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Abstract. Glioblastoma, also referred to as glioblastoma multi‑
forme (GBM), is grade IV astrocytoma characterized by being 
fast‑growing and the most aggressive brain tumor. In adults, it 
is the most prevalent type of malignant brain tumor. Despite 
the advancements in both diagnosis tools and therapeutic treat‑
ments, GBM is still associated with poor survival rate without 
any statistically significant improvement in the past three 
decades. Patient's genome signature is one of the key factors 
causing the development of this tumor, in addition to previous 
radiation exposure and other environmental factors. Researchers 
have identified genomic and subsequent molecular alterations 
affecting core pathways that trigger the malignant phenotype of 
this tumor. Targeting intrinsically altered molecules and path‑
ways is seen as a novel avenue in GBM treatment. The present 
review shed light on signaling pathways and intrinsically altered 
molecules implicated in GBM development. It discussed the 
main challenges impeding successful GBM treatment, such as 
the blood brain barrier and tumor microenvironment (TME), 
the plasticity and heterogeneity of both GBM and TME and 
the glioblastoma stem cells. The present review also presented 
current advancements in GBM molecular targeted therapy in 
clinical trials. Profound and comprehensive understanding of 
molecular participants opens doors for innovative, more targeted 
and personalized GBM therapeutic modalities.
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1. Introduction

Glioblastoma (GBM) is the most aggressive and deadly 
form of malignant brain cancers. It accounts for ~80% of all 
primary brain gliomas and ~60% of all adult brain tumors (1). 
Currently, surgical resection of the tumor, followed by radio‑
therapy and temozolomide, is the typical treatment used for 
GBM (2). GBM is associated with poor survival rate, despite 
the enhancements in diagnosis tools, surgical techniques 
and therapeutic approaches; the median survival rate is 
~14‑20 months and fewer than 5% of the patients survive 
5 years post‑treatment (3). Moreover, the survival rates for 
patients with GBMs have not shown statistically significant 
improvements in the last three decades (4). Thus, there is a 
need of new therapeutic approaches that inhibit GBM growth, 
impair its migration and invasion ability and sensitize it to 
therapy.

The use of high throughput technology in the last decade 
allowed researchers to classify GBM according to their 
genomic signature. Based on The Cancer Genome Atlas 
analysis, four different GBM sub‑classes are defined: i) The 
neural subtype that represents 16% of GBM and are charac‑
terized by the expression of neuron markers such as NEFL, 
GABRA1, SYT1, and SLC1A5, ii) the pro‑neural subtype 
that shows an alteration of PGFRA, a point mutation in 
IDH1and TP3 and an overexpression in development genes 
such as NKX2‑2, OLIG2, iii) the mesenchymal subtype 
that is distinguished with alterations in neurofibromatosis 
type 1 (NF1), phosphatase and tensin homolog (PTEN) 
point mutation and expression of mesenchymal genes such 
as MET, CD44, iv) the classical subtype that displays EGFR 
amplification, CDKN2 A deletion, and p53 mutations (5). 
Subsequently, researchers have detected several molecular 
and genomic alterations in core pathways that regulate 
GBM cell viability, growth, metastasis and invasion. It is 
thus important to target these altered molecules in order 
to inhibit GBM proliferation and progression. The present 
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review highlights current understanding of the molecular 
alterations commonly involved in GBM (Fig. 1). Thorough 
understanding of molecular alterations facilitates the devel‑
opment of current therapeutic targeted therapy, and opens 
the way to novel therapeutic approaches. The present review 
also highlight molecular elements that are currently targeted 
in GBM clinical trials and others that represent promising 
potential new targets.

2. Targeting intrinsic survival pathways

Receptor tyrosine kinases (RTKs). RTKs are transmembrane 
proteins that consist of an extracellular ligand‑binding domain, 
a single transmembrane helix, and an intracellular catalytic 
domain (6). RTK superfamily includes epidermal growth 
factor receptor (EGFR), platelet‑derived growth factors 
(PDGPR), hepatocyte growth factor receptor (c‑MET), and 
fibroblast growth factor receptor (FGFR) (7). Under normal 
physiological conditions, RTKs are involved in maintaining 
cellular homeostasis by regulating cell‑cell communication, 
cell survival, migration, proliferation, differentiation, metabo‑
lism, and cell cycle. Hence, dysregulation of the RTK pathway 
is thought to play an important role in GBM initiation, devel‑
opment, and progression (8,9).

EGFR. Genomic analysis revealed that 57% of GBM cells 
harbor EGFR genetic alterations (10). EGFR amplification 
and overexpression were identified in 40 and 60% of primary 
glioblastoma respectively. Other types of genetic alterations 
were also detected; these include EGFR rearrangement, 
point mutations, and deletions such as the deletion of 
exons 2‑7 which leads to the truncated mutant variant III 
(EGFRvIII) (11). EGFR amplification and overexpression 
lead to constitutive activation of the receptor and enhance 
GBM cell proliferation, survival, invasion and resistance 
to treatments (12‑15). Talasila et al (16) demonstrated that 
cells from patients with GBM and with EGFR gene ampli‑
fication are able to invade the tumor microenvironment 
(TME) in an angiogenesis independent manner. Additionally, 
EGFRvIII mutations lacking an extra cellular domain, tend 
to maintain the EGFR signaling pathway constitutively 
active in a ligand independent manner. These mutations 
are detected in 25% of GBM cases and promote survival, 
tumor growth, migration, invasion and angiogenesis (17‑21). 
Despite the lack of an extracellular domain, EGFRvIII muta‑
tion maintains the EGFR signaling It is important to note 
that 50‑60% of GBMs overexpressing wild‑type EGFR also 
express EGFRvIII (22,23). GFRvIII is therefore a potential 
therapeutic target for GBM.

EGFR is targeted in 77 clinical trials according to clini‑
caltrials.gov (August 10, 2022). The most common strategy 
for EGFR targeting is through the use of monoclonal anti‑
bodies (Table I). Several anti‑EGFR antibodies have been 
developed since the first chimeric antibody Cetuximab. 
While Cetuximab and Panitumumab did not show promising 
results (24), Nimotuzumab and Depatuxizumab‑mafodotin 
(ABT‑414), an antibody‑drug conjugate, showed survival 
benefits when combined with radiotherapy and chemo‑
therapeutic Temozolomide (TMZ), respectively (25,26). 
EGFRs are also targeted by inhibitors of tyrosine kinase 

activity. Several inhibitors have been evaluated in clinical 
trials with minimal or no benefits such as Erlotinib, 
Gefitinib and Dacomitinib. However, using Afatinib, an 
irreversible pan‑inhibitor of the ErbB family resulted in an 
increase in the progression‑free survival (PFS) in patients 
with overexpressing EGFR or expressing EGFRvIII (27). 
Notably, EGFR could also be inhibited by anti‑tumor 
vaccines such as ACTIVATe (Phase II NCT00643097), 
a vaccine against tumor‑specific EGFRvIII. ACTIVATe 
reportedly induces immune responses and an elimination of 
EGFRvIII‑expressing tumor cells (28).

PDGFR. The receptor tyrosine kinase PDGFR is the 
second therapeutic target in GBM proneural subtype. 
PDGFR gene amplification is found in 15% of GBM 
cases (10). Overexpression of PDGFR and its ligands 
(PDGF‑AA/‑AB/‑BB/‑CC/‑DD) is observed in gliomas of all 
grades and associated with poor prognosis (10,29). Once acti‑
vated, PDGFR triggers intracellular signaling cascades that 
regulate cancer cell survival, growth and progression (30,31). 
Therefore, dysregulation of PDGF signaling stimulates 
malignant transformation of normal neural stem cells into 
glioblastoma and enhances GBM cell growth and motility 
through autocrine signaling (32‑34).

In clinical trials, PDGFR is either targeted by multikinase 
inhibitors or specific anti‑PDGFR antibodies (Table I). To 
date, multikinase inhibitors such as Sunitinib, Imatinib and 
Dasatinib have not shown promising clinical benefits (24). In 
addition, two Phase II clinical trials assessed the tolerance 
and efficacy of Ramucirumab (IMC‑3G3) and MEDI‑575 
anti‑PDGFR antibodies (NCT00895180 and NCT01268566 
respectively) in patients with recurrent glioblastoma 
multiforme. However, these monotherapies did not show 
improved survival.

cMET. MET is a transmembrane receptor with a tyrosine 
kinase activity. Different types of MET genetic alterations are 
detected in GBM cells. MET gene amplification and overex‑
pression are detected in 5‑13% of GBM cases (35), and MET 
fusion genes are found in pediatric GBM (36). Overexpression 
of MET and its ligand HGF promotes tumor growth, migration, 
invasion and drug resistance (37‑40). Increased activation of 
MET/HGF pathway is strongly and selectively associated with 
highly anaplastic GBM cells. The c‑MET pathway is either 
targeted directly by c‑MET antibodies or inhibitors or through 
antibodies targeting its ligand, HGF (Table I). Treatment with 
MET inhibitors can potentially be viable from the standpoint 
of drug selectivity, thus avoiding toxicity to normal cells (41). 
However, and in order to avoid drug resistance, combination of 
both PI3K inhibitors along with MET inhibitors can be favorably 
considered in the upcoming trials to efficiently target patients 
with GBMs (42). On the other hand, one promising result for 
c‑MET antibodies was shown by a randomized, double‑blind, 
placebo‑controlled, multicenter Phase II study (NCT01632228) 
assessing Onartuzumab (MetMAb, an anti‑cMET antibody) 
with or without Bevacizumab. Survival benefits were reported 
in patients with high HGF expression (43).

FGFR. Genomic alterations in FGFR are rarely detected 
in GBM (44); however, the constitutive activation of its 
downstream pathways stimulate tumor progression, prolif‑
eration and resistance to apoptosis (44,45). Infigratinib (BGJ 
398) selectively binds to and inhibits FGFRs and was used 
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as a monotherapy in Phase II NCT01975701 clinical trial in 
patients with recurrent glioblastoma or other glioma subtypes. 
However, Infigratinib was not licensed and the indication was 
abandoned (Table I).

Ras/Raf/MEK/ERK pathway. Ras/Raf/MEK/Erk (also known 
as the Ras/MAPK pathway) is a chain of effectors downstream 
of RTKs that regulate cell survival and proliferation (46). 
Alterations in various components of this pathway are detected 
in GBM.

B‑Raf proto‑oncogene (BRAF). BRAF is a serine/threonine 
kinase that belongs to the RAF family. Multiple BRAF gene 
alterations are associated with GBM; however, the BRAF 
V600E mutation is the most relevant. This missense mutation 
leads to constitutive activation of Ras/Raf/MEK/Erk pathway, 
promoting tumor cell proliferation, survival and inhibit 
apoptosis (47).

NF1. The NF1 gene encodes neurofibromin, a GTPase 
activating protein that controls cell growth and survival. It 
regulates the conversion of active GTP‑bound Ras to its inac‑
tive GDP‑bound form, thus inhibiting Ras/Raf/MEK/Erk 
signaling pathway (48). NF1 mutation or deletion is found in 
10% of glioblastoma cases, especially in the mesenchymal 
GBM subtype (10). Despite the fact that genomic alterations 

of this tumor suppressor gene enhance the epithelial‑mesen‑
chymal transition in neurofibromatosis and can induce 
malignant transformation (49), its role in glioblastoma is not 
fully understood.

In glioblastoma, MEK inhibitors are common drugs used 
to target Ras/Raf/MEK/Erk signaling pathway (Table II). 
For instance, Atorvastatin, a Ras/MAPK inhibitor, showed 
encouraging results when evaluated in combination with 
radiotherapy and TMZ in patients with GBMs (Phase II 
NCT02029573) (50). Additionally, BRAF inhibitors such as 
Dabrafenib and Encorafenib are evaluated in clinical trials 
in combination with MEK inhibitors trametinib (Phase II 
NCT03919071) and Binimetinib, respectively (Phase II 
NCT03973918).

PI3K/AKT/mTOR pathway. Phosphatidylinositol‑3‑kinase 
(PI3K) is a family of lipid kinases that regulates cell 
survival, growth, motility and metabolism (51). It consists of 
three subclasses depending on their structure and substrate 
specificities (51). Activated PI3Ks phosphorylate the lipid 
phosphatidylinositol (4,5)‑bisphosphate (PIP2) to generate 
phosphatidylinositol (3,4,5)‑trisphosphate (PIP3) (51). PI3K 
signaling pathway dysregulation is predominant in glioblas‑
toma and is mainly caused by gain‑of‑function mutations in 
PIK3CA gene, PIK3R1 gene and loss of PTEN gene.

Figure 1. Overview of signaling pathways and intrinsically altered molecules implicated in GBM development. Several molecules are targeted in clinical trials 
for glioblastoma cancer therapy. These include molecules implicated in survival pathways (RTKs, BRAF and PI3K), cell cycle pathways (p53, MDM2, CDK4/6, 
proteasomes and PARP), and metabolism (IDH, hexokinase, glutamine and arginine), in addition to the hTERT and PKC. Increased understanding of glioblas‑
toma biology revealed novel GBM molecular players that can be considered as potential new therapeutic targets for GBM treatment, such as PTEN, GLUT 
and PKM2. Created with Biorender.com. GBM, glioblastoma; RTKs, receptor tyrosine kinases; BRAF, B‑Raf proto‑oncogene MDM2, mouse double minute 
2 homolog; PARP, Poly(ADP‑ribose) polymerase; IDH, isocitrate dehydrogenase; hTERT, human telomerase reverse transcriptase; PKC, protein kinase C; 
PTEN, phosphatase and tensin homolog; GLUT, glucose transporter; PKM2, pyruvate kinase muscle 2. Created with Biorender.com.
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Table I. Therapeutic agents targeting RTK pathways for the treatment of glioblastoma in interventional clinical trials. Only 
interventional Phase II, III and IV clinical trials are listed here for therapeutic agents targeting RTKa.

Therapeutic agent Specificity Therapeutic strategy Cancer condition Phase Status (Refs.)

Cetuximab EGFR Monotherapy Newly diagnosed Phase I/II Recruiting 
   glioblastoma NCT02861898
  In combination Recurrent Phase II Recruiting 
  with Bevacizumab glioblastoma NCT02800486
   multiforme   
  In combination Recurrent Phase II Completed
  with Irinotecan glioblastomas NCT00463073
  and Bevacizumab    
Depatuxizumab‑ EGFR or ABT‑414 to Newly diagnosed Phase II/III Completed
mafodotin mutant concomitant Glioblastoma NCT02573324
(ABT‑414) EGFRvIII radiotherapy with EGFR
  and TMZ followed Amplification 
  by combination of
  ABT‑414 with
  adjuvant TMZ    
  ABT‑414 alone or Glioblastoma Phase II Completed (337)
  ABT‑414 plus  NCT02343406
  TMZ vs. Lomustine
  or TMZ   
Erlotinib EGFR Monotherapy Glioblastoma Phase II Completed
(Tarceva)    NCT00337883  
  In combination with Glioblastoma Phase II Completed (338)
  Bevacizumab  NCT00671970  
  Monotherapy Recurrent Phase I/II Completed (339)
   glioblastoma NCT00301418
   multiforme and
   anaplastic
   astrocytoma   
  Monotherapy Recurrent Phase I/II Completed (340)
   malignant NCT00045110
   glioma or
   recurrent or
   progressive
   meningioma   
  In combination with Newly diagnosed Phase I/II Completed (341)
  radiotherapy gliomas NCT00124657  
  In combination with Malignant glioma Phase II Completed (342)
  TMZ during and (glioblastoma or NCT00187486
  following radiotherapy gliosarcoma)    
  Monotherapy Recurrent or Phase II Unknown
   progressive NCT00054496
   glioblastoma
   multiforme   
Gefitinib EGFR Monotherapy Recurrent Phase II Completed (343)
(Iressa/ZD1839)   glioblastoma NCT00250887  
  In combination Glioblastoma Phase I/II Completed
  with radiotherapy multiforme  NCT00052208  
  In combination Newly diagnosed Phase I/II Completed
  with radiotherapy gliomas NCT00042991  
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Table I. Continued.

Therapeutic agent Specificity Therapeutic strategy Cancer condition Phase Status (Refs.)

GC1118 EGFR GC1118 with standard Recurrent Phase II Unknown
  concurrent glioblastoma NCT03618667
  chemoradiation with high EGFR
   amplification    
 Sym004 EGFR Monotherapy Recurrent Phase II Completed
   malignant glioma NCT02540161
   (glioblastoma or
   gliosarcoma)    
Olaratumab PDGFRα Compared to Recurrent Phase II Completed
(IMC‑3G3)  Ramucirumab glioblastoma NCT00895180
  (anti‑VEGFR2) multiforme    
MEDI‑575  PDGFRα Monotherapy Recurrent Phase II Completed
   glioblastoma NCT01268566
   multiforme    
APL‑101 c‑MET Monotherapy Advanced solid Phase I/II Recruiting
   tumors including NCT03175224
   glioblastoma
   multiforme    
Onartuzumab c‑MET In combination with Recurrent Phase II Completed
(MetMAb)  Bevacizumab glioblastoma NCT01632228
  compared with
  Bevacizumab alone or
  Onartuzumab
  monotherapy     
Infigratinib FGFR1, Monotherapy Recurrent Phase II Completed
(BGJ398) FGFR2,  glioblastoma NCT01975701
 and FGFR3  multiforme    
Dacomitinib EGFR/HER1, Monotherapy Recurrent Phase II Completed
(PF‑299804/ HER2, and  Glioblastoma NCT01520870
Vizimpro) HER4  With EGFR 
   Amplification or
   Presence of
   EGFRvIII
   Mutation   
  Monotherapy Recurrent Phase II Completed
   glioblastoma NCT01112527  
Afatinib ErbB family With or without Recurrent Phase II Completed
(BIBW 2992)  daily TMZ malignant glioma NCT00727506   
AEE788 ErbB &  Monotherapy Glioblastoma Phase I/II Completed
 VEGFR  Multiforme NCT00116376
 family      
Tesevatinib EGF, HER2, Monotherapy Recurrent Phase II Completed
 and VEGF  glioblastoma NCT02844439  
Anlotinib VEGFR, Monotherapy Recurrent Phase I/II Unknown (344)
 FGFR,  glioblastoma NCT04004975
 PDGFR, Kit    
  In combination First recurrent or Phase II Recruiting
  with dose‑dense progressive NCT04547855
  TMZ glioblastoma   
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PTEN. PTEN mediates the conversion of PIP3 to PIP2 which 
regulates cell proliferation, apoptosis, metabolism, motility 
and angiogenesis (52). PTEN deletion or mutation, found in 
5‑40% of GBM (53), inhibit AKT (protein kinase B) phos‑
phorylation and induce the hyperactivation of PI3K signaling 
pathway, which in turn accelerates tumor growth, progression, 
and metastasis (54).

PI3K. Heterodimeric Class IA PI3Ks consist of a catalytic 
subunit (p110α, p110β, or p110) and a p85‑type regulatory 
subunit (55). PIK3CA and PIK3R genes encode for p110α and 
p85α respectively (55,56). Several studies show that mutations 
in PIK3R1, identified in 8‑10% of GBM cases, are found to 
be mutually exclusive with mutations in PIK3CA in primary 
GBM cases (57,58). Constitutively active PIK3CA and PIK3R1 
upregulate the PI3K/AKT signaling pathway and promote 
tumorigenesis (59,60). Somatic mutations in PIK3CA occurs 
in 6‑17% of GBM (57,58,61) and PIK3CA activating muta‑
tions are correlated with poor prognosis, aggressive and more 
disseminated phenotype and with shorter survival rate (62). 
Alterations in PIK3CD (p110δ) and PIK3CB (p110β) are also 
detected in GBM (56).

The PI3K pathway is generally targeted by several PI3K 
pan‑inhibitors in clinical trials (Table III). One example is 
Pictilisib, a PI3K isoform inhibitor shown to sensitize tumors 
to radio‑ and chemotherapy. Effectiveness of Pictilisib is 
being compared with immunotherapeutic Pembrolizumab 
(MK‑3475) in Phase II clinical trial in patients with glioblas‑
toma (NCT02430363). Paxalisib (GDC‑0084) is another small 
molecule inhibitor of PI3K currently evaluated as an adjuvant 
therapy after surgical resection and concomitant chemoradia‑
tion therapy with TMZ in patients with GBM and unmethylated 
MGMT promoter status (Phase II NCT03522298). Preliminary 
results show enhanced overall survival (OS; 17.7 months 
for treated group compared with 12.7 months for patients 
treated with TMZ) (24). The PI3K/AKT/mammalian target 

of rapamycin (mTOR) pathway is also targeted by mTOR 
inhibitors. While several mTOR inhibitors do not show 
clinical benefits, AZD2014 is proposed as a promising drug 
for radiosensitizing glioblastoma stem cells (GSCs) in vitro 
and in vivo, and is currently being evaluated in clinical trials 
(Phase I NCT02619864). Moreover, another clinical trial is 
evaluating the efficiency of ABI‑009 (Nab‑Rapamycin), a 
novel albumin‑bound mTOR inhibitor, in recurrent and newly 
diagnosed glioblastoma (Phase II NCT03463265).

3. Targeting cell cycle and apoptosis pathways

p53/mouse double minute 2 homolog (MDM2)/ARF and 
p16/cyclinD‑CDK4/6/Rb signaling pathways regulate cell 
cycle and cell proliferation. According to the Cancer Genome 
Atlas Research Network, 87 and 77% of the analyzed GBM 
samples harbor a mutation in p53 and Rb signaling pathway 
respectively (57).

p53/MDM2/ARF pathway. The p53/MDM2/ARF pathway 
is one of the major core pathways deregulated in 84% of 
patients with GBMs. p53, the key protein of this pathway and 
also known as ‘guardian of the genome’, protects cells from 
external or internal stress signals by regulating cell processes 
such as cell cycle, DNA repair, angiogenesis, metabolism, cell 
death (apoptosis and autophagy) and senescence (63).

p53 genetic alterations were detected in 30% of primary 
GBM and 65% of secondary GBM (64). Mainly two different 
types of genomic alteration are detected in GBM cells; point 
mutation associated with overexpression of the mutant version of 
p53 and deletion that provokes the loss of function of p53. These 
alterations result in either gain or loss of p53 function (65). The 
oncogenic potential of p53 is mediated by the accumulation of 
p53 mutants in cells. Indeed, mutations in the MDM2 binding 
domain of p53 affect its regulation by MDM2, leading to the 

Table I. Continued.

Therapeutic agent Specificity Therapeutic strategy Cancer condition Phase Status (Refs.)

Sorafenib VEGFR, Radiotherapy and Glioblastoma Phase II Completed (345)
 FLT‑3, TMZ followed Multiforme NCT00544817
 PDGFR‑β, by TMZ plus
 Kit Sorafenib     
  A combination of Recurrent Phase II Active, not (303)
  Sorafenib tosylate, high‑grade NCT01817751 recruiting
  Valproic acid and glioma
  Sildenafil     
Dasatinib c‑KIT, Monotherapy Recurrent Phase II Completed (304)
 EPHA2,  glioblastoma NCT00423735
 and  multiforme
 PDGFR‑β  or gliosarcoma  

aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are not 
included. c‑MET, hepatocyte growth factor receptor; EGFR, epidermal growth factor receptor; EPHA2, Ephrin type‑A receptor 2; ErbB, 
epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; FLT‑3, fms‑like tyrosine kinase 3; HER, human epidermal growth 
factor receptor; PDGFR, platelet‑derived growth factors; RTK, receptor tyrosine kinase; TMZ, Temozolomide; VEGFR, vascular endothelial 
growth factor receptor.
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accumulation of p53 inside the cell and the subsequent gain of 
function phenotype. This enhances tumorigeneses in GBM by 
promoting inflammation, genomic instability, tumor growth, inva‑
sion, metastasis and neo‑angiogenesis (66,67). Pedrote et al (68) 
revealed that accumulation of amyloid‑like p53 with p53 gain 
of function phenotype leads to increased chemo‑resistant GBM 
cells. Thus, p53 gain of function mutations are associated with 
great oncogenic potential and aggressive GBM phenotype.

Loss of p53 tumor suppression function is not only medi‑
ated by p53 mutations. Previous studies demonstrated that 
different components in the p53/MDM2/ARF pathway, such 
as MDM2/MDM4 protein, negatively regulate the activity 
of p53 (69‑72). Under normal physiological conditions, 
MDM2 protein, which is an E3 ubiquitin ligase, binds p53 
transcriptional domain and controls its activity by preventing 
its transcriptional function and promoting its degradation. 

However, the activity of p53 is positively regulated by the alter‑
native reading frame tumor suppressor (ARF), an upstream 
molecule that suppresses the MDM2 activity (73). p53 muta‑
tions or deletions, MDM2 amplification or overexpression and 
ARF homozygous deletion inactivate p53 and trigger the p53 
loss of function phenotype in glioblastoma, thus contributing 
to tumor growth, progression and therapy resistance (65,74).

RG7388 (Idasanutlin) is a small molecule antagonist of 
MDM2 used to target p53/MDM2 pathway. Recent Phase I/II 
trials are recruiting to test for molecularly matched targeted 
therapies (APG101, Alectinib, Idasanutlin, Atezolizumab, 
Vismodegib, Temsirolimus and Palbociclib) in combination 
with radiotherapy in patients with newly diagnosed glioblas‑
toma without MGMT promoter methylation (NCT03158389). 
A more recent Phase I clinical trial is studying the uptake and 
tolerance of BI 907828 (an MDM2 inhibitor) in combination 

Table II. Therapeutic agents targeting the Ras/MAPK pathway for the treatment of glioblastoma in interventional clinical trialsa.

Therapeutic agents Therapeutic target Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

ABM‑1310 and BRAF V600E ABM‑1310 Advanced solid Phase I Recruiting
Cobimetinib (ABM‑1310) and monotherapy or tumors NCT04190628
 MEK1/2 in combination
 (Cobimetinib)  with Cobimetinib    
Dabrafenib and  BRAF (Dabrafenib) Dabrafenib in BRAF V600 Phase II Active, (346)
Trametinib and MEK1/2 combination with mutation NCT02684058 not recruiting 
 (Trametinib) Trametinib  positive low grade
   glioma or relapsed
   or refractory high
   grade glioma.   
   Dabrafenib Combined Phase II Recruiting (346)
   with Trametinib after (NCT03919071 
   radiotherapy Newly‑
   diagnosed high‑grade
   glioma   
Encorafenib and BRAF (Encorafenib) Combination Recurrent BRAF Phase II Active, 
Binimetinib and MEK1/2 treatment with V600‑Mutated high NCT03973918 not recruiting
 (Binimetinib) Encorafenib and grade glioma
  Binimetinib    
Atorvastatin Ras/MAPK  In combination Glioblastoma Phase II Completed (50)
  with Radiotherapy  NCT02029573
  and TMZ    
Ulixertinib ERK1/2 Monotherapy  Advanced solid NCT04566393 Available
(BVD‑523)   tumors   
LY2228820 p38 MAPK With radiotherapy Newly diagnosed Phase I/II Completed
  plus concomitant glioblastoma NCT02364206
  TMZ    
RSC‑1255 Ras Monotherapy Advanced Phase I Recruiting
   malignancies NCT04678648
   including
   glioblastoma 
 
aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are 
not included. BRAF, B‑Raf proto‑oncogene; ERK, extracellular signal‑regulated kinase; MAPK, mitogen activated protein kinase; MEK, 
mitogen‑activated protein kinase kinase; TMZ, Temozolomide.
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with radiotherapy in newly diagnosed glioblastoma patients 
(NCT05376800). Markedly, several different strategies are 
currently employed for targeting p53 using gene therapy 
in different cancer types. In GBM, only one clinical trial 
reported using SGT‑53, a human wild type p53 DNA sequence 
encapsulated in nanodelivery liposome. However, this study 
was terminated due to the very small number of participants 
(Phase II NCT02340156).

Epigenetic modifications. In addition to genetic altera‑
tions, epigenetic modulators affect expression by interacting 
with drivers of GBM cell proliferation, without causing any 
changes in the DNA sequence (75). In GBM, DNA methyla‑
tion is strongly correlated with responses to TMZ treatment 
that methylates adenine in position N3 and guanine in posi‑
tion O6 and N7 (76). Guanine methylation at O6 position 
leads to strand breaks, activating p53‑mediated apoptosis 
through Fas/CD95/Apo‑1 receptor or by the mitochondrial 
pathway (77). To decrease the effects of O6‑methylguanine DNA 
methyltransferase (MGMT) methylation, synthetic inhibitors 
of MGMT entered human trials (78). Nevertheless, several 
studies revealed that inhibitors such as O6‑benzylguanine and 
PaTrim‑2 (Lomeguatrib) did not show survival improvement 
in response to TMZ (79‑81).

Histone demethylases (KDM)4C is often overexpressed 
in GBM and is associated with epigenetic regulation of both 
tumor suppressor genes and oncogenes (82). Lee et al (82) 
showed that KDM4C binds to the promoter of c‑Myc onco‑
gene inducing its expression/activation and suppressing the 
functions of p53 by demethylating p53K372me1, thus inducing 
apoptosis. KDM4C knockdown significantly suppresses both 
the proliferation and tumorigenesis of glioblastoma cells 
in vitro and in vivo, thus suggesting KDM4C inhibition as a 
promising tool in targeting glioblastoma.

Histone deacetylases (HDAC) also serve an impor‑
tant role in regulating cell growth and survival of cancer 
cells (83). Inhibition of HDACs leads to cell cycle arrest 

as well as apoptosis, and, in GBM, causes the rebalance 
of histones acetylation (84,85). In clinical trials, testing 
Romidepsin (FR901228, an HDAC inhibitor) exhibited 
failure in treating patients with GBMs (NCT00085540) (24). 
Other HDAC inhibitors, such as Vorinostat. did not show 
improvement in the median OS or PFS both alone or in combi‑
nation with Bortezomib (NCT00641706) or Bevacuzimab 
(NCT01738646) (24).

p16/CyclinD‑CDK4/6/Rb pathway. The p16/cyclinD‑ 
CDK4/6/Rb signaling pathway regulates cell cycle progres‑
sion and is also disrupted in GBM cells (10). The cyclin 
D‑CDK4/6‑Rb axis, which is a crucial cell cycle check‑
point, controls cell transition from G1 to S phase (86). 
Indeed, cyclin D forms a complex with CDK 4/6 inducing 
the phosphorylation of Rb and inhibiting Rb‑E2F forma‑
tion (87). Released E2F mediates transcription of genes that 
facilitate the transition into S phase and consequently cell 
cycle progression (88). Under carcinogenic conditions, p16 

protein inhibits cyclin D‑CDK 4/6 complex formation (74). 
Thus, Rb associates with E2F and triggers cell cycle arrest. It 
has been demonstrated that genetic alterations such as dele‑
tion in CDKN2A/B, amplification of CDK4/6 and mutations 
of Rb and p16 genes are detected in 79% of patients with 
GBM (10). Consequently, cells harboring such alterations 
undergo uncontrolled cell proliferation and tumor growth. 
Collectively, targeting cell cycle and apoptosis pathways 
could emerge as promising tool for treating GBM. There 
are three CDK4/6 inhibitors evaluated in clinical trials for 
GBM treatment in clinical trials (Table IV). Ribociclib and 
Abemaciclib are being evaluated in current studies, whereas 
PD 0332991 (Palbociclib) monotherapy was not effective in 
treating patients with recurrent glioblastoma (89).

Proteasomes. Proteasomes are protein complexes that are 
central for degradation of unneeded or damaged proteins (90). 
They regulate cell cycle and homeostasis in normal and cancer 

Table III. PI3K inhibitors applied for the treatment of glioblastoma in interventional clinical trialsa.

Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status

Paxalisib Adjuvant therapy following Newly‑diagnosed glioblastoma Phase II Active
(GDC‑0084) surgical resection and initial with unmethylated MGMT NCT03522298 not recruiting
 chemoradiation with TMZ promoter status  
 With metformin while Glioblastoma Phase II Not yet
 maintaining a ketogenic diet  NCT05183204 recruiting
 Multiple drugs and drug Newly diagnosed and Phase II/III Recruiting
 combinations (TMZ, Lomustine, recurrent glioblastoma NCT03970447
 Regorafenib, Radiation, Paxalisib,
 VAL‑083, VT1021, Troriluzole)    
Pictilisib Compared with Pembrolizumab Glioblastoma Phase I/II Unknown
 (MK‑3475/anti‑PD‑1  NCT02430363
 monoclonal antibody)  

aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are not 
included. MGMT, O6‑methylguanine DNA methyltransferase; PD‑1, programmed cell death protein 1; PI3K, phosphatidylinositol‑3‑kinase; 
TMZ, Temozolomide.
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Table IV. Therapeutic agents targeting CDK4/6, proteasomes and Poly(ADP‑ribose) polymerase applied for the treatment of 
glioblastoma in interventional clinical trialsa.

A, CDK4/6 inhibitors
   
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

Abemaciclib In combination with Solid tumors Phase I Recruiting
(LY2835219) TMZ and Irinotecan  NCT04238819
 vs. Abemaciclib in
 combination with
 TMZ   
 In combination with Recurrent Early Phase I Active,
 Bevacizumab glioblastoma NCT04074785 not recruiting
  patients with
  loss of
  CDKN2A/B
  or gain or
  amplification
  of CDK4/6  
 With or without Recurrent Phase II Recruiting
 surgery glioblastoma  NCT02981940  
 In combination Recurrent Early Phase I Recruiting
 with LY3214996 glioblastoma NCT04391595
 (ERK Inhibitor)      
Ribociclib Before surgical Preoperative Early Phase I Recruiting
(LEE011) tumor resection glioma and NCT02933736
  meningioma  
 In combination Preoperative Early Phase I Active,
 with Everolimus recurrent high‑ NCT03834740 not recruiting
  grade glioma   
 Ribociclib and High grade Phase I Active,
 Everolimus gliomas NCT03355794 not recruiting
 following
 Radiotherapy     
 Monotherapy Recurrent Phase I Unknown
  glioblastoma NCT02345824
  or anaplastic
  glioma  
 

B, Proteasome inhibitors
     
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

Bortezomib In combination with Glioblastoma  Phase I/II Recruiting (347)
 TMZ  NCT03643549 
 In combination with Brain tumors or Phase I Completed
 TMZ other solid tumor NCT00544284
  that have not
  responded to
  treatment   
 In combination with Recurrent Phase I Completed
 bevacizumab and glioblastoma NCT01435395
 escalating doses of multiforme
 TMZ    
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Table IV. Continued.

B, Proteasome inhibitors
   
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

 In combination with Newly diagnosed Phase II Completed
 TMZ and glioblastoma NCT00998010
 radiotherapy multiforme or
  gliosarcoma   
 In combination with Recurrent Phase II Completed
 Bevacizumab Malignant Glioma NCT00611325  
Marizomib In combination with Newly diagnosed Phase III Active,
 TMZ and glioblastoma NCT03345095 not recruiting
 radiotherapy     
 In combination with Malignant Phase I/II Completed (348)
 Bevacizumab glioma and NCT02330562
  glioblastoma  
 In combination with Malignant Phase I Completed (348)
 TMZ and glioma and NCT02903069
 radiotherapy glioblastoma  
Ixazomib (MLN9708) Monotherapy Glioblastoma Early Phase I Completed (95)
   NCT02630030 
Disulfiram (DSF) After radiotherapy Glioblastoma Early Phase I Completed
 with TMZ multiforme NCT01907165  
 DSF‑Copper in Recurrent Phase II Completed (97)
 combination with glioblastoma NCT03034135
 TMZ   
 DSF‑Copper with Glioblastoma Phase I/II Active,
 concurrent radiotherapy multiforme NCT02715609 not recruiting
 and TMZ   

C, PARP inhibitors
    
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

Iniparib (BSI‑201) In combination with Newly diagnosed Phase I/II Completed
 TMZ  malignant glioma NCT00687765  
Olaparib Cediranib maleate Recurrent Phase II Active,
 and Olaparib glioblastoma NCT02974621 not recruiting
 work compared
 with bevacizumab    
 In combination with Relapsed Phase I Completed (101)
 TMZ  glioblastoma NCT01390571 
 In combination with Newly diagnosed Early Phase I Recruiting
 radiotherapy and recurrent NCT04614909
 compared with glioblastoma
 Pamiparib with
 radiotherapy     
 Monotherapy Advanced glioma, Phase II Recruiting
  cholangiocarcinoma, NCT03212274
  or solid tumors with
  IDH1 or IDH2
  mutations   
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cells by regulating p53 and endoplasmic reticulum stress. 
Proteasomes can thus influence drug resistance in tumor 
cells (91). Due to the complexity of GBM physiology, there is 
a need for therapeutic options that could target broad systems 
contributing to the tumorgenicity in GBM. Proteasome 
inhibition is thus identified as a promising strategy for GBM 
treatments. Currently, four proteasome inhibitors are tested 
in clinical trials to target proteasomes in GBM: Bortezomib, 
Ixazomib, Marizomib and Disulfiram (Table IV). Bortezomib 
is the first‑generation proteasome inhibitor and showed 
promising results when studied in combination with TMZ 
and radiotherapy (NCT00998010) (92). Marizomib is a 
second‑generation proteasome inhibitor that has the ability 
to cross the BBB (93). It is currently being evaluated in 

ongoing clinical trials combined with Bevacizumab, TMZ, 
or ABI‑009 (Nab‑rapamycin, nanoparticle albumin‑bound 
rapamycin). Encouraging observations are reported in 
Phase III study (NCT03345095) for Marizomib adminis‑
tered in combination with radiotherapy and TMZ to treat 
patients with newly diagnosed glioblastoma (94). Ixazomib, 
on the other hand, was evaluated in early Phase I clinical 
trial (NCT02630030) for its ability to reach brain tumors 
due to its distinctive permeability to tumor tissues (95). 
Disulfiram is another interesting proteasome inhibitor that 
has an improved BBB penetration to employ its anti‑tumor 
action (96). Disulfiram was well tolerated in Phase II clinical 
trial in combination with TMZ but showed limited activity 
for unselected population (97).

Table IV. Continued.

C, PARP inhibitors
   
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

 Combination therapy Glioblastoma and Phase II Not yet
 of Pembrolizumab, recurrent NCT05463848 recruiting
 Olaparib and TMZ glioblastoma   
 Afatinib, Dasatinib, Glioblastoma and Early Phase I Not yet
 Palbociclib, Everolimus recurrent NCT05432518 recruiting
 or Olaparib based on glioblastoma
 patient's genetic profile     
Veliparib In combination with Young patients Phase I Completed
 TMZ  with recurrent or NCT00946335
  refractory CNS 
  tumors   
 In combination with Younger patients Phase I/II Completed (103)
 TMZ and with newly NCT01514201
 radiotherapy diagnosed diffuse
  pontine gliomas  
 In combination with Recurrent Phase I/II Completed (102)
 TMZ  glioblastoma NCT01026493 
 In combination with  Newly diagnosed Phase I Completed
 TMZ and glioblastoma NCT00770471
 radiotherapy multiforme   
 In combination with Newly diagnosed Phase II Active,
 TMZ and radiotherapy malignant glioma NCT03581292 not recruiting
  without H3 K27M
  or BRAFV600
  mutations   
 TMZ with or without Newly diagnosed Phase II/III Active, (349)
 Veliparib glioblastoma NCT02152982 not recruiting
  multiforme   
Pamiparib In combination with Newly diagnosed Phase I/II Completed (350)
 TMZ and radiotherapy or recurrent NCT03150862
  glioblastoma  

aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are not 
included. CDK, cyclin‑dependent kinase; CNS, central nervous system; DSF, Disulfiram; ERK, extracellular signal‑regulated kinase; IDH, 
Isocitrate dehydrogenase; PARP, poly(ADP‑ribose) polymerase; TMZ, Temozolomide.
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Poly(ADP‑ribose) polymerase (PARP). Elements of DNA 
damage repair mechanisms are considered promising 
radio‑sensitizing agents for cancer therapy (98). PARP is an 
important protein in DNA repair pathways and high PARP‑1 
mRNA expression is associated with poor survival in classic 
GBMs (99). A few PARP‑1 inhibitors have been evaluated in 
clinical studies (Table IV). For instance, a Phase I/II clinical 
trial (NCT00687765) recently completed a study to evaluate the 
safety and efficiency of Iniparib (BSI‑201), a PARP1 inhibitor 
(results as yet unpublished). Olaparib is another inhibitor of 
PARP that shows an effective radio‑sensitizing result in GBM 
cell lines and preclinical glioma models (98,100). A Phase I 
trial OPARATIC (NCT01390571) reported that Olaparib pene‑
trates core and margin regions of GBM at radio‑sensitizing 
concentrations. It was also reported to be safe when used with 
continuous low‑dose of TMZ (101). PARP inhibitor Veliparib 
was also evaluated in several clinical trials. However, results 
showed that Veliparib did not show improved clinical survival 
when combined with TMZ (Phase I/II NCT01026493) (102), 
nor when added to radiation followed by TMZ (Phase I/II 
NCT01514201) (103).

4. Targeting metabolism

Isocitrate dehydrogenase (IDH). WHO classifies GBM 
depending on IDH mutational status (104). The IDH enzyme 
plays a pivotal role in major cellular metabolic processes. It 
is involved in the Krebs cycle, lipid and glutamine metabo‑
lism and oxidative stress regulation. During the Krebs cycle, 
IDH catalyzes the oxidative decarboxylation of isocitrate to 
α‑ketoglutarate [α‑KG, also known as 2‑oxyglutarate (2OG)] 
and reduces the cofactor NADP+ into NADPH which is 
essential to decrease the level of reactive oxygen species 
(ROS) (105‑107).

Three different isoforms of IDH exist in human cells: 
IDH1, detected in the cytoplasm and in peroxisomes, whereas 
IDH2 and IDH3 are both present in mitochondria (108). IDH 
mutations were found in 6% of primary GBM and in 54% 
of secondary GBM (109). Missense mutations, caused by 
the substitution of arginine residue in codons 132 and 172 
in the enzymatic site of the IDH1 and IDH2, are frequently 
detected in glioblastoma cells (58,110,111). IDH mutants 
catalyze the production of 2‑hydroxyglutaric acid (2‑HG) 
from isocitrate. 2‑HG affects cellular metabolism, enhances 
the oxidation of NADPH in NADP+ which, in turn, disrupts 
cellular homeostasis and increases the level of ROS (112). It 
has been suggested that the accumulation of this oncometab‑
olite inhibits the activity of α‑KG dependent dehydrogenase, 
a family of enzymes involved in methylation of histones and 
DNA, which includes KDMs and 10‑11 translocation (TET, a 
family of DNA hydroxylases that leads to a hypermethylation 
state and genetic instability) (113). Moreover, modification 
of the epigenetic profile is associated with the inhibition of 
glioma stem cell differentiation (114). Furthermore, overex‑
pression of hypoxia‑inducible factor 1‑α (HIF‑1α), VEGF 
and platelet‑derived growth factor subunit A (PDGF‑A) 
are detected in GBM cells holding IDH mutation (115‑117). 
Hence, these alterations induced by the high levels 2‑HG 
are associated with an aggressive and invasive carcinogenic 
phenotype.

Patients with GBMs and IDH mutations are often treated 
with inhibitors such as Olaparib targeting PARP (Phase II 
NCT03212274). More clinical trials are investigating other 
PARP inhibitors such as Nivolumab (Phase II NCT03718767, 
recruit ing),  Talazopar ib (Phase I I NCT04740190, 
recruiting) and BGB‑290 (Phase II NCT03914742, active, 
not recruiting/Phase I NCT03749187) to treat patients 
with advanced gliomas including glioblastoma. Notably, a 
recently completed study investigated the safety and clinical 
activity of Enasidenib (AG‑221), a small molecule inhibitor 
of IDH2 in patients with advanced solid tumors, including 
glioma (Phase I/II NCT02273739). Patients with similar 
cancer types were treated in a recently completed study 
(Phase I/II NCT03684811) with Olutasidenib (FT‑2102), 
another agent that specifically inhibits mutant IDH1 at argi‑
nine R132. Currently, a number of other clinical trials are 
evaluating IDH inhibitors, therefore, more time and research 
are needed to conclude about their efficiency to treat gliomas 
(Table V).

Glucose metabolism. Normal cells rely on oxidative phos‑
phorylation as the main energy source. However, cancer cells 
shift to aerobic glycolysis even in the presence of oxygen. 
This phenomenon, known as Warburg effect, protects cancer 
cells from apoptosis, stimulates the production of new precur‑
sors and increases invasion capacity (118‑121). Therefore, 
targeting glucose transporters, such as glucose transporter 
(GLUT), and metabolic enzymes, such as Hexokinase 2 
and Pyruvate kinase muscle, may provide a novel avenue in 
glioblastoma treatment.

GLUT. GLUT is a transmembrane protein that belongs to the 
major facilitator superfamily (122), Currently, 14 different 
isoforms are identified in human tissues and divided into 
three classes (123). Class I, which consists of GLUT 1/2/3/4, is 
mainly expressed in brain cells. In GBM, GLUT‑1 and GLUT‑3 
are the predominantly expressed isoforms and associated with 
poor survival rates. These transporters, characterized by their 
high affinity for glucose, promote glycolysis metabolism by 
increasing glucose uptake to maintain the survival, prolif‑
eration and growth of cancer cells. GLUT‑3, also known as 
neural glucose transporter, is highly expressed by brain tumor 
initiating cells (BTICs) and has higher affinity for glucose 
compared with GLUT‑1 (124).

Overexpression of GLUT‑3 enhances chemoresistance and 
survival of BTICs in glucose deficient microenvironment (124). 
Recently, Libby et al (125) proposed that overexpression of 
GLUT‑3 is positively correlated with the invasion phenotype of 
GBM. They found that the C‑terminal tail of GLUT‑3 reduces 
invasion (125). Accordingly, the design of drugs targeting 
GLUT‑3 could be improved to inhibit molecular functions 
outside its role in metabolism as a means to limit potential 
brain toxicity. This can be achieved by potentially targeting 
the C‑terminal tail or the protein interactions driving GLUT‑3 
mediated invasion. While glucose transporters provide prom‑
ising results in research laboratories, they are not yet targeted 
in clinical trials.

Hexokinase. Hexokinase 2 (HK2), the driver of the aerobic 
glycolysis, regulates the first step of glucose metabolism by 
converting glucose to glucose 6‑phosphate. In GBM, HK2 
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promotes tumor progression by enhancing cancer cell growth, 
lactate production and chemoresistance (126,127). It also binds 
to the mitochondrial membrane and controls the release of 
cytochrome c, protecting cancer cells from apoptosis (128). 
Notably, depletion of HK2 induces the shift to oxidative glucose 
metabolism, impairs cancer cell proliferation, reduces angio‑
genesis and sensitizes GBM cells to chemoradiotherapy (129). 
Microarray analysis reveals that HK2 expression is negligible 
in normal cells but predominant in GBM (126). Therefore, 
targeting HK2 or its activity may be a novel therapeutic 
strategy to selectively kill cancer cells without damaging 
normal cells. Ketoconazole and Posaconazole are antifun‑
gals known to inhibit tumor metabolism. These drugs also 
selectively target HK2 in glioblastoma cells (129). Two recent 
recruiting early Phase I clinical trials are studying the delivery 
and activity of Ketoconazole and Posaconazole in brain tumors 
(NCT04869449 and NCT04825275, respectively).

Pyruvate kinase muscle (PKM)2. PKM consists of two 
isoforms PKM1 and PKM2 (130). PKM1 is mainly expressed 
in muscle and brain cells while PKM2 is highly expressed 
in embryonic cells, stem cells and cancer cells (131). PKM 
converts phosphoenolpyruvate to pyruvate during the last 
irreversible step of glycolysis (132). Mukherjee et al reported 
an overexpression of PKM2 and an isoform switching between 
metabolic enzymes PKM1 and PKM2 in GBM (133).

Three different forms of PKM2 exist in mammalian cells: 
A tetrameric form, known as the metabolic/glycolytic form and 
is involved in aerobic glycolysis, and less active monomeric 
and dimeric forms. The latter two forms promote GBM tumor 
growth (134,135) and protect it from apoptosis (136,137). 
This is achieved either by diverting the glycolysis pathway to 
an anabolic pentose phosphate pathway, or by activating the 
transcription of a number of oncogenes such as c‑Myc and 
cyclin D (138). The ratio of monomeric/dimeric and tetrameric 

Table V. Therapeutic agents targeting metabolism of gliomas (including glioblastoma) in interventional clinical trialsa.

A, IDH
 
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

Enasidenib (AG‑221), Monotherapy Solid tumor, glioma, Phase I/II Completed
Inhibitor of mutant  angioimmunoblastic NCT02273739
IDH2   T‑cell lymphoma,
  intrahepatic
  cholangiocarcinoma,
  chondrosarcoma    
Olutasidenib (FT‑2102), In combination with Advanced solid Phase I/II Completed
Inhibitor of R132 other anti‑cancer drugs tumors and gliomas NCT03684811
mutant IDH1 (Azacitidine, Nivolumab, (glioblastomas)
 Gemcitabine and Cisplatin)    
AG‑120, Inhibitor of Monotherapy Advanced solid Phase I/II Active, (351)
R132 mutant IDH1  tumors and gliomas NCT02073994 not recruiting 
IDH305, Inhibitor of Monotherapy Advanced 
mutant IDH1  malignancies with Phase I Active, (352)
  IDH1 R132 NCT02381886 not recruiting
  mutations   
LY3410738, Inhibitor of Monotherapy or in Advanced solid Phase I Recruiting
R132 mutant IDH1, and combination with tumors with IDH1 NCT04521686
R140 or R172 mutant gemcitabine and or IDH2 mutations
IDH2 Cisplatin, or Durvalumab   
 

B, Hexokinase
  
Therapeutic agents Therapeutic strategy Cancer condition Clinical phase Status (Refs.)

Posaconazole Monotherapy Glioblastoma Early Phase I Recruiting
   NCT04825275  
Ketoconazole Monotherapy Glioblastoma Early Phase I Recruiting
   NCT04869449   

aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are not 
included. IDH, Isocitrate dehydrogenase.
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forms of PKM2 decides whether cells will undergo glycolysis 
or phosphate pathway (139). In addition, a study conducted by 
Sizemore et al (140) reveals that the ATM‑PKM2‑CtIP axis 
enhances DNA double‑stand break repair efficiency and resis‑
tance to genotoxic damage caused by radiation. Overexpression 
of PKM2 is hence associated with a radio‑resistant phenotype. 
Therefore, targeting PKM2 might be a promising therapeutic 
strategy for glioblastoma treatment.

Amino acid metabolism. Amino acid metabolism is another 
intriguing metabolism route important for GBM cells. Data 
suggest that GBM cells produce an increased pool of free 
amino acids associated with poor disease prognosis (141). 
Research provided evidence that the hypoxic stress in glioma 
and GBM cells increases protein catabolism (142,143). Under 
hypoxic conditions, and due to elevated levels of redox stress, 
hypoxic tumor cells maintain redox homeostasis that is depen‑
dent on increased glutathione synthesis. Thus, GBM cells want 
to maintain high levels of glutathione, consequently favoring 
conditions that are resistant to chemoradiotherapy (142). 
Arginine, asparagine, glutamine and lysine are among the 
relevant amino acids studied, however, the present review will 
discuss metabolic pathways of both glutamine and arginine 
that are targeted to therapeutically control cancer cell prolif‑
eration and spreading.

Glutamine metabolism. Glutamine is a non‑essential amino 
acid that is highly concentrated in blood (144) and required 
for the tricarboxylic acid (TCA) cycle and the synthesis 
of nucleotide bases, amino acids, fatty acids and proteins. 
Glutamine metabolism regulates oxidative stress by regulating 
glutathione synthesis (145). Additionally, healthy neural 
cells in the brain synthesize glutamate, the main activator 
neurotransmitter, by the uptake of glutamine from astrocytes 
in the glutamine‑glutamate cycle (146). Glutamine in the extra‑
cellular space is transported into neural cells through SNAT1 
transporter where it is hydrolyzed by the glutaminase enzyme 
(GA) to form glutamate. Glutamate is then packed in synaptic 
vesicles and cleared during neurotransmission and transported 
into astrocytes via glutamate transporters GLT‑1 and GLAST. 
In astrocytes, glutamine synthetase (GS) catalyzes the genera‑
tion of glutamine from glutamate. The cycle is completed by 
the release of glutamine from astrocytes into the synaptic cleft 
by the SN1 transporter (147).

In GBM, glutamine is an important source for the TCA 
cycle and nucleotide and fatty acid synthesis, thereby sustaining 
tumor growth and stimulating glutathione synthesis (148). 
Concentrations of glutamine and its related metabolites are 
proportional to decreased cell survival (149). Due to develop‑
ments in noninvasive image collection and analysis, in vivo 
glutamine measurement is now clinically feasible. Previous 
research demonstrated that glutamine imaging may have prog‑
nostic significance (150). In the line of the role of glutamine 
in cancer cell growth and promoting chemo‑and radiotherapy 
resistance, targeting glutamine metabolism constitutes an 
attractive research area for the treatment of brain tumors.

Research strategies to target glutamine metabolism 
included targeting enzymes involved in their synthesis (GA 
and GS), or targeting transporters for glutamine/glutamate 
uptake (147,151‑153). Modulating the GA enzyme was 

performed using the RNA interference approach or the use of 
allosteric inhibitors. GLS, a gene encoding GA, was targeted 
in GBM cell lines, patient derived GBM cells and mouse xeno‑
grafts (147,154). Several research groups report a decreased 
cancer cell viability by silencing GLS, whereas GLS2 isoform 
shows an opposite effect as its overexpression reverses the 
aggressive GBM phenotype (155‑157). These data suggest 
approached for a combinatorial therapeutic approach of both 
GLS inhibition and GLS2 overexpression thereby enhancing 
the antitumor effect. On the other hand, GS enzyme is also 
targeted, and its overexpression resulted in decreased prolif‑
eration and migration in rat glioma cell lines (158). Along with 
similar supporting data, GS is suggested to have an anti‑glioma 
effect.

To date, targeting glutamine uptake by neural cells through 
silencing SNAT transporters has not shown significant effects 
on the proliferation of GBM cells (147). Conversely, targeting 
glutamate transporters such as GLT‑1 and GLAST showed more 
promising results in GBM cell lines and xenografts [reviewed in 
details in (147)]. Another promising target is system xc

‑ (SXC), 
a cysteine‑glutamate exchanger that is shown to mediate >50% 
of glutamate transport in GBM cell lines (159). Notably, SXC 
is targeted and inhibited by an FDA approved sulfasalazine 
(SAS) for the treatment of bowl disease (159). While SAS 
resulted in increased cell death of GBM cells in vitro and in 
xenografts (160), Phase I/II clinical trials were terminated due 
to incidents of severe side effects (161). Research studies using 
SAS in gliomas, in combination with radiotherapy, are still 
in progress (162) and more studies are needed to reveal the 
effectiveness of the combined treatment.

There are several pharmacological strategies to inhibit 
glutamine metabolism (147,163). Telaglenastat (CB‑839) is a 
GLS inhibitor currently being evaluated in a Phase I clinical 
trial (NCT03528642) combined with radiotherapy and TMZ 
for treatment of IDH‑mutant astrocytomas and anaplastic 
astrocytomas. Collectively, several combinatorial strategies 
targeting various facets of glutamine cancer metabolism 
can be applied and this should lead to more research in this 
field (148).

Arginine metabolism. Arginine is a semi‑essential amino 
acid synthesized from citrulline via urea cycle enzymes, 
argininosuccinate synthetase‑1 (ASS1) and argininosuccinate 
lyase (ASL) (164). Cancer cells, which are characterized with a 
high proliferation rate, depend on exogenous arginine in their 
microenvironment (165). Therefore, reduced expression of 
urea cycle enzymes ASS1, ASL and OCT makes cancer cells 
auxotrophic and completely reliant on extracellular arginine 
sources (166,167). Arginine deprivation has been shown to 
promote cell death and impairs cell motility and invasion. 
Hence, arginine deprivation is a promising potential therapy 
target for selective destruction of tumor cells.

Arginine deprivation serves a role in enhancing endo‑
plasmic reticulum stress and inducing the expression of 
genes involved in unfolded protein responses, thus resulting 
in cancer cell death (168). Furthermore, arginine deprivation 
reduces the extent of β‑actin arginylation which disturbs cell 
cytoskeletal organization, alters cell adhesion and impairs 
cell migration and invasion (169). HuArgI (Co)‑PEG5000 
is human arginase I, characterized by the addition of two 
cobalt ions and polyethylene glycol that results in improved 
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enzymatic catalytic activity, increased stability, decreased 
immunogenicity and lower dissociation constant at neutral 
pH (170,171). Promising effects were shown when using 
HuArgI (Co)‑PEG5000 to target arginine auxotrophy in 
different tumor types (166,172‑175). Our laboratory research 
found evidence that HuArgI (Co)‑PEG5000 induces autophagy 
cell death in hepatocellular carcinoma (176), pancreatic carci‑
noma (173,176), acute lymphoblastic leukemia (174), renal 
cell carcinoma (177), prostate cancer (178), colorectal cancer 
(CRC) (172), ovarian carcinoma (175) and breast cancer (179). 
In GBM, we observed that HuArgI (Co)‑PEG5000 induces 
autophagy‑dependent cancer cell death. The addition of exog‑
enous citrulline failed to rescue any of the GBM cell lines 
from arginine depletion‑induced cytotoxicity, indicating a 
high level of arginine dependence (166). A recent recruiting 
Phase I clinical trial (NCT04587830) is currently assessing the 
safety and tolerability of ADI‑PEG 20, an arginine deprivation 
agent, in combination with radiotherapy and TMZ in patients 
newly diagnosed with GBM (180). Taken together, targeting 
GBM cells using arginine depletion is a potent and selective 
potential treatment for GBM.

5. Other targeted molecules

Other molecules such as human telomerase reverse transcrip‑
tase (hTERT), ATRX and protein kinase C, have also gained 
attention as potential targets for GBM cancer therapy. This is 
due to the finding that alterations in these molecules enhance 
GBM cells survival and progression.

Telomerase
hTERT. Telomerase is a ribonucleoprotein that consists of two 
subunits: i) the protein catalytic hTERT that mediates reverse 
transcriptase activity and ii) the human telomerase RNA 
template. Telomerase is mainly active in embryonic cells, 
stem cells and precursor cells. Notably, studies show that 
hTERT expression is upregulated in glioblastoma (181,182). 
In addition, ~80% of primary glioblastoma cells harbor 
a mutation or methylation in the hTERT promoter (183). 
Genomic sequencing revealed a high incidence of mutually 
exclusive point mutations C228T and C250T in hTERT 
promotor of glioblastoma cells (183). Arita et al (181) show 
that hTERT expression is 6.1 times higher in tumors carrying 
these mutations than in wild‑type tumors and therefore 
leads to the upregulation of TERT. Upregulation of hTERT 
enhances telomerase activity and promotes an immortal 
phenotype (183). In addition, hTERT mutations are associ‑
ated with poor prognosis and a multifocal invasive phenotype 
in GBM (184,185). Thus, hTERT promotor mutation can be 
recognized as a novel biomarker and therapeutic target mole‑
cule for GBMs (184,186,187). Currently, two immunization 
strategies are currently targeting hTERT in clinical trials. A 
Recruiting Phase II/III study (NCT03548571) is investigating 
the efficiency of immunization with IMP dendritic cells that 
are transfected with mRNA hTERT, as well as autologous 
tumor stem cells and survivin, compared with standard 
adjuvant chemoradiotherapy. Additionally, an active, not 
recruiting Phase I/II study, (NCT03491683) is evaluating the 
safety of INO‑5401 (a combination of three separate DNA 
plasmids targeting hTERT, Wilms tumor gene‑1 antigen, 

and prostate‑specific membrane antigen) in patients with a 
glioblastoma tumor with an unmethylated MGMT promote.

Alpha thalassemia/mental retardation syndrome X‑linked 
(ATRX). ATRX is a DNA helicase/ATPase that belongs to the 
SWI2/SNF2 family (188). It is involved in chromatin remod‑
eling and telomere maintenance. ATRX mutations occur in 
57% of secondary glioblastoma and are associated with IDH1 
and p53 mutations (189). ATRX loss of function mutation trig‑
gers a telomerase length mechanism also known as ‘alternative 
lengthening of telomeres’ that maintains telomere length, thus 
enabling cancer cells to escape cell senescence and promoting 
tumor growth (190). In addition, ATRX mutations impair 
non‑homologous end joining and pDNA‑PKcs recruitment, 
causing genetic instability and leading to DNA damage (190). 
Therefore, ATRX is another potential target for GBM treat‑
ment, however, it is not yet targeted in clinical trials.

Protein kinase C (PKC). PKC is a serine threonine kinase that 
serves a crucial role in GBM growth and progression. PKC 
consists of 11 isoforms and is divided into three subfami‑
lies: Classical, novel and atypical classes (191). Classical 
PKCs consist of two members, PKCα and PKCβ (192). 
Leirdal et al (193) show that PKC enhances GBM survival 
via MAK‑ERK1\2 pathway. PKCα induces GBM progression 
via PKC‑progesterone pathway (194). Once stimulated with 
12‑O tetradecanoylphorbol‑13‑acetate or lysophosphatidic 
acid, PKCa translocates to the nucleus, enhances progesterone 
receptor phosphorylation and promotes the migration and 
invasion capacity of GBM (194,195). PKCb serves an essen‑
tial role in enhancing angiogenesis, thus facilitating GBM 
progression (196). Moreover, PKCβ leads to GBM cell death. 
Conversely, Liu et al (197) show that in an orthotopic mouse 
xenograft model, PKCβ II expression suppresses GBM tumor 
growth and extends mouse survival by inhibiting YAP/TAZ. 
Thus, PKCβ has two opposite roles in GBM.

The novel PKC subfamily contains four members: PKCδ, 
PKCɛ, PKCη and PKCθ. Inhibition of PKCδ suppresses 
tumor spheroid formation in vitro and tumor development 
in vivo (198). In glioblastoma, PKCδ is involved in tumor 
initiation (199), cancer cell migration and invasion (194,200) 
and radio‑chemoresistance (199). Activation of PKCδ phos‑
phorylates glycerol‑3‑phosphate dehydrogenase enzyme 
and serves an essential role in glucose metabolism and 
phospholipid synthesis (201). PKCɛ, on the other hand, is 
overexpressed in glioblastoma cell (202) and controls tumor 
survival (203) cancer cell adhesion and motility via activa‑
tion of the ERK pathway (204,205). PKCη promotes GBM 
proliferation (206,207) and reduces cell sensitivity to radio‑
therapy (208).

Atypical PKCs ɩ and ζ are involved in GBM viability, 
migration, and invasion (209‑211). Baldwin et al (211) show 
that inhibition of PKCi increases the activity of Rho B that, 
in turn, improves actin fiber formation and reduces GBM cell 
migration and invasion. Similarly, Guo et al (210) found that 
the suppression of PKCz enhances actin polymerization and 
reduces GBM cell migration and invasion.

Enzastaurin is a kinase inhibitor that particularly inhibits 
protein kinase C, thus decreasing tumor growth and cell 
proliferation (212). Results from recent clinical studies 
(Phase II NCT00586508 and Phase III NCT03776071) did not 
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show improved PFS compared with bevacizumab and other 
therapeutic agents (212,213).

6. Challenges

Targeting intrinsically altered molecules that trigger GBM 
malignant phenotype is an innovative therapeutic strategy that 
aims to destroy tumor cells without damaging normal cells. 
However, despite the promising in vitro results, this novel 
therapy faces various barriers in vivo (Fig. 2).

Intra‑tumoral heterogeneity. One reason behind the 
complexity of GBM management is that the genetic profiles 
of recurrent glioma cells and the initial cancer derived from 
the same patient are different (214). Thus, the plasticity and 
heterogeneity of GBM cell populations can explain the failure 
of clinical trials based on monotherapy in vivo. Clones of the 
genes that are identified by different number of chromosomal 
sets, exhibit a high level of heterogeneity in the expression 
of cell membrane markers. This leads to phenotypic hetero‑
geneity at the level of the population providing an advantage 
for tumor survival (215). Neftel et al (216) found that gliomas 
rarely have identical proportions of single‑cell transcriptomic 
states and this proportion is skewed by genetic associations 
that are specific to each patient leading to abundant hetero‑
geneity. Therefore, it is recommended to carefully weigh the 
genetic, epigenetic, and molecular profile of each patient. 
Single‑cell RNA‑sequencing reveals the presence of various 
molecular and genetic cell subtypes within the same patient 
biopsy (215,217). These subtypes can change progressively 
and become more resistant to chemoradiotherapy (214). 
Neftel et al (216) describe multiple cellular states and deter‑
mine a correlation between the cellular states, plasticity and 

genetic signature of tumor cells. They define four cellular 
states of malignant GBM tumor cells: Neural‑progenitor‑like, 
oligodendrocyte‑progenitor‑like, astrocyte‑like and mesen‑
chymal‑like states. These states are characterized by the 
overexpression of CDK4, PDGPRα, epidermal growth factor 
(EGF) and NF1 alterations, respectively. Neftel et al (216) 
also showed the co‑existence of multiple cellular states and 
their transition potential within the same patient sample and 
evidenced the ability of a single cell to generate all cellular 
states. Amplification of the EGFR and PDGFRA genes that 
specifically encode for RTKs has been recognized in GBM 
tumors (218). Snuderl et al (219) established that the amplifi‑
cation of different RTKs was infrequently found in the same 
region of the tumor; yet, different RTKs (MET, EGFR and 
PDGFRA) were amplified in diverse subpopulations of the 
GBM tumoral cells.

Another advancing technology that expands the under‑
standing of the heterogeneity of GBM is the whole genome 
amplification (WGA) methods. WGA helps to identify 
different imbalances on the level of the chromosomes (218). 
In one study, Nobusawa et al (220) applied the WGA method 
on GBM samples (14 different primary samples) from two to 
five locations within each tumor. They recognized not only 
common modifications between all studied locations, but 
also changes that were specific to a certain region among the 
studied GBM tumor samples. A later study targeted 33 cancer 
genes with single molecular inversion probes and reported 
regional mutational heterogeneity among different patients 
with GBMs, as well as among the same patient (221).

Recently, Bhaduri et al (222) discovered the existence of 
‘cancer stem cell likes’ that are able to give rise to heteroge‑
neous cancer cell populations within the same tumor (discussed 
in details in the section below). In their study, Pang et al (223) 

Figure 2. Challenges for glioblastoma treatment. Intra‑tumoral and tumor microenvironment heterogeneity, the blood brain barrier and the glioblastoma stem 
cells are barriers against effective therapeutic strategies for glioblastoma patients. They also confer resistance to drugs and may obstruct proper drug deliver. 
Created with Biorender.com.
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discovered a path characterized by the progressive renovation 
of the GBM stem cells to reach an invasive state, known as 
the ‘stem‑to‑invasion path’. A gradual expression of the inva‑
sion signatures linked with GBM, failure in expressing the 
markers of GBM stem cells and different molecular cascades 
related to the invasion path were detected, along with different 
key factors such as transcription factors and long noncoding 
RNAs (223). Such findings help the understanding of the 
progression of glioma tumors and thus facilitate screening for 
efficient methods to therapeutically target GBM.

Efficient treatment options necessitate building a model the 
mimics a patient's GBM biology. Jacob et al (224) generated 
a new organoid model from patient‑derived primary cancer 
cells that conserved the original tumor's histological, genetic 
and molecular signatures in addition to its cellular hetero‑
geneity. In order to generate patient‑derived glioblastoma 
organoids (GBOs), Jacob et al (224) obtained tissues along 
the tumor margin. These tissues were refined from necrosis 
and surrounding brain tissues, dissected and cultured in 
optimized serum‑free GBO medium. When allowed to grow 
larger, GBO created gradients of hypoxia reflecting a hallmark 
of GBM. Immunohistological analyses reported markers for 
glia, immature neurons, neural progenitors and glioma stem 
cells, resembling the cellular composition of parental tumors. 
Also, single‑cell transcriptome analysis confirmed cell‑type 
heterogeneity and suggested that specific elements of the TME 
were preserved. Upon transplantation into adult rodent brains, 
GBOs showed reliable engraftment and aggressive infiltra‑
tion (224). This suggested that a biobank of patient‑derived 
GBO can be used as a prescreening drug model to investigate 
drug response and to evaluate its effectiveness on patient cells.

Glioblastoma stem cells (GSCs). ‘Cancer stem cell likes’, also 
referred to as ‘cancer stem cells’ (CSCs) are self‑autonomous 
units that play a significant role in tumor initiation and growth 
as well as therapeutic resistance. GSCs are derived from the 
malignant transformation of normal neural stem cells or the 
dedifferentiation of tumor cells after radiotherapy or chemo‑
therapy (225,226). GSCs exhibit prolonged proliferation 
and are able to metastasize and suppress anti‑inflammatory 
responses and confer resistance to therapeutic treatments (227). 
Thus, GSCs are important factors that limit clinical options 
and treatments of GBM (228,229). Numerous studies that are 
currently being undertaken to target GSC were made possible 
by improved understanding of the biology of GCS (24). GSCs 
represent a hot topic for improved GBM treatment.

Some studies aim to target and kill GSCs directly by 
targeting stem cell biomarkers. For instance, GSCs that are 
CD133 positive are important for sustaining and spreading 
GBM (230). Patients with GBM have a higher survival rate 
when CD133 positive stem cells are eliminated (231). CD133 
stem cells may be eliminated by BMI1 gene suppression, an 
oncogene involved in the control of stem cell self‑renewal 
and differentiation (232). Inducing apoptosis in GSCs can be 
also achieved by targeting the signaling pathways that play 
a role in their self‑renewal. For instance, the Wnt signaling 
pathway has been targeted since 2014 as it is involved in neural 
stem cell development (233). Targeting glycogen synthase 
kinase‑3β (GSK‑3β) and β‑catenin is suggested to inhibit the 
Wnt pathway in vitro (234). AR‑A01441, LiCl and SEN461 are 

examples of GSK‑β inhibitors that lead to increased apoptosis 
of GBMs cells (24). Notably, Celecoxib is a β‑catenin inhibitor 
that is already studied in clinical trials, however, no promising 
results have been reported yet (Table VI).

The Notch pathway is another targeted pathway for 
GBM treatment as it is involved in resistance to immuno‑
therapies (235). γ‑secretase is an enzyme that mediates Notch's 
cleavage and translocation to the nucleus. Therefore, γ‑secretase 
is suggested as a plausible target for Notch inhibition (236). In 
fact, several clinical trials are testing the effect of RO4929097, 
a γ‑secretase inhibitor, as a monotherapy for GBM treatment 
or in combination with other treatments. In addition to the 
aforementioned pathways, Hedgehog (SHH) pathway is also 
targeted to inhibit the renewal of GSCs, as it confers resistance 
to conventional GBM treatment. SHH pathway is targeted by 
inhibiting smoothened (SMO), its downstream effector (24). 
Vismodegib is one of the SMO inhibitors used in several clinical 
trials and it showed enhanced PFS when used before surgical 
resection (NCT00980343). Finally, the STAT3 pathway is also 
targeted to control neural stem development (237). WP1066 
and Napabucasin (BBI608) are STAT3 inhibitors currently in 
Phase I (NCT01904123) and II (NCT02315534) clinical trials, 
respectively (no results are reported yet).

Notably, GSCs can be targeted by targeting the mitochondria 
or via specific antibiotics. For instance, oxidative phosphory‑
lation (OXPHOS) is a major source of ATP in a number of 
types of cancer and plays a significant role in carcinogenesis 
and tumor growth (238). GSCs are OXPHOS‑dependent 
GBM cells that require mitochondrial translation (239). The 
bacterial antibiotic quinupristin/dalfopristin (Q/D) blocks 
mitochondrial translation, which not only inhibits the forma‑
tion of GSCs but also disrupts the cell cycle and increases 
apoptosis (239). These results suggest that Q/D may be taken 
into consideration for the treatment of GBM and that reducing 
mitochondrial translation may be examined to inhibit GSC 
growth. On the other hand, Salinomycin, is a K+ ionophore 
antibiotic that causes lysosomal iron sequestration, and leads 
to the production of ROS and lysosome membrane permeabili‑
zation (240). Salinomycin is shown to favorably kill GSCs and 
other types of CSCs (240,241). Although clinical trials exam‑
ining the possible efficiency of Salinomycin in the treatment 
of glioblastoma have yet to be published, Salinomycin and its 
derivatives are now being researched intensively as anti‑CSCs 
treatments for a variety of malignancies (241). Collectively, 
these results imply that focusing on GSCs is a promising 
approach for treating GBM more effectively.

Blood Brain Barrier (BBB). The BBB forms an interface 
between the brain and the systematic blood circulation. It 
consists of endothelial cells (ECs) that line blood vessels, 
are surrounded by astrocytic perivascular pseudopodium 
and pericytes, and interconnected by neuronal ending and 
microglia (242,243). Under normal physiological conditions, 
ECs, connected by tight junction proteins, create a compact 
barrier. In addition, efflux transporters, carried by BBB cells, 
regulate molecular and cellular transport across the BBB and 
protect the brain from toxins, xenobiotics, and pathogens (243). 
The development and progression of GBM impair the integrity 
and function of the BBB, resulting in a heterogenous resistant 
barrier known as Blood Brain Tumor Barrier (BBTB). In 
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Table VI. Therapeutic agents targeting glioblastoma stem cells in interventional clinical trialsa.

Therapeutic target Therapeutic agent Therapeutic strategy Cancer condition Phase Status (Refs.)

CD133 positive ICT‑121 DC Four intradermal Recurrent Phase I Completed
stem cells vaccine injections of the glioblastoma NCT02049489
  autologous ICT‑121
  dendritic cell vaccine     
 Activated T cells ATC against glioma Recurrent Phase I Not yet
  CSC antigens glioblastoma NCT05341947 recruiting
  administered
  intravenously at one
  timepoint    
Wnt pathway Celecoxib TMZ alone or in Glioblastoma Phase II Completed (353)
(b‑catenin)  combination with multiforme NCT00112502
  Thalidomide and/or
  Isotretinoin and/or
  Celecoxib after
  radiotherapy   
  Combination Recurrent Phase II Completed
  of Celecoxib,  anaplastic NCT00504660
  6‑Thioguanine, and glioma and
  Xeloda (Capecitabine), glioblastoma
  with TMZ or multiforme
  Lomustine (CCNU)    
  TMZ, Thalidomide, Patients with Phase II Completed (354)
  and Celecoxib after newly diagnosed NCT00047294
  radiotherapy  glioblastoma
   multiforme  
  Coordinated Recurrent Phase I/II Completed (355)
  undermining of glioblastoma NCT02770378
  survival paths by
  9 repurposed drugs
  (aprepitant, auranofin,
  captopril, celecoxib,
  disulfiram,
  itraconazole,
  minocycline, ritonavir
  and sertraline) 
  combined with
  metronomic TMZ   
  Thalidomide, Relapsed or Phase II Completed
  Celecoxib, refractory NCT00047281 
  and combination malignant
  chemotherapy glioma   
Notch pathway RO4929097 RO4929097 in Advanced solid Phase I Completed
(g‑secretase)  combination with tumors NCT01131234
  Cediranib Maleate  including
   glioblastoma   
  RO4929097, TMZ, Advanced solid Phase I Completed
  and radiotherapy tumors NCT01119599
   including
   glioblastoma   
Hedgehog (SHH) Vismodegib Monotherapy Recurrent Phase II Completed
pathway (SMO) (GDC‑0449)  glioblastoma NCT00980343
   multiforme   
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glioblastoma, the BBTB is characterized by the downregula‑
tion of tight junction proteins such as claudin and occludin 
and overexpression of efflux transporters (244‑247). These 
tight junction proteins increase the permeability of the BBTB, 
enhance paracellular transport and thus facilitate the penetra‑
tion of cells and small molecules to the interstitial space of the 
brain. Accumulation of such molecules might have neuro‑toxic 
effects. In addition, the heterogeneous permeability of the 
BBTB caused by the ‘leaking’ structure of the new blood 
vessels as against the compact structure of the local blood 
vessels leads to unequal distribution of the drug (248‑250). 
Several FDA‑approved drugs, including chemotherapy drugs, 
have affinity for efflux transporters, including P‑gp and 
BCRP (251‑256). Hence, overexpression of efflux transporters 
in glioblastoma restricts drug delivery to the brain.

In the line of BBB heterogeneity and overexpression of 
efflux transporters, cellular, chemical and physical approaches 
are being investigated to enhance drug delivery through the 

BBTB. One of these advanced approaches is the nanomate‑
rial system which is based on different types of nanocarriers 
including, polymer‑based, viral, drug‑conjugated, lipid‑based 
and inorganic nanoparticles (NPs) (257). NPs are usually 
loaded with drugs and are known to have a small size within 
a range between 1‑100 nm (258). Budama‑Kilinc et al (259) 
used a nanoparticle system based on a poly (ε‑caprolactone) to 
deliver a tripeptide, glycyl‑L‑histidyl‑L‑lysine (GHK), to the 
GBM cells. GHK is known as a natural growth modulating 
tripeptide in vitro; thus, it decreases the viability of GBM cells 
to ~65%. Another study was based on a nanobubble system 
that consists of NPs made up of iron and platinum. NPs were 
either surface‑functionalized with transferrin to target the 
glioma cells or loaded with doxorubicin (DOX) in a mouse 
model. These NPs resulted in reduced growth of the tumor by 
~70% (260). On the other hand, Ambruosi et al (261) used a 
rat glioma model to test poly (n‑butyl cyanoacrylate) (PBCA) 
as a potential therapy for GBM. PBCA NPs were loaded with 

Table VI. Continued.

Therapeutic target Therapeutic agent Therapeutic strategy Cancer condition Phase Status (Refs.)

  Umbrella protocol Glioblastoma Phase I/II Recruiting 
  of molecularly without NCT03158389
  matched targeted MGMT
  therapies (APG101, promoter
  Alectinib, Idasanutlin, methylation
  Atezolizumab,
  Vismodegib,
  Temsirolimus,
  Palbociclib) in
  combination with
  radiotherapy  
 Sonidegib Oral LDE225 in Advanced solid Phase I Completed
 (LDE225) combination with tumors including NCT01576666
  BKM120 recurrent
   glioblastoma
   multiforme   
  Molecularly‑Driven Children and Phase I Recruiting
  doublet therapy for young adults NCT03434262
  Gemcitabine, with recurrent
  Ribociclib, Sonidegib, brain tumors
  and Trametinib  
 Glasdegib In combination Newly diagnosed Phase I/II Active,
 (PF‑04449913) with TMZ glioblastoma NCT03466450 not recruiting 
STAT pathway Napabucasin In combination Recurrent or Phase I/II Completed
 (BBI608)  with TMZ progressed NCT02315534
   glioblastoma   
 WP1066 Monotherapy Malignant glioma Phase I Completed
   including recurrent NCT01904123
   glioblastoma  

aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are not 
included. ATC, activated T cells; CSC, cancer stem cells; DC, dendritic cells; MGMT, O6‑methylguanine DNA methyltransferase; STAT, signal 
transducer and activator of transcription; TMZ, Temozolomide.
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DOX chemotherapeutic drug and coated with polysorbate 80 
(surfactant). NPs successfully delivered the drug across the 
BBB and increased the median survival rate by 35% among 
tested rats living for the whole time of the study period.

On the molecular level, transferrin receptor (TfR) is a 
protein commonly targeted to enhance the delivery of thera‑
peutical drugs through the BBB (262). Poly (lactic‑co‑glycolic 
acid) NPs loaded with TMZ and coated with TfR‑monoclonal 
antibodies showed higher internalization in GBM cells 
compared with control cells (263). Kuang et al (264) examined 
the use of polymer‑based NPs coupled to a peptide having the 
ability to target TfR on both the BBB and GBM cells to trans‑
port doxorubicin and RNA. Results showed higher efficiency 
in in vitro tumor targeting and cellular uptake, with a decline 
in the tumor growth leading to improved median survival time.

Focused ultrasound therapy (FUS) is another method used 
to facilitate transport through the BBB. It is a non‑invasive 
and image‑guided method that enhances the efficacy of 
drug delivery to GBM cells (265). Wei et al (266) showed 
an enhancement in the local delivery of TMZ to tumor cells 
through the FUS‑mediated disruption of the BBB. Results 
reported an increase in the OS of rats with experimentally 
induced gliomas. Notably, MRI‑guided FUS (MRgFUS) 
was evaluated to attain enhanced tissue delivery of TMZ in 
mice (267), liposome‑encapsulated doxorubicin in rats (266) 
and cisplatin‑conjugated gold NPs in mice (268). This method 
is advantageous as it reduces the systematic toxic effects of the 
drugs used (low doses of therapeutic drugs can be used) (269) 
and leads to temporary opening of the BBB rather than 
long‑term opening associated with BBB disruptions (270). 
These studies show that the use of different NPs (nanomaterial 
system) or FUS has the potential to enhance the efficiency of 
therapeutical drug delivery in GBM management.

TME. The TME comprises fibroblasts, endothelial cells, 
immune cells, ECM and soluble factors surrounding the 
tumor. It provides biophysical and biochemical support for the 
tumor and contributes significantly to tumor initiation, growth, 
progression, and resistance to therapy (271).

GBM is classified as a hypoxic solid tumor where hypoxia 
is considered one of the non‑cellular TME components. The 
hypoxic microenvironment is a major inducer of angiogenesis; 
a process in which ECs branch from preexisting small vessels 
to form sprouts of capillaries. Angiogenesis thus promotes 
tumor growth by supplying cancer cells with O2 and nutrients 
and facilitates their metastasis (272,273). Moreover, hypoxia 
induces the activation of a number of cellular processes that 
promote the migration, invasion and radio‑chemoresistance 
of GBM cells (274‑280). This is due to the overexpression of 
VEGF/HIF‑1α protein. Therefore, and in order to control the 
hypoxic environment, researchers developed Bevacizumab, 
an FDA approved anti‑VEGF antibody, for GBM treatment. 
Bevacizumab showed encouraging results as monotherapy or 
when combined with traditional treatment, as reviewed in the 
study by Cruz Da Silva et al (24).

GBM secretes a wide range of chemo‑attractants and 
cytokines that recruit immune cells to the TME. For instance, 
GBM stem cells recruit macrophages and promote their 
transition from the antitumor (M1) to the pro‑tumor (M2) 
phenotype (281). Tumor associated macrophages (TAM) are 

the most abundant cells inflating tumor lesion and accounting 
for ≤40% of the tumor mass. Indeed, the disrupted structure 
of BBTB facilitates the infiltration of TAM. In addition, 
GBM cells inhibit the proliferation of cytotoxic T cells and 
activate regulatory T cells (282). Occurrence of immune 
cells in the TME leads to the formation of an extensively 
immune‑suppressive microenvironment and enhances GBM 
cell migration and invasion.

At present, researchers are investigating new thera‑
peutic approaches that aim to reactivate the immune system 
against GBM and restore the immune surveillance in GBM. 
These approaches include reversing the polarization of M2 
macrophages to M1, targeting immune checkpoints using 
checkpoint inhibitors to rebut T cell responses, and imple‑
menting cytokine therapy. Yang et al (283), discovered that 
the dual‑targeting of IL‑6, which stimulates different macro‑
phages activation in GBM, and CD40 may help in reversing 
tumor immunosuppression mediated by macrophages thus 
informing the immunotherapy based on T‑cells against GBM. 
In their study, it was shown that CD40 stimulation and IL‑6 
inhibition reverse tumor immunosuppression mediated by 
macrophages and increase the survival rates of the animals 
in GBM models (283). Similar findings supported the use 
of macrophages‑based therapies as effective therapeutic 
approaches when targeting GBM.

Cytokine therapy represents a hot topic for immunothera‑
peutic approaches since cytokines are molecular messengers of 
innate and adaptive immunity (284). This approach promotes 
human natural killer (NK) and T cell activity, survival and 
proliferation thus coordinating immune responses against 
malignancies (285). TGF‑β, IFN‑α, IFN‑γ and IL‑12 and 
other cytokines have anti‑tumor effect in GBM, thus reducing 
tumor size and inhibiting carcinogenesis at early stages (286). 
Tumoral injection of Ad‑RTS‑hIL‑12 in combination with 
veledimex (VDX, an hIL‑12 activator) and an FDA approved 
antibody cemiplimab was tolerated well and exhibited 
increased circulating cytotoxic T cells in patients with recur‑
rent or progressive GBM (Phase II NCT04006119). IFN‑β 
immunotherapy in combination with TMZ was also evaluated 
in clinical trials (287). Han et al (288), used cytokine‑induced 
killer therapy with TMZ on patients with GBMs and reported 
higher PFS rates in treated vs. control untreated group. The 
therapeutic efficacy of various cytokines in the treatment of 
gliomas is still being investigated. The cytokines' safety and 
tolerance are being defined, and some are thought to be a 
promising supplement to conventional treatments (289).

Glioma cells frequently employ a variety of strategies to 
avoid immune surveillance. Therefore, several therapeutic 
approaches have been developed to activate immune responses 
in the TME. Cytotoxic T lymphocyte‑associated protein 4 
(CTLA‑4), programmed cell death protein 1 (PD‑1), and PD 
ligand 1 (PD‑L1) are immune checkpoint proteins targeted 
for monoclonal antibody inhibition (290,291). Monoclonal 
antibodies act by freeing T lymphocytes from their negative 
regulation thus suppressing cancer evasion of the immune 
system (292,293). Several immune checkpoint inhibitor 
antibodies have been approved by the FDA for the treat‑
ment of several types of cancer (294). Neoadjuvant therapy 
with pembrolizumab, an anti‑PD‑1 monoclonal antibody, 
resulted in improved OS and PFS in patients with recurrent 
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surgically respectable GBM (Phase II NCT02337686) (43). 
Wang et al (295) demonstrated that genetically engineered 
multifunctional NK cells (CD73.mCARpNKs) can lead to 
efficient anti‑GBM activity mainly by bypassing the heteroge‑
neity and the immunosuppressive structures of GBM tumors. 
Immune responses in the TME can be also stimulated by 
adoptive cell therapy (ACT). This method involves isolating 
autologous T lymphocytes with anti‑tumor activity from 
cancer patients, expanding them ex vivo, and transferring 
amplified engineered T cells to the patients (296,297). Among 
the different ACT methods developed, chimeric antigen 
receptor (CAR)‑T cell gene therapy has attracted the most 
attention for killing cancer cells. CAR‑modified T cells may 
identify different types of antigens regardless of how they are 
presented on MHC molecules (298). To date, there are currently 
24 clinical trials examining the efficacy of CAR‑T cell treat‑
ment for GBM according to Clinicaltrials.gov (accessed on 10 
August 2022; Table VII). Several CARs have been generated 
to specifically target GBM such as EGFRvIII, HER2, IL13R2, 
and CD70 (290). Collectively, studies using CAR‑T cell immu‑
notherapy exhibit encouraging results. However, obstacles 
such as tumor heterogeneity, the heterogenous expression of 
antigens, and the role of T cells at the tumor's sites make it 
challenging to efficiently eradicate the tumor (290).

7. Discussion

Glioblastoma is characterized with high cell proliferation 
and neovascularization leading to tumor infiltration reaching 
crucial structures in the brain. This increases the possibility 
of tumor recurrence, scoring low survival rates (299,300). 
Therefore, more effective treatment procedures are required 
to extend the lives of patients. Conventional treatments such as 
radiotherapy and chemotherapy are regarded as a two‑edged 
sword. This is because these treatments are frequently 
accompanied with normal tissue damage or genetic changes, 
nonspecific drug distribution and multidrug resistance. 
However, chemoradiotherapy promises improved survival 
and quality of life that may outweigh their disadvantages; 
thus, these modalities remain the primary cancer weapons. 
Substantial research has been done, and continues to be done, 
to develop novel therapeutic approaches that are less toxic for 
normal tissues and endow increased survival and improved 
quality of the lives of patients. Researchers have discovered 
genetic and subsequent molecular changes influencing critical 
pathways that cause aggressive behavior of tumors (24,214). 
Therefore, targeting these altered molecules and pathways is 
seen as a promising new approach to GBM treatment.

Over the previous few decades, biomarker‑driven methods, 
such as small molecule inhibitors and monoclonal antibodies, 
have been developed. These methods aim to target key altered 
players that are directly correlated with tumor progression and 
invasion. EGFRs constitute one of the mostly targeted mole‑
cules in clinical trials to treat patients with GBMs (Table I). 
However, targeted therapy has shown little to no promising 
results due the intra‑tumoral heterogeneity of GBM and drug 
resistance (216,218). Tumor heterogeneity could be a plausible 
explanation for GBM resistance to EGFR‑targeted treatments. 
Moreover, resistance to EGFR therapy can also be caused by 
upregulation of redundant RTKs and downregulation of EGFR 

downstream molecules (218). Consequently, co‑targeting of 
EGFR and other RTKs such as c‑MET could offer a solution 
as seen in vivo (301). Multi‑targeted therapeutic approaches 
offer an advantage where drugs can target numerous impor‑
tant nodes for GBM growth and progression, compensating for 
the inefficiency and quick acquisition of resistance seen with 
monotherapies (302). Multi‑targeted therapeutic approaches 
also include the administration of multi‑kinase inhibi‑
tors (303,304). Moreover, more complicated pathways have 
been identified and targeted in vitro. In‑depth‑investigation of 
these pathways helps to identify novel drugs.

Glioblastomas are intrinsically immunologically ‘cold’ 
tumors due to presence of few T cells but predominant 
pro‑tumor immune cells in the TME, constituting a common 
reason for drug resistance (305). Immunotherapies thus aim 
to use a patient's immune system to re‑direct immune cells 
against a tumor. Researchers have established several other 
immunotherapeutic strategies to target patients with GBMs 
with immunostimulatory conditions. These include immune 
check‑point inhibition, autologous stimulated lymphocytes, 
cytokine therapy and dendritic cell therapy (306). Except for 
certain cases, immunotherapy in glioblastoma clinical trials has 
been disappointing overall. CAR‑T cell therapy, for instance, 
faces a significant hurdle since glioblastoma tumors can 
rapidly adapt via antigen escape (307). CAR‑NK cell therapy, 
on the other hand, offers an advantage as it can be administered 
to an HLA‑mismatched patient, and Phase I clinical trial is 
showing promising preliminary results (NCT03383978) (308). 
Yet, NK cell expansion and manufacturing are still time and 
money consuming (309). Akin to targeted therapy, tumor 
heterogeneity is also a limiting factor for immunotherapy. 
Moreover, combing immunotherapy with chemotherapy may 
also lead to drug resistance (310). Anti‑inflammatory cortico‑
steroids, for example, may counteract the therapeutic effects 
of immunotherapy (311). Additionally, glioblastoma cells 
can adapt to immune checkpoint inhibition by increasing the 
expression of alternative checkpoints (312). The immunosup‑
pressive TME is another limitation for immunotherapy, thus, 
combinatorial immunotherapy approaches may overcome 
this issue (313,314). In fact, preclinical research on combina‑
tion immunotherapy yielded promising outcomes [reviewed 
in (314)]. The most successful approaches are those that influ‑
ence the cancer‑immunity cycle at different times and/or sites, 
leading to the activation of immune response and the inhibi‑
tion of immunosuppressive elements (314).

Cancer vaccines are one of the very promising immuno‑
therapies and are being thoroughly researched as a method to 
reduce tumor development and eliminate tumor cells in cancer 
patients. Peptide‑based, dendritic cell (DC)‑based, and person‑
alized vaccines are being explored as potential vaccine therapies 
in GBM (305,315) (Table VII). Cancer vaccine design depends 
on selecting an ideal antigen specifically expressed and present 
on all cancer cells, highly immunogenic and essential for cancer 
cell survival (316). These antigens are therefore processed by 
DCs aiding in recruiting and activating CD8+ and CD4+ T 
cells that will promote tumor eradication (317). DCVax®‑L and 
ICT‑107 are DC‑based vaccines tested in clinical trials for safety, 
tolerance and efficacy in patients with GBMs (NCT00045968 
and NCT01280552 respectively). Personalized vaccination is 
now made possible using multi‑ epitope‑based patient‑specific 
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Table VII. CAR‑T cells and cancer vaccines applied in interventional clinical trials for the treatment of glioblastomaa.

A, CAR‑T cells
    
Therapeutic agent Specificity Therapeutic strategy Cancer condition Phase Status (Refs.)

CAR‑T Cell EGFRvIII In combination with Malignant gliomas Phase I/II Completed (356)
Receptor  Aldesleukin,  expressing NCT01454596
Immunotherapy   Fludarabine or EGFRvIII
  Cyclophosphamide    
CAR‑T‑EGFR‑ EGFR CART‑EGFR‑IL13 Recurrent Phase I Not yet 
IL13 Ra2 cells  epitope 806 Ra2 cells following glioblastoma NCT05168423 recruiting
 and IL13Ra2 lymphodepleting 
  chemotherapy
CAR‑T‑EGFRvIII EGFRvIII In combination with With newly Phase I Completed
cells   pembrolizumab diagnosed, NCT03726515
  (PD‑1 Inhibitor) MGMT‑unmethylated
   glioblastoma   
CD147‑CAR‑T CD147 Monotherapy Recurrent Early Phase I Unknown
Cells   glioblastoma NCT04045847 
   CD147 Positive   
B7‑H3CAR‑T IFN‑1 Monotherapy Recurrent Phase I Completed
   glioblastoma NCT05474378
   multiforme   
NK‑92/5.28.z NK‑cells With the anti‑PD‑1 Recurrent Phase I Recruiting (308)
Cells  antibody HER2‑positive NCT03383978
  Ezabenlimab glioblastoma  

B, Cancer vaccine
     
Therapeutic agent Specificity Therapeutic strategy Cancer condition Phase Status (Refs.)

DCVax®‑L DC based Monotherapy Newly diagnosed Phase III Active, (357)
 vaccines   glioblastoma NCT00045968 not recruiting
   multiforme   
ICT‑107 DC based After surgery and Glioblastoma Phase II Completed
 vaccines  chemotherapy multiforme NCT01280552  
ACTIVATe EGFRvIII In combination with Newly diagnosed Phase II Completed (28)
(PEP‑3 vaccine)   sargramostim and  glioblastoma NCT00643097
  TMZ multiforme   
Rindopepimut EGFRvIII With GM‑CSF, Newly diagnosed Phase III Completed (358)
(CDX‑110, ACT  TMZ and KLH glioblastoma NCT01480479
IV vaccine)      
  With GM‑CSF, Recurrent  Phase II Completed (359)
  Bevacizumab and EGFRvIII‑ NCT01498328
  KLH positive
   glioblastoma   
Personalized Neo Personalized After radiotherapy, Newly diagnosed Phase I Recruiting (318)
Antigen Vaccine neoantigens with Pembrolizumab glioblastoma NCT02287428
   multiforme    
GAPVAC Personalized With Newly diagnosed Phase I Completed (319)
(APVAC1 and mutated and immunomodulators glioblastoma NCT02149225
APVAC2) unmutated concurrent to
 tumor antigens TMZ    



ONCOLOGY LETTERS  25:  46,  2023 23

vaccine to target neoantigens only (Phase I NCT02287428) (318) 
or both neoantigens and unmutated tumor‑specific anti‑
gens (Phase I NCT02149225) (319). Corresponding results 
reported neoantigen‑specific CD4+ and CD8+ T cell responses 
migrating into the tumor with increased number of infiltrating 
T cells (318,319). AV‑GBM‑1 is another personalized cancer 
vaccine based on autologous dendritic cells full of autologous 
tumor neoantigens. Phase II clinical study (NCT03400917) 
reported an enhanced PFS (320) demonstrating a promising 
positive effect of vaccination in patients with GBM.

Most of the current therapeutic strategies need to overcome 
the obstacles of drug delivery due to BBB, tumor and TME 
heterogeneity and abundant GSC niches. Burkhardt et al (321) 
propose promising results for an intra‑arterial brain administra‑
tion of Bevacizumab after temporary destruction of the BBB 
by mannitol. Followed by intravenous administration, their 
technique is able to overcome the poor intracerebral availability 
of the drug and enhanced PFS in patients with recurrent GBMs. 
Several studies suggest that molecular subgroups exist within 
histologically similar GBM tumors (322,323). Research into the 
dynamics of various glioblastoma subtypes would help under‑
stand the survival features of the TME. This highlights that 
future treatment options should no longer be based exclusively 
on morphological assessments, but must now take molecular 
and cellular heterogeneity into account. Furthermore, the plas‑
ticity of GBM cells caused by the bidirectional communication 
between GSCs and their differentiated counterparts complicates 
heterogeneity (227). These two populations respond differently 
to radio‑, chemo‑ and targeted therapies. Thus, targeting both 
components should be well considered during the course of 
treatment.

Due to genetic heterogeneity and tumor growth, single‑target 
therapy generates recurrence and consequent resistance to initial 
treatment. Therefore, therapeutic strategies are implementing 
targeted therapy along with immunotherapy. Notably, immunos‑
timulatory and immunosuppressive effects are also mediated by 
targeted therapy (324). Inhibition of several molecular targets, 
such as anti‑angiogenic agents, has already been proved to 
improve immunotherapy clinical results in a variety of types 
of cancer (325). It is worth noting here that, when it comes to 
combinatorial therapeutic approaches, greater laboratory and 
clinical efforts are required to validate their efficiency.

The increased understanding of GBM biology outlined above 
was made possible in part by the growth of murine preclinical 
GBM models. These models were key for translatable research 
from preclinical to clinical studies. Glioblastoma cell‑line xeno‑
grafts, patient‑derived xenografts, and genetically engineered 
mouse models are currently available. However, these models 
fail to recapitulate tumoral and TME heterogeneity of GBM. 
Thus, the effects of advanced therapies in animal models rarely 
replicate clinical data, which is a persistent issue in glioblas‑
toma research. The success of such therapies may rely on the 
development of reliable GBM models. Several reproducible 
glioma models in pigs are evolving as preclinical large‑animal 
models (326‑329). Therefore, xenograft and genetically engi‑
neered porcine models are suggested as reliable prospective 
models to allow for a transitional step between murine models 
and human clinical trials (330).

Effective drug delivery systems that can cross the BBB are 
also attracting attention. This includes non‑viral vectors such as 
nanocarriers and viral vectors such as oncolytic viruses. Due 
to advanced research and promising outcomes, chemoradio‑
therapy nanomedicine is expected to be progressively applied 
in the clinic in the coming years (331). Targeted gene therapy 
employing nano‑based carriers is being explored and its appli‑
cability for a number of forms of cancer are currently under 
Phase I‑III development (332). It is thus expected that combing 
monoclonal antibodies and nano‑carriers could also improve 
the efficiency of immunotherapy. On the other hand, oncolytic 
viruses are vectors of targeted gene therapy that can cross 
the BBB and are considered a promising method for treating 
GBM (333‑336). While drug and gene delivery via oncolytic 
viruses are currently in clinical trials, more research and large 
randomized controlled Phase II/III trials are needed to assess 
their beneficial clinical outcome.

8. Conclusion

An efficient GBM treatment starts by understanding the molec‑
ular alterations in cells derived from the patient and that are 
driving the malignant phenotype. This is followed by studying 
the effect of a selected treatment in vitro using the ‘ideal’ model 
that can conserve the molecular signature of patient cells. 
Prior to incorporating the patient in any clinical trial, it is also 

Table VII. Continued.

B, Cancer vaccine
    
Therapeutic agent Specificity Therapeutic strategy Cancer condition Phase Status (Refs.)

AV‑GBM‑1  Following primary Newly diagnosed Phase II Active, 
  surgery plus glioblastoma NCT03400917 not recruiting
  concurrent
  chemoradiation   

aData acquired from the U.S. National library of medicine (http://clinicaltrials.gov, accessed on 10 August 2022). Terminated studies are 
not included. CAR‑T, chimeric antigen receptor‑T cell; EGFR, epidermal growth factor receptor; GM‑CSF, granulocyte‑macrophage 
colony‑stimulating factor; IL, interleukin; INF‑1, type I interferon; KLH, Keyhole Limpet Hemocyanin; MGMT, O6‑methylguanine DNA 
methyltransferase; NK, natural killer cells; PD‑1, programmed cell death protein 1; TMZ, Temozolomide.
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recommended that researchers or physicians analyze the struc‑
ture of the BBB to evaluate the ability of a selected drug to pass 
across the BBB. Finally, the use of a combined therapy strategy 
that targets tumor cells and cells of the surrounding microen‑
vironment may increase the efficiency of the GBM treatment.
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