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Abstract. Most tumor cells still exhibit active glucose uptake 
and glycolysis under aerobic conditions, a phenomenon known 
as the Warburg effect or aerobic glycolysis. Pyruvate kinase, 
one of the key enzymes in the cell glycolysis pathway, can 
promote the conversion of glucose to pyruvate and produce 
energy. Pyruvate kinase M2 (PKM2), a competitive PK 
subtype, is an important regulator of the aerobic glycolysis 
pathway in tumor cells and plays a direct role in gene expres‑
sion and cell cycle regulation. Human papillomavirus (HPV) 
persistence is the main risk factor for cervical cancer. In recent 
years, it has been discovered that HPV plays an important role 
in malignant anal tumors and oral cancer. HPV oncoprotein E7 
can promote the Warburg effect and produce a large amount 
of ATP, which may meet the energy requirements of cancer 

cell division. There appears to be a regulatory relationship 
between HPV E7 and PKM2, but the specific mechanism is 
mostly unknown. The present review article discusses the role 
of HPV E7 in transcriptional regulation, enzyme activity regu‑
lation, protein kinase activity regulation, post‑translational 
modification and the immune microenvironment of PKM2 in 
the occurrence and development of cervical cancer.
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1. Background

The energy of cells mainly comes from glycolysis and the 
oxidative phosphorylation of glucose, where the former 
produces pyruvate. It has long been hypothesized that pyruvate 
is metabolized by mitochondrial oxidative phosphorylation to 
produce water and carbon dioxide under aerobic conditions, 
while it is converted to lactic acid by lactate dehydrogenase 
under anoxic conditions during glycolysis. However, in the 
1920s, German physiologist Otto Warburg reported that the 
main source of energy acquisition of tumor cells is anaerobic 
glycolysis of sugar, where the sugar undergoes aerobic glycol‑
ysis and oxidative phosphorylation even when the oxygen 
supply is sufficient (1,2). This is known as the Warburg effect. 
This switching from oxidative phosphorylation to glycolysis is 
considered to be a major feature of tumors (3,4). Glycolysis is 
an oxygen‑independent process in which the rate‑limiting step 
is controlled by a group of enzymes, including phosphofruc‑
tokinase, hexokinase, glucokinase and pyruvate kinase (PK). 
Competitive PK is an important regulatory protein involved 
in glucose catabolism (4,5‑7), and there are several different 
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isoforms of PK in mammals, which differ in allosteric regula‑
tion and tissue expression. Cancer cells tend to preferentially 
express a specific competitive PK subtype, PKM2, which plays 
an important role in tumor metabolism (8‑10).

Previous studies have shown that human pathogenic viruses 
have a reprogramming effect on tumor metabolism (11,12). In 
some cases, the interaction between viral proteins and cell 
proteins leads to the malignant transformation of cells, and the 
metabolism changes accordingly to meet the energy needed 
for the rapid proliferation of these tumor cells (13,14). For 
example, HPV E7 oncoprotein can interact with SMAD2/3/4 
and cause SMAD3 suppression, which results in TGF‑β 
signaling pathway inhibition (15). Studies have shown that 
PKM2 is highly expressed in embryonic and tumor cells, and 
the role of PKM2 in cervical cancer has been a long‑term 
concern (16‑18). Since the beginning of the 21st century, it has 
been known that PKM2 plays an important role in the metabo‑
lism of cervical cancer cells (19,20), and the function of its 
non‑metabolic pathway has also been studied recently (21,22). 
As one of the most common types of cancer threatening 
women's health (23), cervical cancer has always had global 
attention, and human papillomavirus (HPV) persistence is the 
main risk factor for cervical cancer (24). However, the specific 
regulatory mechanism of PKM2 and HPV is not clear.

At present, >200 types of HPV have been identified (25), 
and 12 HPV types have been defined as high‑risk carcinogenic 
types by the World Health Organization (WHO), namely, 
HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59 (26). HPV 
belongs to the papillomaviridae family, which is a family of 
viruses that are unenveloped and contain a double‑stranded 
DNA genome. The genetic material of the virus is surrounded 
by icosahedral capsids, which are composed of structural 
proteins L1 and L2. The L1 genome sequence encodes the main 
capsid protein gene. In addition to these structural proteins, 
HPV regulatory proteins include E1, E2, E5, E6 and E7, which 
all have different regulatory effects on cancer cells. Among 
these, E6 and E7 are the only viral genes that are always 
retained and expressed in HPV‑positive cancer cells (27). E6 
and E7 oncogenes alter a variety of signaling pathways, and 
E7 is responsible for cell proliferation, binding and inhibiting 
retinoblastoma protein (pRb), releasing E2F to promote cell 
cycle progression and stimulating the phosphatidylinositol 
3‑kinase (PI3K)/AKT pathway (28). With the exception of 
this information, the details of the carcinogenesis of HPV E7 
needs to be further clarified (29).

The relationship between E7 and PKM2 was first proposed 
in 1999. Zwerschke et al (30) proposed that PKM2 occurs as 
a tetramer with high affinity for its substrate, phosphoenol‑
pyruvate (PEP), and also as a dimer with low affinity for PEP, 
and that the transition between the two conformations regu‑
lates glycolytic flux in tumor cells. Later, Mazurek et al (20) 
observed that E7‑transformation of the highly glycolytic 
NIH 3T3 cell strain led to a shift of M2‑PK to the dimeric 
form. A recent study suggested that PKM2 contributes to 
HPV16 E7‑induced proliferation of cervical cancer cells (21). 
However, the mechanisms underlying the effect of HPV E7 
on PKM2 in cervical cancer has not yet been elucidated. The 
information used in the present review was extracted mainly 
from the reviews, articles and clinical trial data of Medline 
(http://ovidsp.ovid.com/autologin.html) and Embase databases 

(http://www.elsevier.com/online‑tools/embase) between 1999 
and 2021, and the searched keywords were ‘E7’ and ‘PKM2’. 
The present review aims to provide convenience for the further 
exploration and clinical treatment of cervical cancer in the 
future by comprehensively summarizing the current research 
status of HPV E7 and PKM2.

2. Structure and nuclear localization of PKM2

In general, competitive PK regulates the last step of glycolysis 
and the conversion of PEP and ADP into pyruvate and ATP, and 
has four different subtypes: L, R, M1 and M2 (6). PKM2 is the 
only subtype that can be detected at the embryonic stage and 
exists in various differentiated adult tissues, such as those of the 
brain and liver (31). The PKM gene consists of 12 exons (32). 
Alternative splicing of PKM mRNA can lead to the production 
of PKM1 (exon 9) and PKM2 (exon 10). PKM2 can exist in all 
three oligomeric states, including monomer, dimer, and tetramer, 
among which the dimer form promotes the Warburg effect (33). 
The single PKM2 monomer is made of 531 amino acids (aas) 
and consists of 4 domains: N (43 aas), A (244 aas), B (102 
aas) and C (142 aas) (34). The A domain of PKM2 represents 
the core of the monomer and is responsible for mediating the 
interaction of subunits to form a dimer. PKM2 differs from 
PKM1 by a 56‑aa stretch encoded by the alternatively spliced 
region. This stretch of aas forms an allosteric pocket that allows 
binding of FBP (35). After the binding of FBP, the conformation 
of the PKM2 tetramer is changed from the inactive T‑state to 
the active R‑state, which favors the binding of PEP in the active 
site and enhances its enzymatic activity (36). It has been shown 
that PKM2 not only plays a central role in metabolic reprogram‑
ming, but also plays a direct regulatory role in gene expression 
and subsequent cell cycle processes (37).

As a glycolytic enzyme, PKM2 is mainly located in the 
cytoplasm; however, PKM2 in tumor cells accumulates 
in the nucleus  (34). Monomeric PKM2 translocates to the 
nucleus, acts as a histone kinase and upregulates the expres‑
sion of proto‑oncogene c‑Myc, thus promoting the Warburg 
effect (38). In addition, the deacetylation of residue K62 of 
PKM2 can promote the transport of PKM2 to the nucleus 
and binding to β‑catenin, thus promoting the transcription 
of the cyclin D1 gene and the process of the cell cycle (39). 
Therefore, intranuclear PKM2 is essential for tumorigenesis. 
Moreover, the direct interaction between lncRNA‑AC020978 
and PKM2 in non‑small cell lung cancer can enhance the 
stability of PKM2 (40). Furthermore, lncRNA‑AC020978 can 
promote the nuclear translocation of PKM2 and regulate the 
transcriptional activity of hypoxia‑inducible factor α (HIF‑1α) 
enhanced by PKM2 (40).

It has been reported that the epidermal growth factor 
receptor (EGFR)‑mitogen‑activated protein kinase 
(MEK)/extracellular signal‑regulated kinase (ERK) signaling 
pathway phosphorylates PKM2 at S37 and promotes nuclear 
translocation in hepatocellular carcinoma cells stimulated by 
EGF (41). It has also been observed that HPV16 E7 can promote 
the acetylation of K433 of PKM2 (42). This acetylation can in 
turn promote the kinase activity and nuclear localization of 
PKM2. Thus, it can be suggested that E7 plays a direct role 
in the nuclear localization of PKM2, but this needs further 
exploration.
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3. Transcriptional regulation of PKM2 by E7

The expression of PKM2 is driven by several cellular 
signaling pathways, including transcription factor 1 (SP1), 
HIF‑1α (43), mammalian target of rapamycin (mTOR) (44), 
c‑Myc (45), nuclear factor κB (NF‑κB) (46) and peroxisome 
proliferator‑activated receptor γ (PPARγ) (47). The promoter 
of PKM2 is composed of three cis‑acting regions and three 
GC boxes (48). In previous research, five possible binding sites 
of SP1 and SP3 were found in the PKM2 promoter. SP1 was 
shown to activate the transcription of the PKM2 gene structur‑
ally by binding to the common DNA‑binding site (GC box) 
in the promoter of the PKM gene. SP3 cooperated with SP1 
to enhance the expression of PKM2 (49). The expression of 
E6 and E7, and the downregulation of phosphatase and tensin 
homolog deleted on chromosome ten (PTEN) and thioredoxin 
interactions protein significantly promoted glucose transporter 
protein 1, glucose uptake (50) and the dephosphorylation of 
SP1, which in turn promoted the expression of PKM2 (51). 
In addition, the protein and mRNA expression levels of liver 
kinase B1 (LKB1) were downregulated by HPV16 E6/E7, 
while the deletion of LKB1 upregulated the expression and 
activity of SP1. SP1 further upregulated the expression of 
genomic amplification of human telomerase gene (hTERC) at 
the mRNA and gene amplification levels. Based on this, the 
HPV‑LKB1‑SP1‑hTERC axis was proposed (52). The afore‑
mentioned studies demonstrated that E7 can not only enhance 
the activity of SP1 by enhancing the absorption of glucose, but 
also by downregulating LKB1 to increase the activity of SP1 
and ultimately promote the expression of PKM2 (Fig. 1).

PKM2 interacts with HIF‑1α and promotes its function (30). 
HIF‑1α is a common regulatory component of cellular metabo‑
lism and plays a role in regulating the function of immune cell 
effectors. The binding of HPV E7 to PKM2 can promote the 
dissociation of PKM2 tetramers to form inactivated dimers, 
and the latter can stimulate the activation of HIF‑1α, which in 
turn activates the mTOR signaling pathway and inhibits the 
autophagy of cancer cells (53). Previous studies have shown that 
mutation of exon 10 of the PKM gene promotes the transloca‑
tion of PKM2 to the nucleus, which is considered to be related to 
the increase in HIF‑1α activity and may play an important role 
in tumor metabolism (54,55). There is also evidence that ribonu‑
cleotide reductase regulatory subunit M2 (RRM2), considered a 
new downstream target of HPV E7, is upregulated at the tran‑
scriptional level through E7‑pRb interaction and the binding of 
E2F to the RRM2 promoter (56). The overexpression of RRM2 
enhances the expression of HIF‑1α and VEGF by activating 
the ERK1/2 signaling pathway in cervical cancer cells and is 
significantly associated with the increase of microvessel density 
in cervical cancer tissues (56). It is worth noting that PKM2 can 
interact with the HIF‑1α transcriptional complex to regulate its 
transcription through a positive feedback loop, to promote the 
occurrence and development of tumors (Fig. 1) (57,58).

When PI3K binds to growth factor receptors (such as 
EGFR) in the PI3K/AKT/mTOR network, the structure of AKT 
changes and is activated. This in turn phosphorylates and acti‑
vates or inhibits the activity of a series of downstream substrates 
(such as apoptosis‑related proteins Bad and Caspase 9), thus 
regulating cell proliferation, differentiation, apoptosis and 
migration  (59‑61). In hypoxic and normoxic HPV‑positive 

cancer cells, the PI3K/AKT/mTOR network plays a key role 
in the virus‑host cell interface (62). Under hypoxic condi‑
tions, HIF‑1α induces the activation of the PI3K/AKT/mTOR 
signal pathway and regulates PKM2 by downregulating 
the expression of c‑myc and upregulating heterogeneous 
ribonucleoproteins (hnRNPs) (63). In hypoxic HPV‑positive 
cancer cells, hypoxia can block the effect of E6/E7, which is 
canceled by AKT and a high glucose supply (64). It is worth 
noting that the ability of E7 to upregulate the activity of AKT 
depends on its ability to bind to and inactivate pRb. It has been 
observed that knockout of pRb with shRNA alone is sufficient 
to activate AKT activity in differentiated keratinocytes (65). In 
addition, E7 may participate in the PI3K/AKT/SGK signaling 
pathway by activating the phosphorylation of the AKT S473 
site (Fig. 1) (66).

A study by Yang et al (67) showed that under normoxic 
conditions, PKM2 is transcriptionally upregulated by growth 
factors. In addition, the upregulation of PKM2 induced by EGF 
depends on the activation of the PLCRINCK1/γε/IKKβ/RELA 
signaling cascade. The activation of EGFR leads to an increase 
in glucose uptake and lactic acid production, which may be 
dependent on PKM2 expression. Previous studies have shown 
that the change in EGFR level is related to the change in cell 
proliferation in vitro. There is a correlation between the level 
of E6/E7 mRNA and the level of EGFR protein in cervical 
cancer cells, and E6/E7 may change the level of EGFR through 
the Rb pathway (68). Moreover, NF‑κB‑activated PKM2 plays 
an important role in EGFR‑induced pleomorphic glioblastoma 
cell metabolism and brain tumor growth  (67). NF‑κB is a 
transcription factor that was first discovered in the nuclear 
extract of B lymphocytes in 1986, and can specifically bind to 
the enhancer B sequence of the immunoglobulin κ light chain 
gene and promote its expression (69). NF‑κB has a function 
in inhibiting apoptosis, which is closely related to numerous 
processes such as tumorigenesis, growth and metastasis (70). 
In addition, HPV E6 and E7 are important regulatory proteins 
in cervical cancer, which are closely related to NF‑κB 
transcriptional activity in host cells (71), and drive chronic 
inflammation in cancer development (72,73).

PPARγ plays an important role in the transcription of 
PKM2 isozyme genes (47,72,73). PPARγ is highly expressed 
in adipose tissue, and is also expressed in vascular parietal 
cells (such as monocytes, macrophages, endothelial cells and 
smooth muscle cells) and cardiomyocytes (74). The activation 
of AKT is known to promote the association between PPARγ 
and its response elements, and promotes the occurrence of liver 
malignancy in fatty liver cells with a PTEN deletion (75). By 
contrast, the expression of PPARγ can be inhibited by HPV16 
E7, which promotes the proliferation and invasion of cervical 
cancer cells (76).

In summary, SP1, HIF‑1α, NF‑κB and PPARγ can regu‑
late PKM2 in tumor cells and interact with HPV E7, which 
indicates that E7 may play a key role in PKM2 transcription 
(Fig. 1).

4. Selective splicing control of PKM2 precursor mRNA by E7

Previously, David et al (57) revealed the existence of hnRNP, 
polypyrimidine bundle binding proteins [(PTB) also known as 
hnRNP], hnRNPA1 and hnRNPA2 in tissues by studying the 
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alternative splicing molecular mechanism of PKM2 isoforms. 
hnRNPA1, hnRNPA2 and PTB can be mediated by c‑Myc (57), 
which is an essential transcription factor that regulates the 
expression of numerous genes involved in cell growth, prolif‑
eration and metabolism. hnRNPs selectively bind to sequences 
either side of exon 9 of PKM pre‑mRNA and inhibit its fusion 
with mature mRNA, thus indirectly promoting the fusion of 
exon 10 and mature mRNA, and resulting in the expression of 
PKM2 mRNA in cancer cells (77). This mechanism ensures 
a high PKM2/PKM1 ratio, which helps to promote aerobic 
glycolysis and provides an advantage for tumorigenesis (77).

In addition, the activation of β‑catenin enhances the 
expression of c‑Myc, thus promoting the Warburg effect (78). 
It has been reported that HPV16 can regulate the migration 
of β‑catenin in HPV‑associated oropharyngeal squamous 
cell carcinoma (78). Furthermore, both E6 and E7 were able 
to upregulate β‑catenin and enhance thymocyte transcription 
factor‑mediated transcription in HPV16‑positive oropharyn‑
geal carcinoma cells (79). This evidence suggests that E7 may 
enhance the expression of c‑Myc through β‑catenin, thus also 
regulating PKM2. However, both low‑risk and high‑risk HPV 
E7 in cervical cancer cells can interact with c‑Myc, but only 
the interaction between high‑risk HPV E7 and c‑Myc can 
functionally enhance the transcriptional activation activity of 
c‑Myc (80).

5. Post‑translational modification of PKM2 by E7

Post‑translational modification of amino acids endows proteins 
with other biochemical groups that adapt protein function 
by changing the chemical properties of amino acids and/or 

by causing structural changes (such as the establishment of 
disulfide bonds). These modifications include phosphorylation, 
glycosylation, ubiquitin, nitrosation, methylation, acetylation, 
lipidation and proteolysis (81).

It has been discovered that PKM2 is phosphorylated by a 
variety of tyrosine kinases and forms dimers to promote the 
growth of cancer cells  (10,82,83). The phosphorylation of 
PKM2 is common in human cancer and can be increased by 
HPV16 E7 (4,21,84). Phosphorylated PKM2 Y105F mutants are 
highly expressed in cancer cells, which can promote cell prolif‑
eration and tumorigenesis (4). A recent study has shown that 
highly upregulated gene in liver cancer (the most upregulated 
gene in HCC, which was characterized as a novel mRNA‑like 
ncRNA) acts as an adaptor molecule to enhance the binding 
of lactate dehydrogenase A and PKM2 to fibroblast growth 
factor receptor 1, increasing the phosphorylation of these two 
enzymes and thus promoting glycolysis (85). EGFR‑activated 
ERK2 directly binds to PKM2 and phosphorylates S37, but 
does not phosphorylate PKM1. Phosphorylated PKM2 recruits 
peptidylprolyl cis/trans isomerase for isomerization of PKM2, 
thus promoting the binding of PKM2 to the input protein α5 
and translocation to the nucleus (86). This nuclear localization 
of PKM2 further promotes the Warburg effect (Fig. 1).

A high concentration of reactive oxygen species (ROS) 
can destroy cell composition and damage cell vitality (87). 
Therefore, controlling the concentration of intracellular ROS 
is very important for cell proliferation and survival. The sharp 
increase of intracellular ROS leads to the oxidation of PKM2 at 
C358, thus inhibiting the activity of PKM2 (88). The cell then 
transfers from the glucose pathway to the pentose phosphate 
pathway, resulting in a reduction potential sufficient to detoxify 

Figure 1. Regulatory mechanism of PKM2 by E7. Part A: The expression of the PKM2 monomer is driven by HPV E7 via several cellular signaling pathways. 
Part B: The tetramer of PKM2 dissociates to dimers by binding to HPV E7 and then activates the mTOR signaling pathway. Part C: Post‑translational modifica‑
tion of PKM2 activated by HPV E7, including phosphorylation, acetylation and glycosylation. Part D: E7 and PKM2 activation of Oct‑4. EF2K, extension 
factor kinase 2; eEF2K, embryonic EF2K; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal‑regulated kinase 1/2; GLUT1, glucose 
transporter protein 1; HIF‑1 α, hypoxia inducible factor α; HPV, human papillomavirus; LKB1, liver kinase B1; mTOR, mammalian rapamycin target protein; 
NF‑κB, nuclear factor κB; Oct‑4, octamer‑binding transcription factor‑4; O‑GlcNAc, O‑linked N‑acetylglucosmaine; OGT, O‑GlcNAc transferase; PKM2, 
pyruvate kinase 2; PPARγ, peroxisome proliferator activated receptor γ; pRb, retinoblastoma protein; ROS, reactive oxygen species; RRM2, ribonucleotide 
reductase regulatory subunit M2; SP1/2, transcription factor 1/2; STAT3, signal transducer and activator of transcription 3.
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ROS. Studies have shown that E7 can induce the accumulation 
of intracellular ROS (89) by inducing the upregulation of RRM2 
and promoting the occurrence of cervical cancer through 
angiogenesis induced by ROS/ERK1/2/HIF‑1α/VEGF (56).

The addition of N‑acetylglucosamine (GlcNAc) by O‑linked 
GlcNAc transferase (OGT) is a common PKM2 modifica‑
tion, which participates in the transformation of PKM2 from 
tetramer to dimer (90). It is reported that HPV can signifi‑
cantly increase the levels of O‑linked GlcNAcylation by OGT 
in cervical tumors. Mouse embryonic fibroblasts transformed 
with HPV16 E6/E7 experience an upregulation of the mRNA 
and protein levels of OGT, which promotes cell proliferation 
and reduces cell senescence (91) (Fig. 1). In addition, acetyla‑
tion of PKM2 at K433 can inhibit fructose‑1,6‑biphosphate 
(FBP) binding to prevent the dimer‑to‑tetramer transition of 
PKM2. HPV16 E7 also enhances the binding of PKM2 with 
p300 (an acetyltransferase), providing a molecular basis for the 
E7‑stimulated K433 acetylation, which then inhibits PKM2 
tetramerization (91).

Due to the accumulation of research on the post‑transla‑
tional modification of PKM2, the non‑metabolic effect of 
PKM2 on tumor cells has been gradually revealed, and thus 
the mechanism of E7 on PKM2 will open a new chapter.

6. Enzymatic activity regulation of PKM2 by E7

PKM2 is also a phosphorylated tyrosine‑binding protein (82). 
When cells are stimulated by certain growth factors, PKM2 
is regulated by phosphotyrosine signaling, which in turn 
converts glucose metabolites from energy production to 
anabolic metabolism (82). This is crucial for the rapid growth 
of cancer cells. It is worth remembering that PKM2 mainly 
exists in a dimeric form with low activity in tumor cells, while 
tetramers have a high affinity for substrate PEP. FBP is the 
intermediate product of glycolysis and the allosteric activator 
of PKM2, which seems contradictory, but the exchange of 
dimer and tetramer of PKM2 is very dynamic (92).

It has been revealed that E7 may mimic the effect of 
inhibitory amino acids (such as alanine or leucine) on PKM2 
activity (93). In a high glycolytic NIH3T3 cell line, E7 led 
to the transformation of PKM2 into its dimeric form and 
resulted in a decrease in the cellular PK mass action ratio, the 
glycolysis flux rate and the (ATP+GTP)/(UTP+CTP) ratio, 
and an increase of FBP level, glutamine consumption and cell 
proliferation (30). In addition, it has been reported that a low 
glycolytic NIH3T3 cell line is characterized by high pyruvate 
and glutamine consumption and a large number of dimeric 
forms of PKM2, which is consistent with high FBP levels, low 
(ATP+GTP)/(CTP+UTP) ratios and high diffusivity (20). This 
interaction is very important for the transformation potential 
of tumor cells (94).

PKM2 not only plays a glycolytic role in the cell but also 
acts as a protein kinase. Yang et al (95) found that the activa‑
tion of EGFR induced PKM2 translocation to the nucleus, and 
the interaction of PKM2 with β‑catenin led to the inhibition of 
histone deacetylase 3 and an increase in cyclin D1 expression 
from the promoter, thus promoting tumor cell proliferation.

Signal transducer and activator of transcription 3 (STAT3) 
is also a substrate of PKM2 kinase activity. Nuclear PKM2 
phosphorylates STAT3 at Y705 and then activates MEK5 

transcription  (96). In addition, CD276 induces PKM2 
phosphorylation through the STAT3 signal pathway, thus 
promoting glucose metabolism in tumors  (97). In lung 
cancer cells, eukaryotic EF2K forms a complex with PKM2 
and STAT3, and phosphorylates PKM2 at T129, resulting 
in a decrease in PKM2 dimerization. Subsequently, PKM2 
blocks STAT3 phosphorylation and STAT3‑dependent c‑Myc 
expression (98). A study on HPV16‑positive cervical cancer 
cell lines (SiHa and CaSki) and primary tumor tissues showed 
that STAT3 plays a role in the occurrence and development 
of cervical cancer (99). The activity of STAT3 was positively 
correlated with the expression of HPV16 E6 and E7, and nega‑
tively correlated with the expression of p53 and pRb (100). E6 
is mainly responsible for the phosphorylation of STAT3 in 
HPV keratinocytes, while E5, E6 and E7 can induce STAT3 
tyrosine phosphorylation in HPV cervical cancer cells (101). 
However, the direct dependence of STAT3 on the activation of 
PKM2 to induce the formation of cervical cancer cells has not 
yet been studied.

PKM2 can interact with the transcription factor encoded 
by the octamer‑binding transcription factor‑4 (Oct‑4) gene, 
which plays an important role in maintaining the pluripotent 
state of embryonic stem cells (102). The pituitary‑specific Pit‑1 
(POU) DNA binding domain of Oct‑4 is necessary for interac‑
tion with PKM2, which positively regulates the transactivation 
potential of Oct‑4. In addition, ectopic expression of PKM2 
enhances Oct‑4‑mediated transcription (103). A study demon‑
strated that HPV E7 also specifically binds to the Oct‑4 POU 
domain, and the expression of E7 in differentiated cells can 
stimulate the transactivation of Oct‑4‑mediated distal binding 
sites (104). However, whether the combination of E7 and Oct‑4 
has an impact on PKM2 also needs further study (Fig. 1).

7. E7, PKM2 and the tumor immune microenvironment 
(TIME)

The TIME has attracted increasing attention in recent years, 
especially in clinics (105). With the progress of technology, 
the understanding of the complexity and diversity of the 
TIME and its impact on treatment response has deepened. 
The TIME is composed of factors such as blood vessels, 
myeloid‑derived suppressor cells, antigen‑presenting cells, 
lymphocytes, dendritic cells, fibroblasts, extracellular matrix, 
cytokines and growth factors (106). These components can 
functionally sculpt the TIME by secreting various cytokines, 
chemokines and other factors, resulting in the anticancer 
immune response, and can have an important influence on the 
occurrence and development of cancer. Previous studies have 
shown that PKM2 plays an important role in the TIME by 
influencing the Warburg effect of cancer cells, immune cells 
(such as lymphocytes, dendritic cells and macrophages) and 
immune checkpoints [such as programmed cell death ligand‑1 
(PDL1)] (34,107). However, it is not clear whether PKM2 plays 
a vital role in cancer metabolism and immunity.

In the process of tumorigenesis, lymphocytes are activated 
and proliferate, which is characterized by a significant increase 
in aerobic glycolysis (108). Meanwhile, T‑cell proliferation 
increases the expression of PKM2 (especially in CD4+ T cells), 
and the accumulation of PKM2 in the nucleus affects the meta‑
bolic reprogramming of CD4+ T cells in turn (109). A previous 
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study has shown that PKM2 controls T‑cell activation induced 
by homocysteine (8). In addition, TEPP‑46 and DASA‑58, 
(two common activators of PKM2) can convert PKM2 dimer 
into tetramer and inhibit PKM2 nuclear transfer  (110,111). 
TEPP‑46 can also restrict the development of Th17 and Th1 
cells in vitro and inhibits T cell‑mediated inflammation (112).

Nuclear localization of PKM2 is important for the regula‑
tion of the TIME, and the role of HPV E7 is essential in this 
process. PKM2 has been found to play a role in the differentia‑
tion and function of immune cells (113,114). PKM2 can form 
transcriptional complexes with HIF‑1α, and then regulate the 
release of high mobility group box‑1 from activated macro‑
phages. The latter can release inflammatory factors to change 
the immune microenvironment (115). In addition, nuclear trans‑
location of dimer PKM2 leads to phosphorylation of STAT3 in 
lipopolysaccharide (LPS)‑stimulated coronary artery disease 
macrophages and promotes IL‑1β and IL‑6 transcription (116). 
Moreover, the transformation of PKM2 from a dimeric to a 
tetrameric conformation effectively inhibits LPS‑induced 
nuclear translocation and subsequent expression of IL‑1β and 
a series of other HIF‑1α‑dependent genes, which is important 
for the Warburg effect in macrophages (Fig. 2) (117).

It is worth noting that PKM2 also plays a key role in 
the differentiation of different immune cells; for example, 
PKM2 participates in T‑cell differentiation by regulating 
STAT1/STAT4 and then inducing type 1 T helper (Th1) cell 
formation  (118). In addition, PKM2 interacts with STAT3 
to enhance its activation after migration to the nucleus, thus 
increasing the differentiation of Th17 cells (113). Furthermore, 
IL‑23 is an important cytokine in the polarization of Th17, 
which can induce the phosphorylation of PKM2 and STAT3 in 
T cells and promote their nuclear translocation (119). Moreover, 
previous studies have indicated that nuclear PKM2 can also 

stimulate the proliferation of cancer cells by regulating the 
activity of STAT1 and STAT5 (Fig. 2) (120,121).

Finally, as one of the most promising immunotherapy methods, 
the use of immune checkpoint inhibitors, especially PDL1, has 
attracted extensive attention in recent years. Immune checkpoint 
inhibitors have been proven to have strong immunomodulatory 
effects through their function as negative regulatory factors of 
T cells (122). PDL1 can be expressed in a variety of cell types, 
including cancer cells, and PKM2 is crucial for PDL1 expression 
according to the report by Luo et al (58). PKM2 and HIF‑1α can 
bind to two hypoxia‑response elements (HRE1 or HRE4) of the 
PDL1 promoter at the same time to promote the transcription of 
PDL1 (123). In cervical cancer, the high expression of E7 can 
promote the nuclear localization and phosphorylation of PKM2 
thus promoting the proliferation of cancer cells, and increase 
the activity of HIF‑1α and then interact with PKM2 to enhance 
immune surveillance of cancer escape (Fig. 2).

8. Conclusion

During energy metabolism, cervical cancer cells are 
inclined to utilize glycolysis under aerobic conditions. As a 
rate‑limiting enzyme in glycolysis, PKM2 plays an impor‑
tant role in the aerobic glycolysis pathway. Although HPV 
E7 can also promote the Warburg effect, the mechanism is 
not clear. A large number of studies have shown that there is 
some regulatory relationship between E7 and PKM2, but the 
specific mechanism is still mostly unknown and needs further 
study. Since the intracellular mechanisms influenced by HPV 
E7 interaction with PKM2 are much more complex than 
previously assumed, insights gained from the present review 
may be helpful for further research and clinical treatment of 
cervical cancer in the future.

Figure 2. E7, PKM2 and the tumor immune microenvironment. Nuclear translocation of dimer PKM2 by E7 leads to the release of inflammatory factors, 
PDL1 transcription and T‑cell differentiation. HIF‑1α, hypoxia inducible factor α; HMGB1, high mobility group box‑1; HRE, hypoxia‑response element; 
P, phosphorylation; PDL1, programmed cell death ligand‑1; PKM2, pyruvate kinase 2; STAT, signal transducer and activator of transcription.
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