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Abstract. Triple‑negative breast cancer (TNBC) is the most 
malignant subtype of breast cancer. In the absence of effec‑
tive molecular markers for TNBC, there is an urgent clinical 
need for promising therapeutic target for TNBC. Histone 
deacetylases (HDACs), key regulators for chromatin remod‑
eling and gene expression, have been suggested to play critical 
roles in cancer development. However, little is known ~the 
functions and implications of HDACs in TNBC treatment 
in the future. By analyzing the expression and prognostic 
significance of HDAC family members in TNBC through 
TCGA and METABRIC databases, HDAC7 was found to be 
downregulated in TNBC samples and the survival of patients 
with lower expression of HDAC7 was shorter. Furthermore, 
HDAC7 was negatively associated with NudC domain 
containing 1 (NudCD1) and γ‑glutamyl hydrolase (GGH). 
Loss of NudCD1 or GGH predicted improved overall survival 
time (OS) of patients with TNBC. In vitro experiments showed 
that silencing of HDAC7 enhanced TNBC cell proliferation, 
while overexpression HDAC7 inhibited TNBC cell prolif‑
eration. The results of functional experiments confirmed that 
HDAC7 negatively modulated GGH and NudCD1 expression. 
Furthermore, decrease of NudCD1 or GGH inhibited cell 
proliferation. Notably, the HDAC7‑NudCD1/GGH axis was 
found to be associated with NK cell infiltration. Overall, the 
present study revealed a novel role of HDAC7‑NudCD1/GGH 
axis in TNBC, which might provide a promising treatment 
strategy for patients with TNBC.

Introduction

Breast cancer is a great threat to the life and health of 
women. According to the global cancer statistics in 2020, 
breast cancer (BRCA) has surpassed lung cancer as the most 
prevalent tumor type worldwide and its mortality ranks fourth 
among all cancers (1). According to the expression level 
of estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor (HER‑2), BRCA can 
be divided into four main types including Luminal A (ER+/
PR+/HER2‑), Luminal B (ER+/PR+/HER2+), HER2 enriched 
(ER‑/PR‑/HER2+) and triple‑negative BRCA (TNBC) (ER‑/
PR‑/HER2‑). Among these, TNBC, the most malignant 
subtype, accounts for ~10‑20% of all breast cancers (2,3). In 
addition to the rapid proliferation rate, high aggressiveness 
and metastatic propensity, the absence of effective molecular 
markers also remains a challenge to improve the therapeutic 
effect of TNBC (4). Chemotherapy has remained the only 
systematic therapy for TNBC thus far. However, due to the 
high heterogeneity, patients with TNBC are susceptible to 
developing drug resistance which may lead to disease progres‑
sion and even mortality (4,5). Therefore, identifying effective 
prognosis‑related molecules and promising drug targets for 
TNBC is necessary.

Epigenetics refers to reversible, heritable alterations in gene 
function that do not involve changes in the DNA sequence, 
including modifications to DNA (e.g., methylation modifications) 
and various modifications to histones (e.g., histone acetylation 
and methylation modifications) (6). In recent years, researchers 
have discovered that epigenetic dysregulation may lead to 
abnormal gene expression and eventually promote tumor onset 
and progression (7,8). Acetylation is one of the major post‑tran‑
scriptional protein modifications in cells. Histone acetylation is 
controlled by two classes of antagonizing histone‑modifying 
enzymes including histone deacetylases (HDACs) and histone 
acetyltransferases (HATs) which play a central role in modu‑
lating chromatin remodeling and gene expression (9,10). A 
total of 18 HDACs identified in humans are divided into four 
classes according to their structures and functions: Class I 
(HDAC1/2/3/8), class IIa (HDAC4/5/7/9), class IIb (HDAC6/10), 
class III (SIRT1‑7) and class IV (HDAC11). Among these, 
class I/II/IV are well identified as promising therapeutic targets 
in cancers (11). Anti‑tumor therapy based on drugs targeting 
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HDACs has also become effective in hematological malignan‑
cies, such as lymphoma and multiple myeloma (12‑14). It has 
been reported that multiple HDACs including HDAC1/2/3/6 are 
dysregulated in BRCA and participate in BRCA progression, 
metastasis and invasion (12,15,16). In TNBC, HDAC6 has been 
determined as a possible target and the knockdown or inhibition 
of HDAC6 can regulate glycolytic metabolism (17). At the same 
time, inhibition of HDAC6 can enhance tubulin acetylation and 
has a interaction with eribulin in TNBC (18). HDAC8 is also 
considered as a promising target in TNBC through Yin Yang 
1 and Forkhead Box A1 (19,20). Moreover, several pre‑clinical 
studies have revealed that pan‑HDAC inhibitors or some 
selective HDAC inhibitors exhibit anti‑tumor effects through 
inhibition of EMT pathway in TNBC (20‑23). In addition, the 
class I HDACs (HDAC1/2/3/10) have been shown to be upregu‑
lated in TNBC and associated with proliferation, malignant 
transformation and poor prognosis (24,25). Pre‑clinical studies 
have also revealed the potential synergetic role of HDAC inhibi‑
tors with other drugs in TNBC. Sulaiman et al (26) showed that 
the combination of HDAC inhibitors, tamoxifen and mTORC1 
inhibitors can suppress the persistence of cancer stem cells and 
inhibit tumor growth in TNBC. Ma et al (27) found that HDAC 
inhibitors may re‑sensitize TNBC cells to tamoxifen treatment. 
Torres‑Adorno et al (28) found that HDAC inhibitors can 
enhance the therapeutic efficiency of MEK inhibitors in TNBC 
through MCL1 degradation. Multiple studies have revealed the 
possible synergetic effect of HDAC inhibitors with other drugs 
in the chemotherapy, radiation therapy and targeted therapy 
for TNBC (29‑33). Chidamide, an oral selective suppressor of 
class I HDACs, has been proved to be safe and efficacious for 
the treatment of HR+ advanced BRCA when combined with the 
aromatase inhibitor exemestane (34), indicating the importance 
and potential of epigenetic therapy in BRCA. Nonetheless, 
treatment of TNBC with single HDAC inhibitors have met with 
disappointing results. Meanwhile, combinations of targeted 
therapies with HDAC inhibitors are promising treatment 
options in BRCA, especially in TNBC (27,28,35). Therefore, 
substantiating that the role of HDACs in TNBC is conductive to 
prevent TNBC progression.

Biomarkers of cancers not only can play a prognostic 
role but also can act as drug targets. Due to the develop‑
ment of large‑scale sequencing technology, numerous novel 
biomarkers have been identified in TNBC (36). However, 
whether HDACs can be used as prognostic predictors in TNBC 
and whether HDACs‑related pathways can be used to assess 
the potential efficacy of targeted therapies in cancers based on 
bioinformatics analysis and large‑scale sequencing data have 
not been investigated. Thus, in view of the vital role of HDACs 
in BRCA, the prognostic value of class I/II/IV HDACs in 
TNBC and the possible drug targets for patients with TNBC 
were explored in the present study, principally the expression 
of HDACs in patients with TNBC and their possible down‑
stream genes based on The Cancer Genome Atlas (TCGA) and 
METABRIC databases.

Materials and methods

Data source and processing. The RNA‑Seq data of 1,247 samples 
from the BRCA database (139 normal samples and 123 TNBC 
tumor samples) and corresponding clinical characteristics were 

downloaded from TCGA website (https://portal.gdc.cancer.
gov/projects/TCGABRCA). Ensemble IDs were converted 
to official gene symbols and log2 processing of the data was 
performed. mRNAs and protein‑coding genes were screened by 
the Ensemble human genome browser GRCh38 (GRCh38.p9;  
ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/
Homo_sapiens/reference/GCF_000001405.39_GRCh38.p13).

Survival analysis. The overall survival of patients with BRCA 
in the TCGA database was analyzed and plotted on the Kaplan 
Meir Plotter (https://kmplot.com/analysis/) and the survival 
in METABRIC database was analyzed and plotted by using 
Breast Cancer Gene‑Expression Miner v4.8 (http://bcgenex.
ico.unicancer.fr/BC‑GEM/GEM‑Accueil.php?js=1). The best 
cutoff value was taken for all survival analyses.

Comparing HDACs expression. The expression level of genes 
in TCGA and METABRIC databases was compared and plotted 
using Breast Cancer Gene‑Expression Miner v4.8 (bcgenex.
ico.unicancer.fr/BC‑GEM/GEM‑Requete.php?mode=8) by 
searching the ‘Target Gene Expression’ module of the website. 
The expression of HDAC7 in pan‑cancer was analyzed by 
TIMER (timer.cistrome.org/).

Differential expression analysis. The limma package (37) 
in R (38) was used to screen the mRNA expression matrix 
between Low‑HDAC7 expression and High‑HDAC7 expres‑
sion groups, TNBC samples and normal tissue samples. The 
criteria for differential mRNAs were |log 2(fold change)|>1 
and a false discovery rate (FDR) <0.05. The volcano map was 
executed using the OmicStudio tools at https://www.omic‑
studio.cn/tool.

Functional enrichment analysis. Gene clustering analysis and 
KEGG analysis were performed on DAVID Bioinformatics 
Resources (david.ncifcrf.gov/), which allows enrichment of 
gene symbols by entering gene name files. Then the enrich‑
ment results were plotted as bubble map using the ggplot 
package version 3.3.6 (ggplot2.tidyverse.org) in R studio.

Correlation analysis. To explore the correlation genes with 
HDAC7, the Sanger box‑Spearman correlation coefficients 
calculator was used to calculated the correlation confidence 
of HDAC7‑related genes, the criteria of correlation genes were 
|R|>=0.4 and a P<0.05 (39). Then the result was plotted as heat 
map using the OmicStudio tools V3.3.6 (omicstudio.cn/tool).

Immune correlation. The correlation of the target genes 
HDAC7, NUDCD1 and GGH was analyzed and the graph 
was plotted on the TIMER website (http://timer.cistrome.
org/) (40). This website used the partial Spearman's correla‑
tion to analyze the correlation of target genes expression with 
immune infiltration level in diverse cancer types. The ‘purity 
adjustment’ was used to reduce the confusing effects of tumor 
purity.

Cell culture. All cell lines were obtained from ATCC, 
including the normal breast epithelial cell MCF‑10A, the 
luminal BRCA cell lines MCF‑7 and T47D and the TNBC cell 
lines MDA‑MB‑231, MDA‑MB‑468, SUM‑149, SUM‑159 
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and BT‑549. MCF‑7, T47D, MDA‑MB‑231, MDA‑MB‑468, 
SUM‑149, SUM‑159 and BT‑549 cells were cultured in 
DMEM (Gibco; Thermo Fisher Scientific, Inc.) with 10% 
fetal bovine serum (FBS, Newzerum Ltd.). MCF‑10A cells 
were cultured in the special medium (HY Bio, Guangzhou, 
China) supplemented with 5% horse serum, 20 ng/ml EGF, 
100 ng/ml cholera toxin, 0.01 mg/ml insulin, 500 ng/ml 
hydrocortisone (Procell). The detail information of each cell 
line is in Table I.

Cells were cultured using the medium described above and 
the medium was changed every 2 days. When the cell density 
reached ~70‑80%, cell passaging was performed. The medium 
was removed and 1 ml trypsin was added to digest cells for 
~30 sec‑1 min, then 1 ml medium containing serum was added 
to terminate digestion. Cells were gently blown off the bottom 
of the culture bottles, then transferred to a 15 ml centrifuge 
tube and centrifuged at room temperature, 100 g for 3 min. 
The liquid was removed and cells were resuspended with 1 ml 
complete medium. Cells were passage into a new culture bottle 
at 1:3‑1:4. The number of cell passages in a single experiment 
did not exceed 15 times.

Small interfering (si)RNA transfection. For transfection of 
siRNA, cells were plated at a density of 1x105 cells per well 
in 6‑well plates, cell density was ~60‑80% per well. Then 
cells were transfected with negative control (NC), or specific 
siRNAs for HDAC7, NudCD1 and GGH (100 nM; Shanghai 
GenePharma Co., Ltd.), respectively, using Lipofectamine® 
RNAiMAX transfection reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.). For transfection, 125 µl opi‑MEM (Thermo 
Fisher Scientific) was mixed with 25 pmol siRNA and another 
125 µl opi‑MEM was mixed with 7.5 µl RNAiMAX and 
the mixture was incubated at room temperature for 15 min 
respectively. Then the iMAX solution was added to the siRNA 
solution, mixed well and incubated at room temperature for 
another 15 min. Finally, the 250 µl mixture was added into 
indicated wells. After transfection of 24 h, the culture medium 
was aspirated and replaced with new complete medium for 
another 24 h.

The siRNA sequences were: HDAC7: 5'‑ACU UCU UGG 
GCU UAU AGC GCA‑3', 5'‑CGC UAU AAG CCC AAG AAG 
UCC‑3'; NUDCD1: 5'‑AGUGUAUAUUGAUCAUCUCGA‑3', 
5'‑GAG AUG AUC AAU AUA CAC UGG‑3'; GGH: 5'‑UUU 

UUG CAU UAA UAU UCC GAU‑3', 5'‑CGG AAU AUU AAU 
GCA AAA AUG‑3'; NC: 5'‑UUC UCC GAA CGU GUG ACG 
UTT‑3', 5'‑ACG UGA CAC GUU CGG AGA ATT‑3'.

Construction of plasmid and transfection. pCMV‑MCS (cata‑
logue number: JD2022092202R) cloning vector was used to 
construct pCMV‑HDAC7 over‑expression plasmid. Plasmid 
was transfected into cells with Lipofectamine® 3000 (cat. 
no. L3000150; Invitrogen; Thermo Fisher Scientific, Inc.). 
Cells were seeded in 6‑well plates at 1x105 cells per well 
and transfection experiments were performed when the cell 
density reached 60‑70%. The transfection system was 1.5 µg of 
plasmid, 3 µl p3000 and 3 µl Lipofectamine® 3000 per 250 µl 
of opi‑MEM. The transfection mixture was incubated at room 
temperature for 15 min and added into the six‑well plates. 
After 24 h of transfection, the supernatant was discarded and 
the medium was changed to complete medium and incubated 
for another 24 h for subsequent experimental verification.

RNA extraction. Total RNA was extracted from BRCA cells 
using TRIzol® (Thermo Fisher Scientific, Inc.) and RNA 
concentration and quality were determined by the absorbance 
of RNA at 260 and 280 nm. RNA extraction, cDNA synthesis, 
and qPCR performed according to the manufacturer's protocol. 
Each six‑well plate (1‑2x105 cells per well) was lysed with 1 ml 
of TRIzol® and then the lysis was transferred to 1.5 ml EP 
tubes. To let the RNA and protein in cell phase separation, 
the lysis was mixed with 200 µl of chloroform. The mixture 
was centrifuged at 4˚C, 12,000 x g for 15 min. The upper layer 
of clear liquid was carefully transferred to another 1.5 ml EP 
tube for the next reaction. The clear liquid was gently mixed 
with 500 µl of isopropyl alcohol and left to stand for 10 min 
at room temperature. Then the mixture was centrifuged at 
4˚C, 12,000 x g for 10 min and the supernatant was discarded, 
leaving an RNA precipitate. The precipitate was gently washed 
with 1 ml of 75% ethanol. Then the liquid was centrifuged at 
4˚C, 7,500 x g for 5 min and the supernatant was discarded. 
The precipitate was dried for 10 min and dissolved with 
30‑50 µl RNA free‑DEPC H2O. Total RNA concentration and 
purity were analyzed in duplicate using a NanoDrop One (cat. 
no. AZY1705838; Thermo Fisher Scientific, Inc.). PrimerScript 
RT Master Mix (cat. no. RR036A; Takara Bio, Inc.) was used 
to generate cDNA. Then, 2 µl of 5X PrimerScript RT master 

Table Ⅰ. Cell lines used in the present study.

Name ATCC catalog no. ER status PR status HER2 status

MCF‑10A CRL‑10317 ‑ ‑ ‑
MCF‑7 HTB‑22 Positive Positive Negative
T47D HTB‑133 Positive Positive Negative
MDA‑MB‑231 HTB‑26 Negative Negative Negative
MDA‑MB‑468 HTB‑132 Negative Negative Negative
SUM‑149 TCP‑1001 Negative Negative Negative
SUM‑159 TCP‑1002 Negative Negative Negative
BT‑549 HTB‑122 Negative Negative Negative

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor.
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mix, 1,000 µg of RNA and DEPC water were used per 10 µl of 
reverse transcription reaction system.

Reverse transcription‑quantitative (RT‑q) PCR. The reverse 
transcription procedure was: 15 min at 37˚C, 5 sec at 85˚C 
and then 4˚C for 30 min. RT‑qPCR was performed using TB 
Green Premix Ex Tap II (cat. no. RR820A; Takara Bio, Inc.). 
The RT‑qPCR system contained 5 µl SYBR Premix Ex Taq Ⅱ, 
0.4 µl forward primer, 0.4 µl reverse primer, 3.2 µl DEPC 
water and 1 µl cDNA product. The reactions were carried out 
in a LightCycler480 (Roche, America) system. The reaction 
protocol was: 95˚C for 10 min; followed by 40 cycles at 95˚C 
for 10 sec and 60˚C for 30 sec. The quantification method is 
as follows: 2‑ΔCq (41). The experiment was repeated indepen‑
dently three times. The gene‑specific primer sequences were: 
GAPDH: 5'‑ggA gCg AgA TCC CTC CAA AAT‑3', 5'‑ggCT‑
gTTgTCATACTTCTCATgg‑3'; HDAC7: 5'‑TgC CCA gTC 
CTT AAT gAC CAC‑3', 5'‑CAC CTg gAC gTg AgT TTT gAg‑3'; 
NudCD1: 5'‑AAA ACC ACg AgA ggT gTT TCg‑3', 5'‑CTg ACA 
Agg TAA CCC Agg TAg A‑3'; GGH: 5'‑ggA gAg TgC TTA TTA 
ACT gCC AC‑3', 5'‑Agg CTC CAC TTA Tgg AAA TTg g‑3'.

Cell viability assays. Following transfection with specific 
siRNAs, cells were plated at 3,000 cells per well in 96‑well 
plates and cultured for the indicated time periods. Cell viability 
was performed using the MTT assay (cat. no. 3580MG250, 
BioFrox). Briefly, MTT was configured into a 5 mg/ml solution 
in sterile phosphate‑buffered saline (PBS) and added into cell 
culture media with a ratio of 1:10 at 0 (6 h after plating was 
identified as 0 h; when the cells were attached), 24, 48 and 
72 h, respectively. Following incubation at 37˚C for 4 h, the 
culture medium was aspirated and the precipitate was dissolved 
in DMSO, then absorbance at a wavelength of 490 nm was 
detected by a microplate spectrophotometer. The 24, 48 and 
72 h absorbance was compared with the day 0 absorbance in 
each group and the fold change of relative cell viability plotted 
using GraphPad Prism 8.0 software (GraphPad Software, Inc.).

Colony formation assay. For colony assay, following transfec‑
tion with siRNA for 48 h, cells were plated at 1,000 cells per 
well in 6‑well plates and cultured with the complete culture 
medium for 14‑21 days. Then the culture medium was removed 
and cells were fixed with 4% paraformaldehyde at room 
temperature for 15 min and stained with 0.1% crystal violet 
for 20 min. The colony formation was imaged and automatic 
counting using a fluorescent enzyme‑linked immune‑spot 
analyzer (AID vSpot Spectrum; Advanced Imaging Devices 
GmbH). Groups were compared using cell colony counts.

Statistical analysis. All statistical analyses were performed 
using GraphPad Prism 8.0 (GraphPad Software, Inc.), 
unless otherwise described in the figure legends or methods. 
One‑way ANOVA with Dunnett's multiple comparisons was 
used to compare the mRNA expression of HDACs in different 
subtypes of BRCA in TCGA and METABRIC databases. 
Two‑tailed unpaired Student's t‑test was employed to test the 
significance between two groups. Kaplan‑Meier survival curve 
and Log‑rank test were used to analyze the survival outcomes. 
The univariate Cox regression analysis was used to explore the 
prognostic value of HDAC7 in TNBC. Pearson's correlation 

was used to investigate the relationship between HDAC7 and 
downstream genes and immune cells infiltration. All experi‑
ments for cell cultures were performed independently at least 
three times and standard deviation (SD) was used to measure 
the variation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Expression of the histone deacetylases in TNBC. Patients 
with TNBC were identified as ER negative, PR negative and 
HER2 negative based on IHC information from the data‑
base. The mRNA expression level of HDACs was analyzed 
in a total of 126 and 289 cases of patients with TNBC from 
TCGA‑BRCA database and METABRIC dataset, respectively. 
It was observed that HDAC1/2/8/9 were upregulated in the 
tissue samples of BRCA, especially in TNBC (P<0.01), while 
HDAC3/4/5/6/7/10 were downregulated in BRCA and TNBC 
tissues (P<0.01) in the TCGA database. HDAC11 expression 
was reduced in TNBC samples but significantly upregulated in 
non‑TNBC samples (Fig. 1A). The P‑values in HDAC1‑8 and 
HDAC10‑11 indicated the significance between the ER‑group 
and the normal tissue group. The P‑value of HDAC9 repre‑
sented a significant difference between TNBC and non‑TNBC 
groups and no significant difference was noticed in HDAC9 
expression between TNBC group and normal group. Since 
normal tissue samples are unavailable in METABRIC data‑
base, the expression of target HDACs in TNBC samples were 
compared with non‑TNBC samples. The results showed that 
the expression of HDAC1/2/4/6 was higher in TNBC than in 
patients without TNBC (P<0.05). HDAC3/7/11 was signifi‑
cantly lower in TNBC samples (P<0.01; Fig. 1B). However, 
no statistical difference was noticed in HDAC5/8/9 expression 
levels between TNBC and non‑TNBC groups (Fig. S1A). 
HDAC10 was not detected in the METABRIC database. The 
expression of HDAC1/2/3/7/11 in TNBC and non‑TNBC 
groups were consistent with the results from the two databases.

Prognostic value of the histone deacetylases for TNBC. To 
further identify the prognostic value of HDACs in TNBC, the 
Kaplan‑Meier Plotter online website was used to analyze the 
prognostic value of HDACs in the TCGA database and the 
Breast Cancer Gene‑Expression Miner online website (http://
bcgenex.ico.unicancer.fr/BC‑GEM/GEM‑Accueil.php?js=1). 
First of all, it was found in TCGA database that only HDAC7 
and HDAC9 expression were significantly associated with 
overall survival time (OS) in patients with TNBC and lower 
expression of HDAC7 [Hazard ratio (HR)=0.43; 95% confi‑
dence interval (CI)=0.19‑0.95, P=0.031] and HDAC9 (HR=0.34; 
95%CI=0.15‑0.75; P=0.0053) were associated with poor survival 
rate (Fig. 2A). Secondly, in METABRIC database, the results 
showed that HDAC5/6/7/9 expression was significantly associ‑
ated with the survival time of patients, of which high expression 
of HDAC5 (Hazard Ratio HR=1.43; 95%CI=1.03‑2.01; P=0.0353) 
and HDAC6 (HR=1.44; 95%CI=1.00‑2.07; P=0.0496) were 
associated with shorter OS, while high expression of HDAC7 
(HR=0.66; 95%CI=0.49‑0.88; P=0.0052) and HDAC9 
(HR=0.63; 95%CI=0.40‑0.99; P=0.0457) were associated with 
improved OS time (Fig. 2B). The expression of HDAC1‑6, 
HDAC8, HDAC10 and HDAC11 was not statistically correlated 
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with OS time in the TCGA database (Fig. S1B). Moreover, the 
expression of HDAC1‑4, HDAC8, and HDAC11 was not statis‑
tically correlated with OS time in the METABIRC database 
(Fig. S1C). In summary, the two datasets indicated HDAC7 was 
downregulated in BRCA, especially in TNBC tissues and lower 
expression of HDAC7 predicted poor OS time.

As the above analysis suggested that HDAC7 might serve 
as a tumor suppressor in BRCA, the role of HDAC7 in other 
cancer types was further evaluated by the TIMER website. The 
results indicated that HDAC7 was downregulated in a number 

of cancers including BRCA, kidney chromophobe, lung adeno‑
carcinoma, lung squamous cell carcinoma and uterine corpus 
endometrial carcinoma, which indicated the possible inhibitory 
role of HDAC7 in cancers (Fig. 2C). Overall, these results 
suggested that HDAC7 might be a promising prognostic indi‑
cator and therapeutic target for cancers, especially for TNBC.

Functional enrichment analysis of HDAC7 in TNBC. To 
further assess the predictive value of HDAC7 in TNBC, the 
Univariate Cox regression analysis was used. The hazard ratio 

Figure 1. Differentially expressed HDACs in the TCGA and METABRIC databases. (A) expression of HDAC1‑11 in the TCGA database. HDAC1/2/8/9 were 
upregulated in TNBC compared with normal tissue (P<0.05). HDAC3/4/5/6/7/10/11 were downregulated in TNBC compared with normal tissue (P<0.05). 
(B) Expression of HDACs in the METABRIC database. HDAC1/2/4/6 were upregulated in TNBC compared with non‑TNBC (P<0.05). HDAC3/7/11 were 
down‑regulated in TNBC compared with non‑TNBC (P<0.05). HDAC10 was not detected. HDACs, histone deacetylases; TCGA, The Cancer Genome Atlas; 
TNBC, triple‑negative breast cancer.

https://www.spandidos-publications.com/10.3892/ol.2022.13619
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(HR) of HDAC7 in TNBC was 0.389 (95%CI=0.153‑0.99), 
P=0.048 (Fig. 3A), validating that HDAC7 might function 
as an independent prognostic factor. As shown in Fig. 2A, 
patients with TNBC in TCGA database were divided into 
HDAC7 high expression group (n=89) and low expression 
group (n=34) according to the optimum cutoff value based on 
the association with OS. Then the expression of differential 
genes between the two groups were analyzed and KEGG 
enrichment analysis was performed to explore the biological 
function of HDAC7 (Fig. 3B and C). The orange and yellow 
dots in Fig. 3B represented differentially expressed genes that 
have no statistical significance, or the |log 2 (fold change)|≤1. 
The blue and red dots in Fig. 3B represented the differentially 
expressed genes that have statistical significance or whose 
|log 2 (fold change)|>1. Those significantly upregulated or 

downregulated genes were used to perform the KEGG enrich‑
ment analysis. As shown in Fig. 3C, differentially expressed 
genes were mostly involved in neuroactive ligand‑receptor 
interaction, cell adhesion molecules, PI3K‑Akt signaling 
pathway and cytokine‑cytokine receptor interaction pathway 
(P<0.05, Fig. 3C), which indicated the possible role of HDAC7 
in the regulation of TNBC progression.

NudCD1 and GGH prognostic genes are HDAC7‑related 
downstream genes. As our previous analyses have identified 
HDAC7 as a predictive gene with significant clinical value and 
biological functions in TNBC, genes that regulated by HDAC7 
and participating in TNBC progression were next explored. 
Histone deacetylases remove acetyl groups from histone 
and tighten DNA‑histone interactions, resulting in a closed 

Figure 2. Prognostic value of the histone deacetylases for TNBC. (A) Kaplan‑Meier survival analysis showed that HDAC7 and HDAC9 were associated with 
prognosis in TNBC in the TCGA database (P<0.05). (B) Kaplan‑Meier survival analysis showed that HDAC5/6/7/9 were statistics associated with prognosis 
in TNBC in the METABRIC database (P<0.05). (C) The pan‑cancer expression of HDAC7. The red boxes indicate cancers in which HDAC7 expression is 
downregulated compared with normal tissues. TNBC, triple‑negative breast cancer; HDACs, histone deacetylases; TCGA, The Cancer Genome Atlas.
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chromatin structure and the inhibition of gene transcription. 
Considering that HDAC7 was downregulated in TNBC, its 
direct targets were presumed to be upregulated. Therefore, 
the highly expressed genes in TNBC were screened based on 
TCGA database (Fig. 4A). Genes which were upregulated in 
TNBC, whose |log 2 (fold change)|>1 and P‑value <0.05 were 
selected. Then co‑expression analysis was performed and 10 
genes were identified to be significantly associated to HDAC7, 
including C3orf36, NudCD1, LRRCC1, CHAF1B, CDCA2, 
ESRP1, SCML2, MSH2, GGH and XYLB. Among them, 
C3orf36 was positively associated with HDAC7, while the rest 

of the genes were negatively associated with HDAC7 (P<0.05; 
Fig. 4B).

The expression levels of these 10 genes were detected 
by METABRIC database. SCML2 was unavailable in the 
database. C3orf36 showed a discrete expression pattern 
consistent with that in TCGA and the other eight genes 
were all upregulated in TNBC vs. non‑TNBC tissue 
(P<0.0001), consistent with the results from TCGA (Fig. 4C). 
Kaplan‑Meier survival curves indicated that high expres‑
sion of NudCD1 (HR=2.32, 95%CI=1.04‑5.16, P=0.035), 
GGH (HR=2.38, 95%CI=1.08‑5.22, P=0.026) in TCGA 

Figure 3. Functional enrichment analysis of HDAC7 in TNBC. (A) Univariate cox regression analyzes of HDAC7 in TNBC. HR=0.389 (0.153‑0.99), P=0.048. 
(B) Volcano plot of differentially expressed genes between the high and low HDAC7 expressing groups in TNBC. (C) Bubble plot of KEGG clustering of 
differentially expressed genes, the bubble size represents the cluster count, the color represents the P‑value and the position of the horizontal axis represents 
the enrichment ratio. All the analysis data was obtained from the TCGA database. *P<0.05, **P<0.01, ***P<0.005. HDACs, histone deacetylases; TNBC, 
triple‑negative breast cancer; HR, hazard ration; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas.

https://www.spandidos-publications.com/10.3892/ol.2022.13619
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Figure 4. NudCD1 and GGH are prognostic HDAC7‑Related downstream genes of HDAC7. (A) Volcano plot of differentially expressed genes between TNBC 
and normal breast tissue in the TCGA database. (B) Heat map of the negative relation genes with HDAC7, the color represents the P‑value. (C) Validation of the 
correlation genes expression in the METABRIC database, except for C3orf36, all the correlation genes were upregulated in TNBC (P<0.05). (D) Kaplan‑Meier 
survival analysis of correlation genes in the TCGA database. NudCD1, SCML2 and GGH were statistically associated with prognosis in TNBC (P<0.05). 
(E) Kaplan‑Meier survival analysis of correlation genes in the METABRIC database. NudCD1, MSH2 and GGH were statistically associated with prognosis 
in TNBC (P<0.05). HDACs, histone deacetylases; TNBC, triple‑negative breast cancer; TCGA, The Cancer Genome Atlas.
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database (Fig. 4D) and NudCD1 (HR=1.72, 95%CI=1.16‑2.56, 
P=0.0074), MSH2 (HR=1.70, 95%CI=1.07‑2.70, P=0.0243), 
GGH (HR=1.60, 95%CI=1.01‑2.52, P=0.0443) in METABRIC 
database (Fig. 4E) were significantly associated with poor OS 
of patients with TNBC. On the other hand, high expression 
of SCML2 (HR=0.28; 95%CI=0.13‑0.62; P=0.00083) was 
associated with improved OS of patients with TNBC in TCGA 
database (Fig. 4D). Kaplan‑Meier survival analysis for other 
differentially expressed genes are in Fig. S2 and exhibited no 
statistical significance.

HDAC7‑NudCD1/GGH regulates TNBC cell proliferation 
in vitro. As NudCD1 and GGH were both prognostic factors in 
two datasets, the expression and functions of HDAC7‑NudCD1/
GGH on BRCA cell lines were further verified. RT‑qPCR 
was performed in normal BRCA cell line MCF‑10A, 
luminal BRCA cell lines MCF‑7 and T47D and TNBC 
cell lines MDA‑MB‑231, MDA‑MB‑468, MDA‑MB‑149, 
MDA‑MB‑159 and BT‑549. The results showed that HDAC7 
mRNA level was upregulated in luminal cell lines (MCF‑7 
and T47D) and significantly downregulated in TNBC cell 

Figure 5. HDAC7 regulated TNBC proliferation in vitro. (A) Reverse transcription‑quantitative PCR showed the mRNA expression level of HDAC7, NUDCD1 
and GGH in the normal breast tissue cell line (MCF‑10A), the luminal breast cancer cell lines (MCF‑7, T47D) and the TNBC cell lines (MDA‑MB‑231, 
MDA‑MB‑468, SUM‑149, SUM‑159 and BT‑549). (B) Quantitative PCR validation of the siRNA efficiency of HDAC7 in MDA‑MB‑468 cell line. (C) MTT 
cell growth curve showed the proliferation capacity after si‑HDAC7 in MDA‑MB‑468 cells. (D) Colony formation assay showed the colony formation capacity 
after siHDAC7 in MDA‑MB‑468 cells, statistical graph on the right. (E) Quantitative PCR showed the overexpression efficiency of HDAC7 in SUN‑149 cell 
line. (F) MTT cell growth curve showed the proliferation capacity after oe‑HDAC7 in SUM‑149 cells. (G) The colony formation assay showed the clone forma‑
tion ability after oe‑HDAC7 in SUM‑149 cells, statistical graph on the right. **P<0.01, ***P<0.005. All experiments were repeated three times independently 
and the results of the statistical graphs were a summary of the three independent results. HDACs, histone deacetylases; TNBC, triple‑negative breast cancer; 
si, small interfering; oe, overexpression; NC, negative control.

https://www.spandidos-publications.com/10.3892/ol.2022.13619
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lines (MDA‑MB‑231, MDA‑MB‑468, SUM‑149, SUM‑159 
and BT‑549), while NudCD1 and GGH mRNA expression 
were slightly changed in luminal cell lines but significantly 
upregulated in TNBC cell lines (Fig. 5A).

Due to the low expression of HDAC7 in TNBC cell lines, 
cell proliferation was observed in MDA‑MB‑468 cells which 
displayed relatively high level of HDAC7 in triple negative 
breast cancer cell lines following HDAC7 knockdown (Fig. 5B). 
The results from MTT (Fig. 5C) and colony formation assays 
(Fig. 5D) showed that silencing of HDAC7 significantly enhanced 
MDA‑MB‑468 cell proliferation, suggesting that HDAC7 might 
play a inhibitory role in TNBC cell growth. The SUM‑149 cell 
line with relatively lower expression of HDAC7 was selected 
for HDAC7 overexpression experiments. As shown in Fig. 5E, 
the mRNA level of HDAC7 in the overexpression group was 
~100 times higher than that in the negative control group (P<0.05), 
testifying the overexpression efficiency of HDAC7. As expected, 
overexpression of HDAC7 inhibited the proliferation of SUN‑149 
cells (Fig. 5F). Colony formation assay showed that the number 
of clones in HDAC7 overexpression group was significantly 
reduced than that in NC group and the size of the colonies was 
also significantly smaller than that in NC group (Fig. 5G).

Knockdown of HDAC7 increased mRNA expression 
of NudCD1 and GGH in MDA‑MB‑468 cells (Fig. 6A) and 
SUM‑149 cells (Fig. 6B), confirming that NudCD1 and GGH 
were downstream targets of HDAC7. The function of NudCD1 

and GGH were further evaluated after NudCD1 and GGH 
were knocked down in MDA‑MB‑468 cells and the interfer‑
ence efficacy is shown in Fig. 6C. The proliferation curve 
showed that knockdown of NudCD1 and GGH inhibited the 
growth rate (Fig. 6D) and colony formation ability (Fig. 6E) of 
MDA‑MB‑468 cells.

Association between prognostic HDAC7‑NudCD1/GGH and 
immune infiltration in TNBC. Immune infiltration has been 
reported to be associated with TNBC progression and prog‑
nosis (42). Since HDAC7, NudCD1 and GGH was screened out 
to be the prognostic genes for TNBC, the association between 
immune infiltration and the expression of HDAC7, NudCD1 
and GGH was analyzed by the TIMER database (http://
timer.cistrome.org/). Then, six immune cell types including 
CD4+ T cells, CD8+ T cells, NK T cells, γδ T cells, NK 
cells and macrophages that have been recognized to possess 
anti‑cancer activities were focused on. Immune correlation 
analysis showed that CD8+ T cell infiltration was negatively 
associated with HDAC7 (ρ=‑0.216), while NK cells (ρ=0.229) 
and M2 macrophages (ρ=0.248) were positively associated to 
HDAC7 (P<0.05; Fig. 7A). No significant correlations between 
M1 macrophages, CD4+ T cells, NK T cells, γδ T cells and 
HDAC7 (|ρ|<0.2) were observed (Fig. 7B).

CD4+ T cell infiltration was positively associated with 
GGH (ρ=0.237) and NK cells were negatively associated with 

Figure 6. HDAC7‑NUDCD1/GGH regulated TNBC proliferation in vitro. Quantitative PCR showed after (A) siHDAC7 and (B) oe‑HDAC7, the RNA expres‑
sion of NudCD1 and GGH in (A) MDA‑MB‑468 cells and (B) SUM‑149 cells. (D) Quantitative PCR presented the si‑efficiency of NudCD1 and GGH. 
(D) MTT cell growth curve showed the proliferation capacity after si‑NudCD1 and si‑GGH in MDA‑MB‑468 cells. (E) Colony formation assay showed that 
after knocking down NudCD1 and GGH, colony formation was significantly reduced. Statistical graph on the right. ***P<0.005. All experiments were repeated 
three times independently and the results of the statistical graphs were a summary of the three independent results. HDACs, histone deacetylases; TNBC, 
triple‑negative breast cancer; si, small interfering; oe, overexpression; NC, negative control.
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GGH (ρ=‑0.245; P<0.05; Fig. 7C). No significant correlation 
between M1 macrophages, M2 macrophages, CD8+ T cells, 
NKT cells, γδ T cells and GGH expression (|R|<0.2 ) were 

observed (Fig. 6D). At the same time, CD8+ T cells (ρ=0.261), 
CD4+ T cells (ρ=0.35) and M1 macrophages (ρ=0.258) 
were positively associated to NudCD1 (P<0.05). NKT cells 

Figure 7. Association between prognostic HDAC7‑NudCD1/GGH and immune infiltration in TNBC. (A) Immune cells associated to HDAC7 (P<0.05; |ρ|>0.2). 
(B) Immune cells without a significant correlation to HDAC7 (|ρ|<0.2). (C) Immune cells associated to GGH (P<0.05; |ρ|>0.2). (D) Immune cells with poor 
GGH correlation (|ρ|<0.2). (E) Immune cells associated with NudCD1 (P<0.05; |ρ|>0.2). (F) Immune cells with poor NudCD1 correlation (|ρ|<0.2). HDACs, 
histone deacetylases; TNBC, triple‑negative breast cancer.

https://www.spandidos-publications.com/10.3892/ol.2022.13619
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(ρ=‑0.448), NK cells (ρ=‑0.241) and M2 macrophages 
(ρ=‑0.305) were negatively associated to NudCD1 (P<0.05) 
(Fig. 7E). No significant correlation between γδ T cells and 
NudCD1 (|ρ|<0.2) was observed (Fig. 7F). Altogether, these 
results showed that NK cell infiltration was positively associ‑
ated with HDAC7 and negatively associated with NudCD1 
and GGH expression, suggesting that the anti‑tumor effects 
of HDAC7‑NUDCD1/GGH axis might be partially associ‑
ated with the infiltration of NK cells.

Discussion

The current study was focused on identifying prognostic HDACs 
in TNBC and investigating possible therapeutic molecules in 
the downstream. By analyzing the correlation between the 
expression of HDAC1‑11 and overall survival of patients with 
TNBC via the TCGA and METABRIC databases, HDAC7, a 
class II HDAC, was discovered to be significantly downregu‑
lated in TNBC samples and positively associated with OS of 
patients with TNBC. These results indicated that HDAC7 
might be a tumor suppressor in TNBC. However, previous 
studies have revealed controversial functions of HDAC7 in 
cancer progression. HDAC7 has been previously reported to 
promote tumor progression in lung cancer via inhibiting STAT3 
activation and upregulating FGF18 (43,44). HDAC7 has been 
reported to be regulated by ZNF326, activates Wnt pathway 
and promotes malignant phenotypes of glioblastoma (45). 
At the same time, HDAC7 has been revealed to deacetylate 
AGO2 and inhibit the biogenesis of miR‑19b human alveolar 
adenocarcinoma basal epithelial cells and cervical cancer 
cells, hence inhibiting cancer development (46). A previous 
study showed that absence of HDAC7 can induce TET2 
expression, promote DNA 5‑hydroxymethelation and chro‑
matin de‑condensation in B cell lymphocytes, hence leading 
to B cell‑based hematological malignancies (47). In pro‑B 
acute lymphoblastic leukemia and Burkitt lymphoma, HDAC7 
has been shown to be unexpressed and the re‑expression of 
HDAC7 in animal models has a potent anti‑tumor effect (48). 
HDAC7 has been reported to epigenetically inhibit the angio‑
genesis suppressor gene AKAP12 and reduce the formation 
of tube‑like structures (49). It has been also documented that 
HDAC7 can maintain cancer stem cells and contribute to 
tumor progression in BRCA and ovarian tumors (50‑52). All 
these findings indicate the comprehensive and complex effects 
of HDAC7 in cancers. In TNBC, Uzelac et al (53) found that 
HDAC7 expression is lower in TNBC samples compared with 
samples of ER+/PR+/HER2‑tumors and the high expression 
of HDAC7 represented poor survival in patients with TNBC 
(HR=9.287; P=0.033). This finding is different from the 
results of the present study, possibly due to the difference in 
the number of patients and the heterogeneity between patients. 
In the present study, a total of 123 patients with TNBC and 
363 patients with TNBC were respectively covered in TCGA 
and METABIRC database, while the number of patients with 
TNBC in Uzelac et al (53) is only 61. For further validation, 
a larger number of cases are required. Therefore, the role of 
HDAC7 in TNBC has yet to be fully elucidated. In further 
analysis of the TCGA database, it was found that HDAC7 
was associated with proliferation‑related pathways including 
the PI3K‑AKT pathway and the Ras signaling pathway. 

Meanwhile, the cytokine‑cytokine linkage pathway was also 
associated with HDAC7, indicating that HDAC7 might regu‑
late the progression of TNBC by mediating these growth and 
immune‑related pathways, which needed further experimental 
validation.

A novel finding of the present study was that NudCD1 and 
GGH were identified as the target genes of HDAC7. NudCD1 
and GGH were negatively regulated by HDAC7 and associ‑
ated with poor prognosis in TNBC. NudCD1 has been shown 
to drive the proliferation, migration and invasion of lung 
cancer and colorectal cancer cells (54,55). GGH has also been 
reported to be associated with poor prognosis and unfavor‑
able clinical outcomes in invasive patients with BRCA (56). 
Elevated GGH expression is associated with poor prognosis 
in uterine corpus endometrial carcinoma and advanced gastric 
cancer (57,58). Nonetheless, the roles of NudCD1 and GGH in 
TNBC remain elusive. The present study found that silencing 
of HDAC7 upregulated NudCD1 and GGH expression in 
TNBC cell lines, indicating that NudCD1 and GGH might 
be negatively regulated by HDAC7. Furthermore, knockdown 
of HDAC7 potentiated the proliferation while knockdown of 
NudCD1 or GGH inhibited the proliferation of TNBC cells 
in vitro. The present study showed that decrease of HDAC7 
might promote the proliferation of TNBC cells by activating 
NudCD1/GGH axis and indicated that inhibition of NudCD1/
GGH might axis be a possible therapeutic therapy for TNBC.

The immune microenvironment is widely considered to have 
a vital role in the tumor progression. TNBC is reported to be an 
immune ‘hot’ subtype of BRCA with high immune cell infiltration, 
for which immunotherapy may be a viable treatment strategy (59). 
Hence, the immune regulatory roles of HDAC7‑NudCD1/GGH 
axis was explored via analyzing the correlation between prog‑
nostic factors and immune infiltration. NK cells are one of the 
main effector immune cells that play an anti‑cancer role. Studies 
have supported that low infiltration of NK cells in tumor tissues 
is associated with poor outcome (60,61). However, therapy based 
on infused NK cells has been mainly applied to hematologic 
malignancies, so far with limited therapeutic effect in patients 
with solid tumor patients (62,63). The present study showed that 
HDAC7‑NudCD1/GGH axis was associated with the density of 
NK cells, which indicated that HDAC7 might exert its anti‑tumor 
roles partially by regulating NK cell infiltration through blocking 
the NudCD1/GGH axis. Nevertheless, this finding still needs 
further validation. In brief, the present study revealed a novel role 
of the HDAC7‑NudCD1/GGH axis in TNBC.
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