYC 
and MYB may serve similar roles in the growth‑promoting 
regulation mechanisms of early embryogenesis and tumor 
growth (25,26,29), and the oncogenes BCL‑2 and BNIP3 may 
serve anti‑apoptotic and microenvironmental roles in both 
early embryonic stage and tumor growth (25,46,85,86). This 
conclusion supports the embryogenic concept of a tumor and 
indicated that functional genes that serve a dominant role in 
the tumor and early embryos may be identical.

The high mRNA expression level of the BNIP3 in early 
embryos and tumor cells suggested that the microenvironment of 
the early embryo may be highly similar to that of a tumor. BNIP3 
is a downstream target protein of hypoxia‑inducible factor, 
HIF‑1α (24). High expression of HIF‑1α in hypoxic environments 
can directly promote the high expression of BNIP3. HIF‑1α and 
BNIP3 serve important roles in the maintenance of the hypoxic 
microenvironment in early embryos and tumors (24,47,84). In a 
previous study, it was demonstrated that embryonic development 
and embryonic cell growth require a good healthy microenviron‑
ment rather than a hypoxic tumor‑like microenvironment (87). 
Therefore, the high similarity of the microenvironment 
between early embryos and tumors suggests that there may be 
a high degree of similarity between the gene expression in early 
embryos and tumor cells, as the similar microenvironments are 
regulated by the similar expression of genes.

p53 mRNA expression in the early embryos of S. litura was 
also examined. Previous studies have reported that bracovirus 
could upregulate p53 in S. litura larval hemocytes to induce 
apoptosis, suggesting that p53 in hemocytes might function 
similarly to human wild‑type p53  (67,80). However, p53 
mRNA expression in early embryos of S. litura and T98G cells 
were higher compared with larval hemocytes and HA cells, 
respectively, suggesting that p53 in early embryos, consistent 
with tumors, lost its apoptotic function and serves a role as 
growth promoter (48). The high expression of p53 in early 
embryos suggested similarities in the expression and function 
of p53 between early embryos and tumors.

The expression of the anti‑oncogene, PTEN mRNA 
in T98G cells and early embryos of S. litura exhibited the 
same trend of low expression, which suggested that PTEN 
is expressed at a very low level or not expressed at all in the 
early embryonic stage or in tumors, and the proapoptotic 
effect is inhibited. Previous studies demonstrated that PTEN 
expression was low in tumor cells compared with normal 
cells (37,57). The present results suggested that PTEN expres‑
sion was also low in S. litura early embryos. The similarity of 
the early embryo and the tumor cell was further demonstrated 
by the low expression of PTEN in both compared with that in 
normal somatic cells.

The high expression levels of the PI3K, AKT and mTOR 
in early embryos and T98G cells suggested that this signaling 
pathway may serve an important regulatory role in both, 
confirming the high similarity of signaling pathway regula‑
tion between early embryos and tumors. Previous studies have 
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demonstrated that PI3K, AKT and mTOR expression was high 
in tumor cells compared with normal cells (23). The present 
results suggested that these genes were also highly expressed 
in S.  litura early embryos. mTOR is an important node at 
which multiple signaling pathways intersect and is therefore 
an important link in the regulatory network (23,88,89).

In the present study, the similarity in the expression 
trends of functionally important genes between the early 
embryos and tumor cells was discussed by comparing the 
mRNA expression levels of nine evolutionarily conserved 
tumor‑associated regulatory factors in early embryos 
and T98G cell lines. In addition, when early embryos and 
developed larvae of S. litura were treated with artemether 
[It was considered a typical antitumor compound in our 
previous studies, which could cause apoptosis by inhibiting 
the expression of oncogenes such as mTOR and BCL‑2 and 
increasing the expression of oncogenes such as PTEN in 
cancer cells; however, artemether has no effect on normal 
cells (36,72‑75)], our results demonstrated that artemether 
killed the early embryos but not the larvae. In addition, 
the present study revealed that the expression of oncogenes 
was reduced, and the expression of the anti‑tumor gene was 
increased in S.  litura early embryos after treatment with 
artemether, and the hatching rate of eggs was reduced, and 
the mortality rate increased after treatment with artemether, 
which was similar to the increase in apoptosis of tumor cells 
after treatment with artemether (36). These data suggested 
that gene expression and metabolism of early embryos and 
glioma cells are extremely similar.

The results of the present experiments preliminarily 
confirm the concept of the embryonic origin of tumors, 
and place tumors from a cancer‑based perspective into the 
perspective of individual development and evolution, that 
is, tumor‑related regulatory factors are used to protect and 
promote early embryonic development and ensure the normal 
growth of living individuals in the early stages of their devel‑
opment (4,5). However, towards the end of an individual's life, 
tumor‑associated regulatory factors are reactivated to create 
an embryonic‑like mechanism, which competes strongly with 
the host and eventually outcompetes the host  (90,91). The 
tumor is a life‑regulating mechanism that has evolved over a 
long period of time and has been selected by natural selection 
and is both the beginning and the end of life (91,92).

The present study will help to reveal the gene expression 
regulating early embryonic development, expand the study 
of tumorigenesis, enrich the discourse that tumor‑associated 
regulators are products of individual development and popu‑
lation evolution, and further contribute to the exploration of 
the nature of life and tumors and the complex relationship 
between them.
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