Heat shock protein 20 suppresses breast carcinogenesis by inhibiting the MAPK and AKT signaling pathways

YINXI YANG1, YIFENG WU1, LIHONG HOU2, XIN GE3, GUOQUAN SONG1 and HONGDOU JIN1

1Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000; 2Department of Pathology, Jinzhou Maternal and Infant Hospital, Jinzhou, Liaoning 121000; 3Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China

Received May 6, 2022; Accepted October 10, 2022

DOI: 10.3892/ol.2022.13582

Abstract. Heat shock protein (HSP) 20 belongs to the small HSP family and exhibits diverse functions, including tumor suppression, in addition to being a molecular chaperon, which is the classical property of HSPs. The present study aimed to examine the association between HSP20 expression and breast cancer (BC) progression in patients, and to explore the possible role of HSP20 in malignant phenotypes of BC cells. A series of experiments, including reverse transcription-quantitative PCR, western blotting, Cell Counting Kit-8 and flow cytometry, were performed. Data from Gene Expression Omnibus and Kaplan-Meier Plotter revealed that HSP20 expression was significantly downregulated in BC tissues, and patients with BC with lower HSP20 expression exhibited poorer recurrence-free survival. The data revealed that HSP20 was closely associated with the pathological tumor stage (P=0.015) and pathological tumor node metastasis (P=0.031) of patients with BC. Additionally, HSP20 expression was markedly decreased in BC cell lines. Exogenous overexpression of HSP20 inhibited proliferation and accelerated apoptosis of BC cells. These cells exhibited decreased migration and invasion when HSP20 was overexpressed. Furthermore, HSP20 overexpression suppressed the MAPK and AKT signaling pathways, as evidenced by the reduced phosphorylation levels of AKT, ERK, JNK and p38. Knockdown of HSP20 exerted the opposite effects. Notably, the AKT agonist, SC79, and the ERK agonist, LM22B-10, reversed the decrease in cell proliferation and migration induced by HSP20 overexpression. Overall, the data suggest that the decreased expression of HSP20 in BC tissues may be associated with disease progression. HSP20 also attenuated the malignant phenotype of BC cells and the inhibition of MAPK and AKT signaling may be associated with this effect. Therefore, HSP20 may be a potential prognostic marker or a candidate therapeutic target for BC.

Introduction

Breast cancer (BC), one of the most common tumor types, is the second leading cause of cancer-related mortality among females (1-3). In China, BC cases account for 12.2% of all new BC diagnoses worldwide and 9.6% of all BC-related deaths (4). In previous years, a number of treatments have been developed for improving the survival rate of patients with BC, including surgery, radiotherapy, chemotherapy, endocrine therapy and antibody therapy (5,6). The early diagnosis and treatment of the disease usually leads to a good prognosis with a high survival rate (7). However, patients diagnosed with advanced BC usually have a low survival rate and poor prognosis, and recurrence often occurs (8). The majority of deaths from BC are mainly due to drug resistance and metastasis to distant organs, such as the bone, liver, lungs and brain (9,10). Therefore, the development of novel biomarkers for the early diagnosis and treatment of BC is mandatory.

Recently, heat shock protein (HSP) 20 has become a hotspot for tumor research due to its role in regulating proliferation and apoptosis (11). As a molecular chaperone, HSP20 belongs to the small HSP family and is expressed in various organs (12). In 2007, HSP20 was found to be downregulated in hepatocellular carcinoma (HCC) tissues and was associated with tumor progression (13). Later, the detailed pathological mechanisms of HSP20 in HCC were reported by the same group (14-16). In addition, another research group reported decreased expression of HSP20 in colorectal cancer tissues (17). However, whether HSP20 serves a functional role in BC remains unclear.

MAPKs and AKT are responsible for intracellular signal transduction and are usually activated by phosphorylation in response to various stimuli (18,19). It is well known that MAPK-related factors, ERK, JNK and p38, serve a vital regulatory role in cell proliferation, invasion and metastasis (20-22). Notably, accumulating evidence suggests that
the inhibition of the MAPK and AKT signaling pathways can alleviate BC cell migration, invasion and proliferation (23,24). The present study aimed to explore whether HSP20 serves a regulatory role in BC through the MAPK and AKT signaling pathways.

In the present study, data from Gene Expression Omnibus (GEO) datasets and the Kaplan-Meier Plotter database were employed to investigate the expression of HSP20 in BC tissues and determine the association between HSP20 expression and the prognosis of patients with BC, respectively. The association of HSP20 with patient clinicopathological features was first identified and the effects of HSP20 on cell proliferation, migration and invasion were also examined. Mechanistically, the MAPK and AKT signaling pathways may be involved in the HSP20-mediated suppression of BC progression.

Materials and methods

Clinical samples. A total of 53 tumor samples were collected from female patients (age range, 33-82 years; mean age, 55 years) diagnosed with BC at Wuxi 9th Affiliated Hospital of Soochow University (Wuxi, China) between March 2021 and February 2022. The inclusion criteria were as follows: i) ≥18 years old; and ii) had never undergone any type of anticancer therapy, such as chemotherapy and radiotherapy prior to surgery. Patients diagnosed with other cancers were excluded. The use of human tissues was approved by the Ethics Committee of Wuxi 9th Affiliated Hospital of Soochow University (approval no. LW2021008; Wuxi, China), and written informed consent was provided by each participant. The numbers of Wuxi 9th Affiliated Hospital of Soochow University (Wuxi, China) and the use of HSP20 in analysis, 172) was used to assess the association between HSP20 and patient clinicopathological features was analyzed (Table I). Data from the GEO database [https://www.ncbi.nlm.nih.gov/geo; GSE139038, n=18; GSE115144, n=21; GSE109169, n=25 (26,27)] were applied to evaluate the expression of HSP20 in paired BC tissues and adjacent non-cancerous tissues. The original data from GEO are shown in Table SI. The Kaplan-Meier Plotter database (http://kmplot.com/analysis/; survival curve, BC mRNA; gene symbol, 214767_s_at; split patients by median; follow up threshold, 120 months; cut-off value used in analysis, 172) was used to assess the association between HSP20 expression and the recurrence-free survival of 4,929 patients with BC.

Cells and cell culture. The MDA-MB-231, MDA-MB-453 and MDA-MB-468 human BC cell lines were incubated in L15 medium (LA9510; Beijing Solarbio Science & Technology Co., Ltd.) containing 10% FBS (SH30084.03; HyClone; Cytiva), 1% penicillin (C8251; Beijing Solarbio Science & Technology Co., Ltd.) and 1% streptomycin (S8290; Beijing Solarbio Science & Technology Co., Ltd.) in a 37°C, 5% CO2 incubator. The MCF-7 and ZR-75-1 cells were cultured with Minimum Essential Medium (MEM; 41500; Beijing Solarbio Science & Technology Co., Ltd.) containing 10% FBS, 1% penicillin (C8251; Beijing Solarbio Science & Technology Co., Ltd.) and 1% streptomycin (S8290; Beijing Solarbio Science & Technology Co., Ltd.) medium containing 10% FBS, 1% penicillin (C8251; Beijing Solarbio Science & Technology Co., Ltd.) and 1% streptomycin (S8290; Beijing Solarbio Science & Technology Co., Ltd.) in a 37°C, 5% CO2 incubator, respectively. The MCF-10A cells were cultured in Mammary Epithelium Basal Medium (CC-3150; iCell Bioscience, Inc.) in a 37°C, 5% CO2 incubator. The MDA-MB-231, MDA-MB-453, MDA-MB-468, MCF-7 and MCF-10A cells were purchased from iCell Bioscience, Inc. The ZR-75-1 cells were purchased from Procell Life Science & Technology Co., Ltd.

Cell transfection. The plasmid containing pcDNA3.1-HSP20 (exHSP20) and HSP20 small interference RNA sequences (si-HSP20-1/2) were synthesized by GenScript and JTSBio, respectively. The corresponding vector or non-targeting control (si-NC) served as a negative control. The control group consisted of untransfected cells, and the vector group consisted of cells transfected with an empty vector. The sequences of si-HSP20-1/2 and si-NC were as follows: si-HSP20-1 sense, 5'-CGGUGCUGCUAGACGUGAATT-3' and antisense, 5'-UACGACGUCAUGACGACCAGTT-3'; si-HSP20-2 sense, 5'-CGGAGGAAUUGCUGUCAATT-3' and antisense, 5'-UUGACAGCAAUUUCCUCGTTT-3'; and si-NC sense, 5'-UUCUCAGAAGCUACGUUGACGATT-3' and antisense, 5'-ACUGAAGCAGGUCCGAGATT-3'. The MDA-MB-231 and MDA-MB-468
cells were transfected with 2.5 µg exHSP20 plasmid or vector using Lipofectamine 3000® (Invitrogen; Thermo Fisher Scientific, Inc.) at 37˚C for 24 h. G418 (300 µg/ml; 11811023; Invitrogen; Thermo Fisher Scientific, Inc.) was then added to the cells for further selection, and stable HSP20-overexpressing cells were obtained in the presence of G418 (300 µg/ml) 2 weeks later. G418 (150 µg/ml) was added to stable HSP20-overexpressing cells for maintenance. The MCF-7 cells were transfected with 75 pmol si-HSP20-1/2 or si-NC at 37˚C for 48 h using Lipofectamine 3000® to obtain HSP20-silenced cells. Directly after transfection for 48 h, cells were harvested for the subsequent experiments.

RT-qPCR. Total RNA was extracted from the cells using TRIpure lysis buffer (BioTeke Corporation). The extracted RNA was treated with the BeyoRT II m-MLV reverse transcriptase kit (Beyotime Institute of Biotechnology) to obtain cDNA according to the manufacturer’s instructions. The qPCR reaction system was then constructed according to the SYBR-Green (Beijing Solarbio Science & Technology Co., Ltd.) kit instructions. The thermocycling conditions were as follows: 94˚C for 5 min, followed by 40 cycles of 94˚C for 15 sec, 60˚C for 25 sec and 72˚C for 30 sec. Relative gene expression was calculated using the 2^ΔΔCq method (28) and β-actin was used as an internal control. The details of primers used were as follows: HSP20 forward, 5’‑CGGACGCCTCTTTGACCAG‑3’ and reverse, 5’‑CGGTAGCGACGGTGGAACT‑3’; and β‑actin forward, 5’‑CACTGTGCCCATCTACGAGG‑3’ and reverse, 5’‑TAATGTCACGCACGATTTCC‑3’.

Western blot analysis. Protein was extracted from the cells using IP cell lysate buffer (Beyotime Institute of Biotechnology) and the concentration was quantified using a BCA kit (Beyotime Institute of Biotechnology). Quantitative protein samples (~20 µg/lane) were separated on a 10% SDS-PAGE gel and transferred to PVDF (MilliporeSigma) membranes. The membranes were then blocked with 5% (w/v) skimmed milk at room temperature for 1 h. Subsequently, the membranes were incubated with the corresponding primary antibodies at 4˚C overnight. The membranes were then covered with HRP-conjugated goat-anti-rabbit/mouse secondary antibody (A0208 and A0216; diluted 1:5,000; Beyotime Institute of Biotechnology) at 37˚C for 45 min. After the bands were visualized using ECL (P0018; Beyotime Institute of Biotechnology), the optical density of each band was analyzed using Gel-Pro-Analyzer software (version 4.0; Beijing Liuyi Biotechnology Co., Ltd.). The primary antibodies used were as follows: Anti-HSP20 (AF6003; diluted 1:500), anti-phosphorylated (p-)ERK (AF1015; diluted 1:500), anti-ERK (AF0155; diluted 1:500), anti-p-JNK (AF3318; diluted 1:1,000), anti-JNK (AF6318; diluted 1:500), anti-p-AKT (#4060; diluted 1:1,000), anti-AKT (#4691; diluted 1:2,000), anti-Bax (A19684; diluted 1:500), anti-Bcl-2 (A0208; diluted 1:1,000), anti-caspase-3 (#14220; diluted 1:1,000), anti-poly (ADP-ribose) polymerase (PARP; #9542; diluted 1:1,000), anti-p-p38 (bs-0636R; diluted 1:400), anti-p38 (bs-0637R; diluted 1:500). HSP20, p-ERK, ERK, p-JNK and JNK antibodies were purchased from Affinity Biosciences. The p-AKT, AKT, caspase-3 and PARP antibodies were purchased from Cell Signaling Technology, Inc. The Bax and Bcl-2 antibodies were purchased from ABclonal Biotech Co., Ltd. The p-p38 and p38 antibodies were purchased from BIOSS. The internal reference β-actin antibody (sc-4778; diluted 1:1,000) was purchased from Santa Cruz Biotechnology, Inc.

Cell viability assay. The cells in each group were seeded in 96-well plates (4x10^3 cells/well) and incubated at 37˚C for 0, 24, 48 and 72 h, respectively. Following incubation, cell viability was assessed using a Cell Counting Kit-8 (CCK-8) (Dojindo Molecular Technologies, Inc.). The absorbance of each well was measured at 450 nm using a microplate reader (Bio-Tek Instruments, Inc.). The relative cell viability was calculated using the formula: relative cell viability = (D_value/D_control) x 100%.

Table I. Association between clinicopathologic parameters and HSP20 expression in 53 patients with breast cancer.

<table>
<thead>
<tr>
<th>Clinical parameters</th>
<th>HSP20 expression</th>
<th>n (n=18)</th>
<th>n (n=35)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>3</td>
<td>10</td>
<td>0.504</td>
<td></td>
</tr>
<tr>
<td>≥50</td>
<td>15</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>17</td>
<td>27</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>14</td>
<td>24</td>
<td>0.539</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10</td>
<td>11</td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>8</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki-67, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><14</td>
<td>7</td>
<td>13</td>
<td>0.901</td>
<td></td>
</tr>
<tr>
<td>≥14</td>
<td>11</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>6</td>
<td>20</td>
<td>0.015*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tis</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>13</td>
<td>23</td>
<td>0.179</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pStage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>2</td>
<td>0.031*</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05. HSP20, heat shock protein 20; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; pT, pathological tumor stage; pN, pathological lymph node metastasis; pStage, pathological tumor node metastasis.
viability was detected using a Cell Counting Kit-8 (CCK-8; MilliporeSigma). Briefly, the cells were covered with the CCK-8 reagent (10 µl/well) for 2 h. Subsequently, the optical density values were measured at 450 nm using a microplate reader.

In rescue experiments, HSP20-overexpressing stable MDA-MB-231 cells were treated with 10 µM SC79 (S80614; Yuanye Biology) or 50 µM LM22B-10 (L879472; Macklin, Inc.) at 37°C for 48 h. Subsequently, a CCK-8 assay was performed as aforementioned.

Colony formation assay. The MDA-MB-231 and MDA-MB-468 cells (3×10^4 cells/plate) were plated into a 35-mm cell culture plastic and incubated at 37°C with 5% CO_2 for ~2 weeks. Colonies were fixed in 4% paraformaldehyde at room temperature for 20 min and stained with Ray-Giemsa dye (Nanjing KeyGen Biotech Co., Ltd.) at room temperature for 5 min, then visualized and counted manually. Colonies consisted of >50 cells. The colony formation rate=colony number/300x100%.

Apoptosis detection. The apoptosis of the MDA-MB-231 and MDA-MB-468 cells was analyzed using an Annexin V-FITC Apoptosis Detection Kit (C1062; Beyotime Institute of Biotechnology). All reagents mentioned in this subsection were included in this kit. In brief, the cells were washed twice with PBS and mixed with 195 µl Annexin V-FITC binding buffer. The cells were then incubated with 5 µl Annexin V-FITC and 10 µl PI in the dark at room temperature for 15 min. Subsequently, a NovoCyte flow cytometer (ACEA Bioscience, Inc.) was used to evaluate cell apoptosis. The apoptotic cells were analyzed using NovoCyte software (version 1.5.6, ACEA Bioscience, Inc.).

Wound healing assay. After the MDA-MB-231, MDA-MB-468 and MCF-7 cells (reached 100% confluency) were incubated in serum-free medium supplemented with 1 µg/ml mitomycin C (MilliporeSigma) for 1 h, a 200-µl pipette tip was used to create a scratch. The cells treated with or without SC79 (10 µM)/LM22B-10 (50 µM) were cultured at 37°C for 24 h. Cell fragments were removed by washing with PBS. Subsequently, cells were observed under a light microscope at x100 magnification and images were captured. The distance of the wound was measured using ipwin32 (version 6.0; National Institutes of Health). Migration rate=distance from edge at 24 h/distance from edge at 0 h x100%.

Cell invasion assay. For the cell invasion assay, 24-well Transwell chambers (Corning, Inc.) were applied. After the Matrigel was added to the upper chambers at 37°C for 2 h, cells (3x10^4) were suspended in serum-free L15 medium or MEM (200 µl) and seeded on it. L15 medium or MEM supplemented with 10% FBS (800 µl) was added to the lower chamber. After incubation at 37°C for 24 h, paraformaldehyde (4%) was used to fix the invasive cells. The cells were then stained with 0.4% crystal violet solution at room temperature for 5 min and observed under a light IX53 microscope at a magnification of x200 (Olympus Corporation).

Results

HSP20 inhibits BC cell proliferation. The results of RT-qPCR and western blot analysis revealed that HSP20 expression was significantly decreased in five BC cell lines compared with the MCF-10A normal mammary epithelial cell line (Fig. 2A). Among these cell lines, the two cell lines with the lowest expression of HSP20, MDA-MB-231 (relative protein expression of HSP20, 0.16) and MDA-MB-468 (relative protein expression of HSP20, 0.23), were selected to establish stable HSP20-overexpressing cell lines. Additionally, the MCF-7 cell line is hormone receptor-positive and is the most common subtype of BC. The MCF-7 cell line with relatively high HSP20 protein expression (0.53) was selected to establish the HSP20-silenced cell line. The analysis of the transfection efficiency demonstrated that the mRNA and protein expression levels of HSP20 in the exHSP20 group were significantly enhanced compared with those of the empty vector group (Fig. 2B). Additionally, HSP20 expression was successfully silenced in MCF-7 cells (Fig. S2A).

In order to investigate the association between HSP20 and cell proliferation, CCK-8 and colony formation assays were performed. The results revealed that overexpression of HSP20 markedly decreased cell viability (Fig. 2C), while knockdown of HSP20 exerted opposite effects (Fig. S2B). Consistently, the colony formation assay confirmed that the overexpression of HSP20 inhibited BC cell colony formation.

Statistical analysis. The statistical analysis was carried out using GraphPad Prism (V8.0; GraphPad Software, Inc.). A paired Student's t-test was used for comparisons between two groups. One-way ANOVA with Tukey's post hoc test was used for multiple group comparisons. Pearson's χ² test (Ki-67) or Fisher's exact test (age, ER, PR, HER2, pT, pN and pStage) was performed to examine the association between the HSP20 expression and the patient clinicopathologic characteristics. Experiments were performed in triplicate. All experimental data are presented as the mean ± SD. P<0.05 was considered to indicate a statistically significant difference.
These data suggested that HSP20 suppressed BC cell proliferation.

HSP20 promotes BC cell apoptosis. To clarify the association between HSP20 and cell apoptosis, flow cytometric analysis was performed to evaluate cell apoptosis. The apoptotic rate of the exHSP20 group was observably enhanced compared with that of the empty vector group (Fig. 3A). In addition, the protein levels of pro-PARP, cleaved (active) PARP, pro-caspase-3, cleaved (active) caspase-3, Bcl2 and Bax were examined using western blot analysis. The results indicated that the levels of cleaved PARP/pro-PARP, cleaved caspase-3/pro-caspase-3 and Bax were significantly upregulated, whereas the level of Bcl-2 was significantly downregulated in HSP20-overexpressing BC cells (Fig. 3B). These findings indicated that overexpression of HSP20 facilitated BC cell apoptosis.

HSP20 suppresses BC cell migration and invasion. Subsequently, the present study verified the effects of HSP20 on BC cell migration and invasion. As shown in Fig. 4A, the results of the wound healing assay revealed that overexpression of HSP20 decreased migration, while knockdown of HSP20 increased the BC cell migration rate (Fig. S2C). In addition, the results of the Transwell assay demonstrated that the number of invaded cells in the exHSP20 group was significantly reduced (Fig. 4B). These results revealed that HSP20 inhibited the migration and invasion of BC cells.

HSP20 inhibits the AKT and MAPK signaling pathways. The AKT and MAPK signaling pathways are two crucial signaling pathways in cancer (22,23). In the present study, the results of western blot analysis indicated that HSP20 overexpression suppressed the AKT and MAPK signaling pathways, as evidenced by the reduced phosphorylation levels of AKT, as well as ERK, JNK and p38 in BC cells (Fig. 5A and B). However, HSP20 silencing exerted the opposite effects (Fig. S2D). Thus, the regulatory effects of HSP20 on the malignant phenotype of BC cells may be associated with the inhibition of these two signaling pathways.

SC79 or LM22B-10 treatment reverses the inhibitory effects of HSP20 on cell proliferation and migration. The AKT and ERK agonists, SC79 and LM22B-10, were applied in rescue experiments. MDA-MB-231 cells were randomly selected for these experiments. As demonstrated by the CCK-8 assay, the decreased cell viability induced by HSP20 overexpression was reversed by SC79 or LM22B-10 treatment (Fig. 6A). Consistently, SC79 or LM22B-10 treatment also reversed the suppressive effects of HSP20 overexpression on the migration of MDA-MB-231 cells (Fig. 6B).

Discussion

The mortality of patients with BC is usually ascribed to cell metastasis (30,31). HSP20 participates in a number of pathological processes, including the prevention of vasospasms, insulin resistance and cardioprotection (32,33). Furthermore, HSP20 has become a research hotspot in the field of cancer; however, the function of HSP20 in BC is not yet fully understood. The present study demonstrated that HSP20 expression was downregulated in BC tissues and BC cell lines, which was associated with clinicopathological pT and pStage parameters in patients with BC. It was further demonstrated that HSP20 suppressed cell proliferation, migration and invasion by inhibiting the MAPK and AKT signaling pathways.

One hallmark of cancer cells is the loss of apoptotic control. The purpose of apoptosis is to kill abnormal cells and prevent tumor growth (34). The Bcl-2 family, consisting of the anti-apoptotic protein (Bcl-2) and pro-apoptotic proteins (Bax and Bcl-2 antagonist/killer 1), are coupled to the activation of caspase-3 and caspase-7 in regulating mitochondria-mediated apoptosis (35,36). Bax expression could also directly induce apoptosis, which has therapeutic relevance (37). Caspases, a family of cysteine proteases, are central regulators of apoptosis (16). Caspase-3 is an important key protease that is activated during cell apoptosis (38). The cleavage of PARP occurs by upstream caspase-3 molecules, which are key drivers of apoptosis in tumors (39). In the present study, overexpression of HSP20 downregulated the anti-apoptotic protein, Bcl-2, and upregulated pro-apoptotic Bax, cleaved PARP and cleaved caspase-3 levels, inducing BC cell apoptosis. Therefore, the...
Figure 2. HSP20 overexpression inhibits BC cell proliferation. (A) Relative mRNA and protein expression levels of HSP20 in five BC cell lines compared with the MCF-10A normal mammary epithelial cell line. (B) Relative expression levels of HSP20 in MDA-MB-231 and MDA-MB-468 cells overexpressing HSP20. (C) Cell Counting Kit-8 proliferation assay. (D) Representative images and quantitative analysis of colony formation assays. Data are presented as the mean ± SD. **P<0.01; ***P<0.001 vs. MCF-10A or as indicated. BC, breast cancer; control, untransfected cells; vector, cells transfected with an empty vector; exHSP20, HSP20-overexpressing cells; HSP20, heat shock protein 20; OD, optical density.
overexpression of HSP20 in BC may induce the apoptosis of BC cells.

Cancer invasion and metastasis are multistep and complex processes, which have become a huge obstacle in the clinical treatment of various tumors (40,41). Furthermore, metastasis is one of the major reasons for therapeutic failure in BC (42,43). Therefore, reducing cell migration and invasion effectively controls the metastasis of cancer cells. In the present study, it was found that the overexpression of HSP20 significantly inhibited the metastasis of BC cells, as identified using migration and invasion assays.

Additionally, the activation of the MAPK and AKT signaling pathways predicts a poor prognosis and the early recurrence of BC in patients (24). The MAPK signaling pathway is an important pathway in cell migration, and the inhibition of the MAPK signaling pathway can inhibit the...
migration of BC cells (44). The MAPK pathway consists of ERK, JNK and p38; ERK is an important signal transducer for cell survival, and JNK and p38 contribute to acquiring invasion and migration capabilities (45). Accumulating evidence suggests that MAPK has the potential to prevent invasion and metastasis of various tumors (20,46).
Furthermore, the AKT signaling pathway participates in numerous cellular events, such as the cell cycle and glucose metabolism, particularly in cancer cells (47). In BC, the AKT signaling pathway is frequently activated, promoting BC cell invasion and metastasis (24,48). The present study demonstrated that overexpression of HSP20 inhibited MAPK and AKT signaling in BC.

In conclusion, the findings of the present study suggest that the downregulation of HSP20 in BC tissues may be associated with the progression of BC. In addition, HSP20
overexpression suppressed the malignant phenotype of BC cells. This effect may be associated with the inhibition of the AKT and MAPK signaling pathways. HSP20 may thus prove to be a potential prognostic marker or a candidate therapeutic target for BC.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

YY, YW, LH, XG and GS performed the experiments. YY and HJ confirmed the authenticity of all the raw data. YY and YW wrote the manuscript. HJ designed this study and polished the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The present study was approved by the ethics committee of Wuxi 9th Affiliated Hospital of Soochow University (approval no. LW2021008; Wuxi, China), and written informed consent was provided by each participant.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

