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Abstract. Progress in medicine has increased the survival time 
of children suffering from cancer; >80% of patients survive for 
at least 5 years from the end of treatment. However, there are 
late effects of anticancer therapy, which accompany this success. 
Two‑thirds of childhood cancer survivors (CCSs) have at least 
one late effect (any side effects or complications of anticancer 
treatment that appear months to years after the completion of 
treatment), e.g. endocrinopathies, cardiovascular diseases or 
subsequent cancers, and half of these late effects are serious or 
life threatening. These late consequences of childhood cancer 
treatment pose a serious health, social and economic problem. A 
common mechanism for developing a number of late effects is the 
onset of premature biological aging, which is associated with the 
early onset of chronic diseases and death. Cellular senescence in 
cancer survivors is caused by therapy that can induce chromosomal 
aberrations, mutations, telomere shortening, epigenetic alterations 
and mitochondrial dysfunctions. The mechanisms of accelerated 
aging in cancer survivors have not yet been fully clarified. The 
measurement of biological age in survivors can help improve 
the understanding of aging mechanisms and identify risk factors 
for premature aging. However, to the best of our knowledge, no 
single marker for the evaluation of biological or functional age is 
known, so it is therefore necessary to measure the consequences 
of anticancer treatment using complex assessments. The present 
review presents an overview of premature aging in CCSs and 
of the mechanisms involved in its development, focusing on the 
association of senescence and late effects.
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1. Introduction

Owing to improvements in the diagnostics and treatment of 
childhood cancer, >80% of patients are cured (1). However, 
childhood cancer survivors (CCSs) are at risk of developing 
late effects (any side effects or complications of anticancer 
treatment that appear months to years after the completion of 
treatment). Approximately two‑thirds of CCSs have at least 
one late effect of anticancer therapy, and nearly half of these 
late effects are serious or life threatening (1‑4). Late effects 
can affect any organ or tissue and can occur at different time 
intervals after treatment (early, <5 years; late, 5‑20 years; 
very late, >20 years) (5,6). Given the high number of CCSs 
(>500,000 in Europe in 2020) (1), these late effects are not 
only a medical, but also a social and economic problem.

2. CCSs and late effects

Several studies have already shown that numerous diseases 
develop much earlier in patients after cancer treatment 
compared with development in the general population (7‑9). 
For example, at 20 years of age, CCSs have the same risk of 
developing a chronic disease as their siblings at 50 years of 
age (8). These patients are three times more likely to develop 
chronic diseases (e.g., subsequent neoplasms, cardiovascular 
diseases and endocrinopathies) compared with a control group 
of their siblings (8,9). In our recent study on CCSs (10), ultra‑
sound sporadic renal angiomyolipomas were detected much 
earlier in CCSs (median age at diagnosis, 27.9 years) compared 
with that reported in the general population (50‑60 years).

At 45 years of age, 95% of patients in remission have at 
least one chronic health problem (11). Late effects can be 
divided according to the type of organ or system disability 
and according to the type and extent of anticancer and/or 
supportive therapy used. Late effects can affect any organ or 
system (e.g., endocrine, cardiovascular, kidney, lung, gastro‑
intestinal, hearing, eye, skin, neurocognitive and locomotor 
disorders), the most common of which are endocrinopathies, 
with the most severe, often lethal, including cardiovascular 
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diseases and subsequent cancers (1‑4,12,13). Psychosocial 
consequences, which are often caused or increased by 
somatic damage, are also very important for the quality 
of life (1). Late effects therefore need to be investigated to 
elucidate their mechanisms; this will contribute to reducing 
late effect incidence rates and improving and individualizing 
screening.

A common mechanism of late effects is the premature 
biological aging of the individual. Biological aging is a 
heterogeneous process; it does not undergo the same rate of 
chronological aging and is the basis for the loss of physiolog‑
ical functions of the body and the increase in aging‑related 
diseases over time (14,15). Biological aging is associated with 
the early onset of chronic diseases and leads to a higher risk of 
premature death of patients compared to the general popula‑
tion (8). Research has shown that cancer treatment leads to 
accelerated aging, which manifests as an increased risk of 
subsequent neoplasms or cardiovascular diseases in CCSs and 
in adult cancer survivors (16). Stelwagen et al (17) demon‑
strated that long‑term testicular cancer survivors treated with 
cisplatin had accelerated vascular aging (increased vascular 
stiffness, increased ischemic and recovery time on digital 
cooling tests, and albuminuria), and Zhu et al (18) found the 
frequent appearance of aging‑related conditions in breast 
cancer survivors. In another study, long‑term childhood acute 
lymphoblastic leukemia (ALL) survivors demonstrated a late 
mortality that was more than three times higher than in the 
age‑matched US population (19). In a study by Bøhn et al (20), 
one out of four long‑term survivors of adolescent and young 
adult (AYA) cancer complained of chronic fatigue, and in a 
multicenter study in the UK (21), 85% of AYA cancer survi‑
vors complained of chronic fatigue 1 year after finishing 
therapy. The differences between these data are likely due to 
the method of evaluation and on the population of survivors 
themselves.

3. Cell senescence

Cellular senescence serves an important role in aging; it 
is a process of permanent cell cycle arrest and involves the 
induction of specific phenotypic changes (22). Senescent 
cells stop dividing, enter the G0 phase and remain metaboli‑
cally active (22). As cells undergo senescence in response to 
various stress stimuli, the whole process of senescence can be 
understood as a defense mechanism of the organism to prevent 
further growth of damaged cells (22,23).

There are two known pathways of cellular senescence: 
Replicative and premature/accelerated senescence. The 
observation that cells grown in vitro divide ~50 times and 
then stop dividing has led to the description of replicative 
senescence (24). This senescence is caused by telomere 
shortening (25). Premature/accelerated cellular senescence is 
independent of the length of the telomeres; in this pathway, 
cells respond to various negative stimuli such as oxidative 
stress or DNA damage (23). The difference between replicative 
and accelerated senescence is only in the stimulus to which the 
cells respond, its reaction is the same in both cases (23). When 
cell senescence is in response to a DNA‑damaging stress 
stimuli, cells that are unable to undergo senescence and apop‑
tosis due to mutations in genes important for their induction 

(e.g., p14ARF, p16INK4, RB1 and p53 pathways) will still divide 
and their daughter cells will suffer the same damage (26,27).

Several mechanisms [such as, epigenetic changes, accu‑
mulation of mutations, including mutations of mitochondrial 
DNA (mtDNA), and depletion of stem cells] contribute to aging 
and the development of aging‑related diseases. Epigenetic 
changes include the accumulation of histone variants and 
aberrant histone modifications, changes in the accessibility of 
chromatin and deregulated expression of some microRNAs 
[e.g. expression of miR‑99b‑5p, miR‑130b‑5p, miR‑505‑5p 
and miR‑425‑3p are negatively associated with age (28)] that 
cause changes in gene transcription (29). The accumulation 
of mutations throughout life contributes to the biological 
changes that accompany aging (30), which may explain the 
increased risk of subsequent cancer and accelerated aging in 
CCSs (31). Mitochondrial genomes display a higher mutation 
rate compared with somatic genomes and are more sensitive 
to the genotoxic effects of anticancer therapy (32). mtDNA 
mutations can damage the mitochondria and thus reduce the 
ability of muscle cells to regenerate, which is one of the signs 
of old age (33). Stem cell compartments are depleted with 
age (34,35), but these cells can also undergo an accelerated 
aging process (36,37).

4. Biological age and its measurement

Biological age. To estimate accelerated aging in cancer 
survivors, the term called biological age was introduced, 
which predicts the risk of late effects more precisely than does 
chronological age (16). However, the assessment of biological 
age is difficult, and there is no consensus on its methodology. 
The so‑called aging clocks are a set of signs that can predict 
biological age; epigenetic and proteomic aging clocks have 
been developed. The functional status and incidence of chronic 
diseases and geriatric syndromes can also be used to assess 
biological age (38).

Epigenetic clocks. Epigenetic clocks use markers based on 
different levels of CpG site methylation (e.g., Horvath's clock 
based on 353 CpG sites and Hannum's clock based on 71 CpG 
sites) detected in blood or tissues (39,40); results of these two 
clocks correlated with chronological age in relatively healthy 
individuals (39,40). Subsequently, Horvath's group developed 
another aging clock based on methylation (41). In the develop‑
ment of this clock, not only chronological data were used, but 
predictors of phenotypic age (for example, age at menopause, 
decline of the immune system and aging‑related morbidity) 
were also taken into account. Therefore, it was assumed that 
this clock would better correlate with biological age, life 
expectancy and the incidence of aging‑related diseases (41,42). 
Several other epigenetic clocks have been described (16). 
Furthermore, the methylation of some genes, including 
ELOVL2, FHL2 and PENK, have been shown to correlate 
well with biological age (43).

Several studies have found a correlation between an 
increased risk of cancer and biological age in the general 
population. Zheng et al (44) measured epigenetic age using 
Horvath's method and observed that an increase in epigenetic 
age was associated with an increased risk of developing any 
cancer within 3 years. In another study, Levine et al (45) found 
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that a 1‑year increase in biological age measured by Levine's 
clock (based on methylation of 513 CpG sites) was associated 
with a 5% increase in the risk of lung cancer. Acceleration of 
biological age measured using Levine's clock was associated 
with an increased risk of invasive breast cancer, particularly 
in postmenopausal women (46). However, other studies have 
provided conflicting results. For example, an EPIC‑Italy 
study found that men had a biological age‑associated risk 
of colorectal cancer according to Horvath's clocks and the 
methylation levels of FHL2 CpG islands, but not according to 
Hannum's or Weidner's clocks, or according to the methylation 
levels of ELOVL2 CpG islands (47). In that study, an associa‑
tion with ELOVL2 methylation and breast cancer occurrence 
was observed in women, but no associations between any of 
the five clocks tested and colorectal cancer risk in women was 
found.

Only a limited number of studies have followed the epigen‑
etic age of CCSs. Epigenetic age acceleration (EAA) evaluated 
by Levine's clock increased in CCSs compared to controls (48). 
Higher EAA was observed particularly after chest, abdominal 
or pelvic radiotherapy, or after alkylating agent, glucocorti‑
coid or epipodophyllotoxin therapy. Acceleration was also 
associated with hypertension, myocardial infarction, obesity, 
peripheral neuropathy and pulmonary obstruction or diffu‑
sion deficits (48), and EAA could be partly influenced by the 
lifestyle of survivors (for example, participating in physical 
activity, alcohol consumption and smoking) (48).

Proteomic aging clocks. Proteomic aging clocks are based 
on aging‑related biomarkers in the blood measured using 
proteomic methods. Johnson et al (49) developed two versions 
of the proteomic aging clock: A 23‑protein panel and an 
83‑protein panel. Both panels showed good correlations with 
chronological age. Tanaka et al (50) identified >200 proteins 
that are associated with age and developed a proteomic age 
clock that used only eight of those proteins, which correlated 
well with the chronological age of controls.

Markers of cell aging. To date, several markers of cell aging 
have been identified, such as p16INK4a, p16ARF, senescence‑asso‑
ciated β‑galactosidase, hyperphosphorylation of Rb1 and the 
levels of certain cytokines including, IL‑6 and IL‑8 (51‑53). A 
case‑control study found that an increase in p16INK4a expres‑
sion in peripheral blood T‑lymphocytes was associated with an 
increased risk of breast cancer (54). Sanoff et al (55) demon‑
strated that the expression of p16INK4a and ARF in peripheral 
blood T‑lymphocytes increases immediately after chemo‑
therapy and remains high for at least 1 year after treatment. 
This increase corresponded to ~15 years of chronological 
aging. Cellular age evaluated in terms of p16INK4a expres‑
sion in peripheral blood T‑lymphocytes was found to be >2 
decades higher than chronological age in CCSs and AYA 
cancer survivors. Furthermore, ‘frail’ survivors had higher 
expression levels of p16INK4a than did ‘non‑frail’ survivors (56). 
Higher expression levels of p16INK4a has also been associated 
with higher doses of chemotherapy prior to transplantation 
and with autologous hematopoietic stem cell transplantation 
(HSCT) in adult cancer survivors (57). The expression of 
p16INK4a in peripheral blood T‑lymphocytes was higher in adult 
survivors of testicular germ cell cancer (both seminoma and 

non‑seminoma) treated by chemotherapy compared with that 
in the matched controls (58). To the bets of our knowledge, 
similar information is not available for CCSs.

5. Premature aging in cancer survivors

One of the important signs of aging is frailty; for example, 
sarcopenia, decreased muscle strength, poor endurance, slow 
walking speed and low physical activity (59‑61). Frailty was 
found in ~8% of CCSs who were >10 years post‑cancer diag‑
nosis and in their fourth decade of life (59). This increased to 
~60% in older survivors of adult cancer who were >70 years 
old (60), whereas prevalence of frailty was ~10% in adults 
>65 years in various European, American and Asian popula‑
tions (61). Frailty among cancer survivors is associated with 
a higher incidence of chronic diseases and mortality (62). A 
recent St. Jude lifetime cohort study showed that frailty in young 
adult cancer survivors is associated with decline in cognitive 
functions (63). The prevalence of frailty also depends on meth‑
odology (e.g., questionnaire, clinical examination and exercise 
testing) and on the definition of frailty itself (61,64). Childhood 
patients of brain tumors, bone tumors and Hodgkin lymphoma 
(HL) are at the highest risk of frailty (59,64). Brain, abdominal 
and pelvic irradiation, platinum cytostatic chemotherapy, 
HSCT, limb amputation and lung operations are also factors in 
the increased risk of frailty in CCSs (59,64,65). Female CCSs 
are frequently more frail than male CCSs (59,64). This can 
be partially explained by the sex‑dependent acute toxicity of 
some cytostatics and their late effects (66). Furthermore, in 
the non‑cancer population, frailty is more common in women 
than in men, which is thought to be due to the lower amount 
of muscle mass in women (61). Anticancer therapy‑associated 
risk factors may be potentiated by lifestyle, such as smoking, 
obesity and low physical activity (59,64,67‑69).

Osteoporosis and sarcopenia are additional signs of 
premature aging in CCSs. Decreased bone mineral density 
is common in CCSs (occurring in 9‑18% of patients) and 
risk factors include ALL, brain tumors, HSCT, gluco‑
corticoid therapy, radiation therapy, malnutrition and 
hypogonadisms and/or growth hormone deficiency (70). In 
two studies, Lee and Kim (71) and Lee et al (72) described an 
increased risk of cardiovascular diseases in male adult cancer 
survivors with sarcopenia, compared with those without and 
an almost three times higher risk of metabolic syndrome in 
both adult male and female survivors with sarcopenia.

Plasma levels of CRP, IL‑1β, IL‑6, advanced glycation end 
products (AGE) and the reduced/oxidized glutathione ratio 
were significantly higher in childhood HL survivors than in 
the matched controls (73). AGE accumulation leads to the 
subsequent activation of AGE receptors and the activation of 
intracellular pro‑inflammatory signaling (73). These findings 
indicate that signs of inflammation and activation of antioxi‑
dant enzymes are one of the factors that contribute to aging, 
and may serve an important role in the development of late 
effects in CCSs (73). AGE are also responsible for alteration 
of the function and/or structure of secreted proteins, including 
fibrinogen, collagen and low‑density lipoproteins (74).

Inflammation activates two important cytotoxic media‑
tors, reactive oxygen species (ROS) and reactive nitrogen 
species (RNS), which damage cellular DNA (75). ROS 
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and RNS induce the production of cytokines and adhesion 
molecules and activate lymphocytes (76). Subsequently, this 
induces a chronic systemic inflammatory response known 
as ‘inflamm‑aging’, which damages tissues by this increase 
in cytokines and activated lymphocytes (77). Inflamm‑aging 
can involve any organ or tissue and is responsible for the 
development of osteoporosis, infertility, and metabolic and 
cardiovascular diseases (78). Metabolic syndrome occurs in 
about one in three CCSs, but its incidence can be influenced 
by lifestyle (79). Several studies have focused on the associa‑
tion of variants of different genes with metabolic syndrome 
in CCSs (80,81). Only one of these CCS studies observed 
a correlation between variants of the leptin receptor gene 
and obesity in women, especially those exposed to cranial 
irradiation, but no correlation was observed in men (81). The 
association of obesity with brain irradiation may suggest that 
growth hormone deficiency is involved in the development 
of metabolic syndrome (81). As such, it seems that in addi‑
tion to genetic influences, several other factors serve roles in 
the development of metabolic syndrome in CCSs; however, 
further studies are necessary for clarification.

Peripheral blood mononuclear cells from CCSs showed less 
efficient oxidative phosphorylation, increased lipid peroxida‑
tion and increased lactate fermentation compared to matched 
controls (82). The age prediction model based on modifica‑
tions of glucose catabolism in mononuclear cells showed that 
the predicted ages were higher compared with the actual ages; 
by contrast, the predicted ages of healthy controls were not 
very different from their actual ages (82).

Several studies in women (including prepubertal girls, 
AYA and in older premenopausal women) treated with chemo‑
therapy showed decrease in anti‑Müllerian hormone (AMH) 
levels during chemotherapy (83‑85). Recovery of AMH levels 
was variable and, in some cases, low levels persisted. AMH 
levels provide information about ovarian reserve and may be 
a marker of ovarian aging (86). Female CCSs with a hetero‑
zygous genotype of rs1172822 in the BRSK1 gene had an 
increased risk of low AMH value. BRSK1 is thought to affect 
the secretion of gonadotropin‑releasing hormone from the 
hypothalamus (87). Variants of cytochrome P450 (CYP450) 
enzymes that are important in drug metabolism affect the 
decrease in AMH levels in CCSs. For example, the CYP3A4*3 
variant is associated with lower AMH levels, whereas 
CYP2B6*2 has a protective effect on the ovaries, which was 
manifested by higher AMH levels (88).

6. Mechanisms of premature senescence in CCSs

Premature aging in cancer survivors is caused by several 
mechanisms both at the cellular level and at the level of the 
whole individual. Cellular senescence in cancer survivors 
can be caused by chemotherapy, which may induce structural 
chromosomal aberrations, aneuploidy, polyploidy and endo‑
reduplication, and/or by ionizing radiation, which generates 
single and double‑strand DNA breaks. Studies detecting 
chromosomal abnormalities in the lymphocytes (89,90) and 
telomere shortening (65,75,91) in CCSs have been published. 
Childhood HL male survivors had a higher frequency of 
chromosomal breaks and gross chromosomal rearrangements 
that were random and complex compared with the healthy 

controls. This is consistent with genomic instability (89). 
Smith et al (90) detected a higher occurrence of transloca‑
tion involving chromosome 4 in childhood and young adult 
HL survivors. The frequency of translocations was not 
significantly different between the group treated by radiation 
only and the group treated by combination of radiation and 
chemotherapy, but the latter group had a higher frequency of 
translocations (90). The CCSs of high‑risk neuroblastoma (65), 
ALL (75) and a large group (2,427 CCSs) with different child‑
hood cancers that included leukemias, lymphomas and solid 
tumors (91) had significantly shorter telomere length than the 
age‑ and sex‑matched controls.

Another mechanism involved in the induction of cell 
senescence is epigenetic changes. Different patterns of DNA 
methylation were described in peripheral leukocytes from 
AYA HL survivors and from their unaffected twins (92). 
Daniel et al (76) observed altered DNA methylation in genes 
for immune response, inflammatory processes and oxidative 
stress in CCS T‑cells >10 years after patients were treated with 
total body irradiation and HSCT.

Lipshultz et al (93) reported mitochondrial dysfunction 
as one of the signs of cell senescence in CCSs. The authors 
detected a higher mtDNA copy number per cell in child‑
hood ALL survivors exposed to doxorubicin compared with 
those exposed to doxorubicin along with the cardioprotective 
dexrazoxane. Dexrazoxane acts by decreasing the formation 
of superoxide, and the authors suggested that this may repre‑
sent persistent mitochondrial clonal expansion in response to 
early damage during doxorubicin administration, and dexra‑
zoxane prevented doxorubicin‑induced cardiac mitochondrial 
dysfunction by protecting oxidative phosphorylation activities 
and mtDNA integrity (93).

Another mechanism involved in premature aging in survi‑
vors is changes affecting the integrity of the entire individual, 
such as with endocrinopathies. For example, growth hormone 
deficiency was found in 12.5% of CCSs and in 46.5% of 
CCSs after radiotherapy involving the hypothalamic‑pituitary 
region (70). This hormonal deficiency induces dysfunc‑
tion in the insulin and insulin‑like growth factor signaling 
pathway and the ability of cells to detect glucose, which is 
associated with increased risk of mortality and cardiovascular 
morbidity (62). Furthermore, luteinizing hormone/follicle 
stimulating hormone deficiency may participate in the prema‑
ture aging reported in 6.5% of CCSs (70). The main risk 
factors are damage to the hypothalamic‑pituitary region by a 
tumor, surgery and/or radiotherapy.

Other late effects in CCSs that mimic senescence are 
cognitive defects. These include, processing speed and 
executive functions, but attention and memory may also 
be affected (94). The risk factors for cognitive defects are a 
younger age at diagnosis, female sex and brain irradiation (94). 
Cognitive defects are accompanied by structural changes in 
the brain. Armstrong et al (95) described the correlation of 
memory impairment with decreased temporal lobe volume, 
white matter defects and changes of blood oxygen‑dependent 
signaling in the hippocampus of survivors of childhood 
ALL after 24 Gy cranial radiotherapy but not at lower doses. 
Cerebrovascular dysfunction, and cardiac and pulmonary late 
effects can also be involved in cognitive defects through altered 
organ perfusion and hypoxia in childhood HL survivors (96).
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7. Conclusions and future directions

Taken together, these studies indicate that anticancer therapy 
accelerates aging. However, the mechanisms of acceler‑
ated aging in cancer survivors are not yet fully understood. 
Measuring biological age in CCSs can help to improve the 
understanding of the biological mechanism of aging and 
to identify risk factors for premature aging. However, to 
the best of our knowledge, no single marker is currently 
known to assess biological or functional age. Therefore, a 
multilevel approach is needed to measure the aging‑related 
consequences of anticancer therapy (97).

Owing to the increasing number of cancer survivors at 
risk of accelerated aging, the National Cancer Institute (US 
National Institutes of Health) organizes think tanks to design 
perspective strategies to prevent, slow or reverse the aging 
consequences of cancer and its treatment (98). To develop 
research on the late effects of CCSs, prepare guidelines for 
patient follow‑up, spread awareness of CCS issues and enable 
CCSs to actively participate in care, PanCare was established 
(https: //www.pancare.eu). PanCare is a European network of 
experts, former pediatric cancer patients and their families, 
which aims to ensure that every cancer patient diagnosed 
in childhood and adolescence is provided with optimal 
long‑term care after treatment. The PanCare project creates 
a common European platform for the care of this growing 
group of former pediatric oncology patients and for research 
projects in this area (99). PanCare studies also focus on 
understanding the risk of developing subsequent tumors and 
the risk of late mortality and morbidity in CCSs (100,101).

The present review summarizes the role premature aging 
plays in the development of late effects. Additional studies 
are needed not only to understand premature aging in CCSs 
but also how to prevent it. Aging‑related consequences of 
cancer treatments would lead to anti‑aging prevention and 
therapy. Physical training has been described to improve 
signs of frailty in CCSs (102). However, more data are needed 
to prepare training programs suitable for cancer survivors. 
It has been known for almost a century that caloric restric‑
tion prolongs life and delays aging‑related pathology in 
laboratory animals (103). Evolutionarily conserved signaling 
pathways, such as mTOR, appear to mediate the anti‑aging 
effects of diets, and the study of these pathways has contrib‑
uted to the finding of molecular targets for pharmacological 
interventions (104). However, the suitability of these diets in 
cancer survivors for the prevention of accelerated aging is 
unclear.
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