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Abstract. Tobacco smoke (TS) is the major cause of lung 
cancer. The abnormal proliferation and epithelial‑mesen‑
chymal transition (EMT) of lung cells promote occurrence 
and development of lung cancer. The p38 pathway inter‑
venes in this cancer development. Hesperidin also serves 
a role in human health and disease prevention. The roles 
of p38 in TS‑mediated abnormal cell proliferation and 
EMT, and the hesperidin intervention thereof are not yet 
understood. In the present study, it was demonstrated that 
TS upregulated proliferating cell nuclear antigen, vimentin 
and N‑cadherin expression, whereas it downregulated 
E‑cadherin expression, as assessed using western blotting 
and reverse transcription‑quantitative PCR. Furthermore, 
it was observed that inhibition of the p38 pathway inhibit 
TS‑induced proliferation and EMT. Hesperidin treatment 
prevented the TS‑induced activation of the p38 pathway, 
EMT and cell proliferation in mouse lungs. The findings of 
the present study may provide insights into the pathogenesis 
of TS‑related lung cancer.

Introduction

Lung cancer is one of the most common causes of 
cancer‑related deaths in men and women worldwide (1,2). 
Tobacco smoke (TS) is associated with multiple types of 
cancer, but especially lung cancer  (3,4). Epidemiological 
studies have revealed a link between TS and lung cancer 
initiation and development (5‑7). TS accounts for 80% of 
female and 90% of male lung cancer cases (8,9). Lung cancer 
contributes to >3,000 deaths per day and is the leading cause 
of cancer‑related deaths in men and women (2). However, 
the molecular pathogenesis of TS‑induced lung cancer still 
remains largely unknown.

Lung cancer is a multicentric and multistep phenom‑
enon, which sequentially accumulates molecular and 
genetic abnormalities  (9). Abnormal cell proliferation 
and epithelial‑mesenchymal transition (EMT) help in 
developing lung cancer and can be activated by carcino‑
gens  (10‑12). It has been demonstrated that exposure of 
cells or mice to TS accelerates the EMT process, which is 
characterized by changes in the expression of EMT markers, 
including decreased E‑cadherin, and increased vimentin 
and N‑cadherin (13‑15). In addition, TS‑induced EMT initi‑
ates early‑stage carcinogenesis (16‑18). Cancer is a group of 
diseases characterized by abnormal cell proliferation, and 
abnormal cell proliferation is a key step that may promote 
the occurrence and development of cancer (19‑22). Studies 
have suggested that exposure to TS induces abnormal cell 
proliferation accompanied by changes in the expression of 
PCNA or Ki‑67 (23‑25). To the best of our knowledge, the 
molecular mechanism of TS‑induced abnormal pulmonary 
cell proliferation and EMT is unclear. However, further 
investigations may provide strategies for early treatment 
and intervention in lung cancer.

MAPKs control cellular processes, such as prolif‑
eration, apoptosis, angiogenesis, cell motility and 
differentiation (26,27). Therefore, MAPKs can contribute to 
tumorigenesis (28‑30). p38 is a member of the MAPK family, 
participating in the occurrence and development of TS‑induced 
lung cancer by regulating the EMT process (30‑36). However, 
the functional mechanism of p38 in lung tissues is not clear.
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Dietary phytochemicals are potentially anticancerous 
and flavonoids have been reported to inhibit cancer progres‑
sion (37). Hesperidin is a citrus flavone, which is the abundant 
polyphenol in citrus fruits and is commonly used in Traditional 
Chinese Medicine  (37,38). Hesperidin exerts a range of 
biological and pharmacological activities, including antioxi‑
dant, anti‑inflammatory and anticancer effects, with minimal 
or no side effects  (39‑41). Hesperidin is anticancerous for 
tumors, such as breast, gastric and lung tumors. The anticancer 
activity of hesperidin has been well studied  (37,39,42,43). 
However, limited work has been conducted on its potential to 
treat TS‑induced abnormal cell proliferation and EMT in lung 
tissues.

The present study examined the regulation of the p38 
pathway in TS‑induced abnormal lung cell proliferation and 
EMT. The preventive effects of hesperidin were determined by 
examining the lung tissues of treated mice. The findings may 
provide a novel avenue for determining the pathogenesis and 
early interventions of TS‑induced lung tumorigenesis.

Materials and methods

Chemicals and reagents. Phosphorylated p38 (catalogue 
number, 4511T; 1:500), phosphorylated c‑Fos (catalogue 
number, 5348T; 1:1,000), p38 (catalogue number, 8690T; 
1:1,000), c‑Fos (catalogue number, 2250T; 1:1,000), E‑cadherin 
(catalogue number, 3195T; 1:1,000) and N‑cadherin (catalogue 
number, 13116T; 1:1,000) antibodies were purchased from 
Cell Signaling Technology, Inc. Vimentin (catalogue number, 
MB65651; 1:1,000), proliferating cell nuclear antigen (PCNA) 
(catalogue number, MB0156; 1:500) and GAPDH (catalogue 
number, BS65483M; 1:2,000) antibodies were purchased from 
Bioworld Technology, Inc. Horseradish peroxidase‑conjugated 
secondary antibodies were purchased from Invitrogen; Thermo 
Fisher Scientific, Inc. (catalogue numbers, 31430 and 31460; 
1:2,000). Primers for Vimentin, E‑cadherin, N‑cadherin, 
PCNA and GAPDH (Table I) were synthesized by Invitrogen; 
Thermo Fisher Scientific, Inc. SB203580 was purchased from 
MilliporeSigma. The sources of other materials are indicated 
throughout the text.

Mice and exposure to TS. Male 8‑week‑old BALB/c mice 
weighing 18‑22 g (n=60) were purchased from the Animal 
Research Center of Jiangsu University (Zhenjiang, China). 
Mice were acclimated for 1 week prior to TS exposure. The 
mice were housed in polypropylene cages at 22±0.5˚C and 
40‑60% humidity with 12 h light/dark cycles at the Animal 
Care Facility of Jiangsu University (Zhenjiang, China). Water 
and a normal diet were provided ad libitum. All of the mouse 
experiments were approved by the Animal Care and Use 
Committee of Jiangsu University and efforts were made to 
minimize suffering and distress. Mice in the TS group (n=18) 
were exposed in the smoking apparatus (Beijing Huironghe 
Technology Co., Ltd.) for 6 h daily for 12 weeks. The filtered 
air (FA) control group (n=18) mice were exposed to filtered 
air in the smoking apparatus. After TS exposure, mice in 
each group were provided with water and a normal diet. 
Filter‑less 3R4F Kentucky reference cigarettes (containing 
9.4 mg tar and 0.76 mg nicotine per cigarette) were used 
as the TS source. In the TS + DMSO group (n=12), mice 

were injected with sterile DMSO (catalogue number, D2650; 
MilliporeSigma) and exposed to TS, while in the TS + 
SB203580 group (n=6), mice were injected with SB203580 
(1 mg/kg body weight) and exposed to TS. SB203580 was 
dissolved in sterile DMSO and administered intraperitone‑
ally every other day. In the TS + hesperidin group (n=6), mice 
were exposed to TS and received 30 mg/kg hesperidin (cata‑
logue number, HY‑15337; MedChemExpress) every other day 
by gavage, and a normal diet. SB203580 and hesperidin were 
dissolved in DMSO, and further diluted in 0.9% saline to the 
final concentration. TS was generated by a smoke machine, 
which pumped the smoke from the burning cigarette at a 
constant rate (5 min/cigarette). Smoke was delivered to the 
whole‑body exposure chambers with total particulate matter 
(TPM) of 85 mg/m3. The exposures were monitored and 
characterized as: Carbon monoxide (16.75±2.47 ppm) and 
TPM (0 mg/m3) for the control group; and carbon monoxide 
(181.05±14.79 ppm) and TPM (84.83±5.19 mg/m3) for the TS 
exposure group. Animal health and behavior were monitored 
twice a week and the experiment lasted for 12 weeks. There 
was no accidental death of mice during the experiment, 
and all mice were euthanized at the end of the experiment. 
Mice were sacrificed by cervical dislocation and death was 
confirmed by the sound of cervical spine fracture and the 
absence of breathing (44).

Western blot analysis. Lung tissues were homogenized using 
a full automatic sample rapid grinding instrument (Shanghai 
Jingxin Industrial Development, Co., Ltd.) in lysis buffer 
containing 1X protease inhibitor cocktail (Pierce; Thermo 
Fisher Scientific, Inc.) and centrifuged at 12,000 x g at 4˚C 
for 15 min. Protein concentration was determined by bicin‑
choninic acid assay. Equal amounts of proteins (60 µg) were 
fractionated by electrophoresis via 7.5‑10% SDS‑PAGE and 
transferred to a PVDF membrane (MilliporeSigma). The 
membrane was blocked using 5% non‑fat milk at 25˚C for 1 h 
and incubated overnight with monoclonal antibody at 4˚C. The 
membranes were washed with tris‑buffered saline with 0.1% 
Tween‑20 and probed with horseradish peroxidase‑conjugated 
secondary antibody diluted in 5% skimmed milk. GAPDH 

Table I. Primer sequences.

Gene name	 Primer sequence (5'‑3')

E‑cadherin	 Forward: CAGGTCTCCTCATGGCTTTGC
	 Reverse: CTTCCGAAAAGAAGGCTGTCC
PCNA	 Forward: CAAGAAGGTGTTGGAGGCA
	 Reverse: TCGCAGCGGTAGGTGTC
Vimentin	 Forward: CCTTGACATTGAGATTGCCA
	 Reverse: GTATCAACCAGAGGGAGTGA
N‑cadherin	 Forward: TCAGGCGTCTGTAGAGGCTT
	 Reverse: ATGCACATCCTTCGATAAGACTG
GAPDH	 Forward: AGGTCGGTGTGAACGGATTTG
	 Reverse: TGTAGACCATGTAGTTGAGGTCA

PCNA, proliferating cell nuclear antigen.
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served as the loading control. The membranes were developed 
with ECL kit (catalogue number, E412‑02; Vazyme Biotech 
Co., Ltd.). For densitometric analyses, protein bands on the 
blots were measured with ImageJ 1.8.0.345 (National Institutes 
of Health).

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA from the lung tissues of the mice was isolated using 
TRIzol™ (Gibco; Thermo Fisher Scientific, Inc.). A total 
of 2  µg RNA was reverse transcribed into cDNA using 
AMV Reverse Transcriptase (Promega Corporation) and 
the HiScript® III 1st Strand cDNA Synthesis Kit (cata‑
logue number, R312‑01; Vazyme Biotech Co., Ltd.) was 
used according to the manufacturer's protocol. qPCR was 
performed using AceQ® qPCR SYBR Green Master Mix 
(Vazyme Biotech Co., Ltd.) and a StepOnePlus™ Real‑Time 
PCR System (Applied Biosystems; Thermo Fisher Scientific, 
Inc.). The thermocycling conditions were as follows: 95˚C for 
5 min, followed by 40 cycles at 95˚C for 15 sec, 60˚C for 
15 sec, 72˚C for 20 sec and a 65‑95˚C drawing dissociation 

curve (45). GAPDH expression was used as the normaliza‑
tion control. Fold‑changes in the expression of each gene 
were calculated using the 2‑ΔΔCq (46). The primers used are 
shown in Table I.

Immunohistochemistry. Immunohistochemistry was 
performed according a previously reported method  (47). 
Briefly, tissues were fixed in 4% buffered formalin at room 
temperature for 24 h. 5‑µm paraffin‑embedded continuous 
sections were de‑waxed in xylene and rehydrated in graded 
alcohol. Next, the endogenous peroxidase activity was 
quenched by incubating the slices in 3% (v/v) H2O2 in 
methanol. Antigen‑retrieval was performed by incubating 
the sections in citrate buffer (pH 6.0) and the non‑specific 
binding was blocked using 5% bovine serum albumin at 37˚C 
for 30 min. After incubation overnight with E‑cadherin (cata‑
logue number, 3195T; 1:200; Cell Signaling Technology, Inc.) 
and Vimentin (catalogue number, MB9006; 1:100; Bioworld 
Technology, Inc.) at 4˚C, the sections were subsequently 
washed with phosphate‑buffered solution, and then incubated 
with biotinylated immunoglobulin G and SABC (catalogue 
number, SA1020; Wuhan Boster Biological Technology, Ltd.) 
for 1 h. Image acquisition was performed with a light micro‑
scope (Nikon Solar Eclipse Ti‑S; Nikon Corporation).

Statistical analysis. Statistical analysis was performed 
using SPSS 16.0 (SPSS, Inc.). The data of three repeated 
experiments are presented as the mean ± standard deviation. 
One‑way ANOVA, followed by Tukey's post hoc test, was used 
to analyze the statistical differences among multiple groups. 
The differences between two groups were analyzed using an 
unpaired t‑test. P<0.05 was considered to indicate a statisti‑
cally significant difference.

Results

TS‑induced abnormal EMT and cell proliferation in 
mouse lung tissues. TS is the dominant risk factor for lung 

Figure 1. TS‑induced abnormal EMT and cell proliferation processes in mouse lung tissues. Mice were exposed to TS or FA daily for 6 h for a total of 12 weeks. 
(A) TS reduced mRNA levels of the epithelial marker (E‑cadherin) and increased mesenchymal and proliferation marker levels. (B) TS induced alterations 
in the protein expression levels of EMT and proliferation markers. (C) Densitometric analyses of western blotting for E‑cadherin, vimentin, N‑cadherin and 
PCNA. (D) Immunohistochemistry revealed decreased E‑cadherin expression and increased vimentin expression after exposure to TS (magnification, x40). 
**P<0.01 compared with FA. The error bars shown in the graphs indicate the standard deviation. EMT, epithelial‑mesenchymal transition; FA, filtered air; 
PCNA, proliferating cell nuclear antigen; TS, tobacco smoke.

Figure 2. TS increases p38 pathway activation in mouse lung tissues. Mice 
were exposed to TS or FA for 6 h daily for a total of 12 weeks. (A) Western 
blotting was used to detect the effect of 12 weeks of TS exposure on 
the expression of p38, c‑Fos, p‑p38 and p‑c‑Fos. (B) Evaluation of the 
phosphorylated protein/total protein ratio by density analysis of western 
blotting. **P<0.01 compared with FA. The error bars shown in the graphs 
indicate the standard deviation. FA, filtered air; p‑, phosphorylated; 
TS, tobacco smoke.
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cancer (3,4). Abnormal EMT and cell proliferation initiate 
TS‑induced lung cancer (16,25). The altered EMT and cell 
proliferation marker (E‑cadherin, vimentin, N‑cadherin and 
PCNA) levels were screened in mouse lung tissues after 
12 weeks of TS exposure. The RT‑qPCR results showed a 
reduction in E‑cadherin mRNA levels after TS exposure 
compared with the levels in the FA control group, whereas 
vimentin, N‑cadherin and PCNA levels were elevated 

(Fig.  1A). The western blotting results revealed that TS 
reduced E‑cadherin protein expression compared with 
that in the FA group, but increased vimentin, N‑cadherin 
and PCNA expression (Fig. 1B and C). In order to further 
clarify that smoking can induce EMT in lung tissue of mice, 
vimentin and E‑cadherin were detected by immunohisto‑
chemistry. It was demonstrated that TS increased vimentin 
expression but decreased E‑cadherin expression compared 

Figure 3. SB203580 inhibits TS‑induced p38 pathway activation. Mice were treated with FA, TS, TS + DMSO or TS + SB203580 for 12 weeks. (A) Western 
blot analysis revealed that SB203580 inhibited the TS‑induced changes of p‑p38 and p‑c‑Fos. (B) Evaluation of the phosphorylated protein/total protein ratio 
by density analysis of western blotting. **P<0.01, compared with the FA control; ##P<0.01, compared with TS alone. The error bars shown in the graphs indicate 
the standard deviation. FA, filtered air; p‑, phosphorylated; TS, tobacco smoke.

Figure 4. TS‑mediated abnormal EMT and cell proliferation are prevented by inhibition of the p38 pathway. Mice were treated with FA, TS, TS + DMSO or 
TS + SB203580 for 12 weeks. (A) Reverse transcription‑quantitative PCR was used to analyze the expression levels of EMT and cell proliferation markers. 
(B) Western blotting was used to analyze the levels of EMT and cell proliferation markers, which were (C) semi‑quantified. **P<0.01, compared with the FA 
control; ##P<0.01, compared with TS only. The error bars shown in the graphs indicate the standard deviation. EMT, epithelial‑mesenchymal transition; FA, 
filtered air; PCNA, proliferating cell nuclear antigen; TS, tobacco smoke.
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with that in the FA group (Fig. 1D). Therefore, TS exposure 
induced abnormal EMT and cell proliferation in mouse lung 
tissues.

TS‑mediated abnormal EMT and cell proliferation are 
inhibited by p38 pathway inhibition. To determine whether 
the abnormal lung EMT and proliferation processes triggered 
by TS are associated with the p38 pathway, the levels of p38, 

phosphorylated p38 and phosphorylated c‑fos in mouse lung 
tissues were investigated. The western blotting results revealed 
an increase in phosphorylated p38 and phosphorylated c‑Fos 
levels upon TS exposure compared with that in the FA group 
(Fig. 2A). In addition, the ratio of phosphorylated protein to 
total protein was also evaluated, and TS was shown to increase 
the ratio of phosphorylated p38 and phosphorylated c‑Fos 
compared with the FA group (Fig. 2B).

Figure 6. Hesperidin attenuates activation of the p38 pathway by TS. Mice were treated with FA, TS, TS + DMSO and TS + hesperidin for 12 weeks. 
(A) Western blotting was used to analyze the expression changes of p38, c‑Fos, p‑p38 and p‑c‑Fos. (B) Evaluation of the phosphorylated protein/total protein 
ratio by density analysis of western blotting. **P<0.01, compared with FA; ##P<0.01, compared with TS only. The error bars shown in the graphs indicate the 
standard deviation. FA, filtered air; p‑, phosphorylated; TS, tobacco smoke.

Figure 5. Hesperidin inhibits the abnormal EMT and cell proliferation in lung tissues from mice exposed to TS. Mice were treated with FA, TS, TS + 
DMSO and TS + hesperidin for 12 weeks. (A) Reverse transcription‑quantitative PCR was used to analyze the mRNA levels of EMT and proliferation 
markers. (B) Protein expression levels of EMT and proliferation markers were analyzed by western blotting and (C) semi‑quantified. **P<0.01, compared with 
FA; #P<0.05, ##P<0.01, compared with TS only. The error bars shown in the graphs indicate the standard deviation. EMT, epithelial‑mesenchymal transition; 
FA, filtered air; PCNA, proliferating cell nuclear antigen; TS, tobacco smoke.



LIANG et al:  HESPERIDIN INHIBITS TS-INDUCED PULMONARY CELL PROLIFERATION AND EMT THROUGH p386

To further verify the role of p38 pathway, BALB/c mice 
were treated with SB203580. After 12 weeks of treatment with 
SB203580, the upregulation of phosphorylated p38 and phos‑
phorylated c‑Fos induced by TS was significantly inhibited, 
as demonstrated by western blotting (Fig. 3A). In addition, the 
ratio of phosphorylated protein to total protein evaluated by 
density analysis showed that SB203580 reduced the propor‑
tion of the TS‑induced increase in phosphorylated p38 and 
phosphorylated c‑Fos (Fig. 3B).

The expression of EMT and proliferation markers was 
also detected after 12 weeks treatment. These results showed 
that alterations in the levels of EMT and proliferation markers 
induced by TS were significantly suppressed by inhibition 
of the p38 pathway in mouse lung tissues (Fig. 4). Therefore, 
TS‑mediated abnormal EMT and cell proliferation were 
inhibited by the inhibition of the p38 pathway as shown in the 
in vivo experiments in mice.

Hesperidin inhibits abnormal EMT and cell proliferation 
in mouse lung tissues elicited by TS. BALB/c mice were 
administered with hesperidin and exposed to TS for 12 weeks. 
The downregulation of E‑cadherin was reduced, and the 
upregulation of vimentin, N‑cadherin and PCNA was reduced 
compared with that in the TS group (Fig. 5). The preventive 
effects of hesperidin on TS‑mediated abnormal EMT and cell 
proliferation in mouse lung tissues were evident.

The effect of hesperidin on TS‑induced abnormal pulmo‑
nary EMT and cell proliferation through its effects on the 
p38 pathway was also studied. It was found that hesperidin 
(30 mg/kg) reversed the increased expression of phosphory‑
lated p38 and phosphorylated c‑fos induced by TS (Fig. 6A). 
In addition, the ratio of phosphorylated protein to total protein 
evaluated by density analysis showed that hesperidin reduced 
the phosphorylation level of p38 and c‑Fos compared with that 
in the TS group (Fig. 6B).

Discussion

TS is the leading cause of lung cancer and promotes initiation 
and progression of pulmonary tumorigenesis (5‑7,9,48). The 
underlying molecular mechanism of TS causing lung cancer 
remains unclear. The present study focused on TS‑induced 
abnormal EMT and cell proliferation in mouse lungs. The study 
demonstrated that the p38 pathway regulates TS‑associated 
abnormal pulmonary EMT and cell proliferation. The data 
presented in the present study indicated that hesperidin 
suppressed the p38 pathway to prevent TS‑induced abnormal 
pulmonary EMT and cell proliferation. The findings provide 
insights into the molecular mechanisms of TS‑mediated 
pulmonary tumorigenesis, and provide potential targets for 
lung cancer intervention.

It is well known that both normal cells and cancer cells can 
proliferate, but the proliferation of cancer cells is abnormal 
and uncontrolled  (48,49). Antiproliferative activity can 
inhibit the proliferation of all cells, while antitumor activity 
only targets cancer cells with abnormal proliferation and 
has little effect on normal cells. EMT is a common cellular 
process where cells lose epithelial properties and acquire 
mesenchymal properties (50,51). Normal cells can acquire 
EMT properties, which may be an important feature in the 

carcinogenic process (51). The tumor cell EMT process is a 
strategy of ‘immune escape’ and a means to improve invasion 
and metastasis (52,53). Carcinogens can stimulate abnormal 
cell proliferation and EMT, leading to lung cancer (10‑12). 
TS‑induced abnormal EMT and cell proliferation regulate 
early events in cancer (54‑56). In the present study, the change 
in the expression levels of EMT and proliferation markers 
indicated abnormal EMT and cell proliferation in the lungs 
of mice exposed to TS. This was demonstrated through 
western blot analysis and RT‑qPCR where reduced levels of 
E‑cadherin, and increased levels of vimentin, N‑cadherin 
and PCNA were observed. Immunohistochemical staining 
also revealed increased vimentin expression and decreased 
E‑cadherin expression.

A number of signaling pathways control abnormal EMT 
and cell proliferation, including the Wnt/β‑catenin, MAPK 
and NF‑κB signaling pathways (57‑59). The MAPK pathway 
regulates physiological processes and pathologies, such as 
cell proliferation, apoptosis, inflammation, cell motility, 
differentiation and tumorigenesis (60,61). p38 is an impor‑
tant member of the MAPK family and participates in the 
development of cancer by regulating EMT and abnormal cell 
proliferation (30,31,62). The present study demonstrated that 
TS‑mediated abnormal pulmonary EMT and cell proliferation 
were associated with the upregulation of phosphorylated p38 
and phosphorylated c‑Fos.

The role of the p38 pathway in abnormal pulmonary EMT 
and cell proliferation has been previously studied. In these 
studies, mice were treated with SB203580, which inhibited p38 
activation (63,64). In the present study, SB203580 inhibited 
the upregulation of phosphorylated p38 and phosphorylated 
c‑Fos induced by TS. The suppressed p38 pathway inhibited 
TS‑mediated abnormal pulmonary EMT and cell prolif‑
eration, as shown by elevated E‑cadherin levels and decreased 
vimentin, N‑cadherin and PCNA levels.

Dietary phytochemicals, such as hesperidin, are consid‑
ered to contribute to cancer prevention (37,38). The safety of 
hesperidin and its anticancer activity have been previously 
demonstrated (41,65,66). The intervention of hesperidin in 
TS‑induced abnormal pulmonary EMT and cell proliferation 
is through the p38 pathway, where phosphorylated p38 and 
phosphorylated c‑Fos are attenuated by hesperidin.

The results of the present study illustrated that the p38 
pathway positively regulated TS‑induced abnormal pulmonary 
EMT and proliferation. The interventive effects of hesperidin 
were demonstrated, which may aid the understanding of the 
mechanisms and chemoprevention of TS‑induced lung cancer.
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