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Abstract. Postoperative adjuvant radiotherapy plays an 
important role in the treatment of patients with breast cancer. 
With the continuous development of radiotherapeutic tech‑
nologies, the requirements for radiotherapeutic accuracy are 
increasingly high. The accuracy of target volume and organ at 
risk delineation significantly affects the effect of radiotherapy. 
Automatic delineation software has been continuously devel‑
oped for the automatic delineation of target areas and organs 
at risk. Automatic segmentation based on an atlas and deep 
learning is a hot topic in current clinical research. Automatic 
delineation can not only reduce the workload and delinea‑
tion times, but also establish a uniform delineation standard 
and reduce inter‑observer and intra‑observer differences. In 
patients with breast cancer, especially in patients who undergo 
left breast radiotherapy, the protection of the heart is particu‑
larly important. Treating the whole heart as an organ at risk 
cannot meet the clinical needs, and it is necessary to limit 
the dose to specific cardiac substructures. The present review 
discusses the importance of automatic delineation of target 
volume and cardiac substructure in radiotherapy for patients 
with breast cancer.
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1. Introduction

The incidence of breast cancer in 2020 ranked first worldwide, 
and the disease was the main cause of death among women (1). 
Radiotherapy is an important treatment for breast cancer. 
Adjuvant radiotherapy after breast cancer surgery is beneficial 
to improve the local tumor control rate, reduce the recurrence 
and metastasis of breast tissue and surrounding lymph node 
tumors, and improve the survival rate of patients. The local 
control rate, distant metastasis rate and overall survival rate 
of radiotherapy after breast‑conserving surgery for breast 
cancer can achieve comparable or even better results than 
those of traditional radical mastectomy (2‑4). The core of a 
radiotherapy plan is the delineation of the therapeutic target 
area, so that the radiation can maximize the destruction of 
tumor tissue and minimize the irradiation of normal tissues 
and organs. The delineation accuracy of tumor contours and 
surrounding normal tissues and organs, namely the organ at 
risk (OAR), directly affects the therapeutic effect. The irradia‑
tion of the contralateral breast, the heart and lungs, and other 
OARs, will reduce the quality of life of patients, and even 
the heart‑lung related radiotherapy complications caused by 
radiation will offset the gain brought by local radiotherapy for 
breast cancer (5,6). Manual delineation of target volume and 
OARs is tedious and time‑consuming work, and the quality of 
contour delineation highly depends on the professional knowl‑
edge and experience of the clinicians, while the complexity of 
regional lymph node delineation is even more obvious (7‑9). 
Automatic delineation techniques can avoid these deficien‑
cies and provide more standardized identification of cardiac 
substructures.

2. Automatic delineation technology of target volume in 
radiotherapy for breast cancer

Atlas‑based auto‑segmentation (ABAS). The gold standard 
for target volume delineation is still manual delineation by 
radiologists, but there are differences in delineation results 
from individual physicians at different times and among 
different physicians, leading to differences in radiotherapy 
plans, which may affect the cure rate and treatment toxicity 
of patients (10). Studies have shown that the structural overlap 
between the target volume and OARs delineated by different 
treatment institutions and radiotherapy physicians is <10%, 
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and the standard deviation of the volume change is as high 
as 60% (11). Automatic delineation can establish uniform 
standards, increase the consistency of contours and avoid 
major discrepancies. Automatic delineation of target volume 
and OARs in radiotherapy is via classical automatic image 
segmentation, which uses deformable image registration to 
propagate the segmentation structures from the atlas image 
of the patient image dataset. According to the number of 
the atlas, it can be divided into a single atlas and multi‑atlas 
automatic segmentation (12). In the early studies of automatic 
delineation of breast cancer radiotherapy, the automatic 
segmentation method based on a single atlas could maintain 
good consistency when transforming the contour structure 
of the atlas to a new image, achieving 94% volume overlap 
and reducing the median clinical target volume (CTV) 
delineation time by 30%. However, when the body mass 
index (BMI) of the patient was quite different from that of 
the template patient, the effect of automatic segmentation 
was poor (P=0.02) (13). Fontanilla et al (14) studied the auto‑
matic delineation of the chest wall, heart and regional lymph 
nodes by single atlas automatic segmentation after a radical 
mastectomy. The results showed that the delineation effect of 
the chest wall and heart was good, with mean volume overlap 
rates of 91 and 93%, respectively; however, the delineation of 
the lymph nodes was poor. The mean volume overlap rate of 
supraclavicular nodes was 66% and that of internal mammary 
nodes was only 32%.

Due to the differences between individual patients, the 
diversity of organs and the uncertainty of tumor morphology, 
the accuracy of image registration based on a single atlas is 
low. This problem can be solved by establishing a larger and 
more diversified patient atlas dataset. Bell et al (15) consid‑
ered the differences between observers when applying the 
automatic segmentation of a multi‑atlas. A total of 8 observers 
delineated the CTV and then verified the whole breast radio‑
therapy cohort containing 28 datasets. The results showed that 
using this method for automatic delineation, the dice similarity 
coefficient (DSC) was >0.7, the mean absolute surface distance 
(MASD) was <9.3 mm and the mean delineation time was 
<4 min. Eldesoky et al (16) evaluated the clinical effectiveness 
of CTV and OAR classification ABAS in local regional radio‑
therapy for early breast cancer, as well as the repeatability of 
another institutional atlas in the context of multi‑institutional 
studies. Target volumes were delineated according to 
European Society for Radiation and Oncology (ESTRO) 
delineation guidelines (17), with 50 patients from local institu‑
tions for the internal validation cohort and 40 patients from 
other institutions for the external validation cohort. Review 
and correction were then performed by a researcher to form 
a new corrected contour. Compared with manual delinea‑
tion, automatic delineation reduced the time taken by 93%, 
and automatic delineation plus correction reduced the time 
taken by 32% (P<0.01). The speed of automatic delineation 
of internal validation was faster than that of external valida‑
tion (P<0.05). Automatic delineation had high consistency in 
the heart, lungs and breasts, general consistency in the chest 
wall and poor consistency in the lymph nodes, which was the 
same as the previous study results of Fontanilla et al (14) and 
Ciardo et al (18). In terms of delineation time, ABAS reduced 
the manual delineation time before and after correction by 93 

and 32%, respectively. However, some structures still needed to 
be corrected manually before clinical application. This study 
demonstrated the repeatability, consistency and versatility of 
ABAS for multicenter applications (16).

Currently, the position used for radiation therapy for patients 
with breast cancer is generally the supine position due to the 
comfort and repeatability in this position. However, when 
patients with larger breast volumes are treated in the supine posi‑
tion, breast tissue stacking occurs, resulting in inhomogeneity of 
dose to the target area and increased dose to the endangered 
organs, and the use of prone position radiotherapy can effec‑
tively solve such problems (19). Dipasquale et al (20) studied 
the CTV structure and its dose volume effect in patients in the 
prone position during auto‑segmentation, and was the first study 
to apply ABAS to patients treated with breast cancer radio‑
therapy in the prone position. Compared with previous studies 
using the supine position, ABAS in the prone position was more 
accurate and reduced inter‑observer and intra‑observer vari‑
ability. The mean DSC was 0.91, which reduced the contouring 
time by 40% compared with manual contouring. Patients with a 
DSC of >0.97 and high breast draping had better target volume 
dosimetry results. Another study (21) also demonstrated the 
efficacy of ABAS in patients receiving radiotherapy in the 
prone position after breast‑conserving surgery for breast cancer. 
In this study, OARs and CTV were automatically delineated, 
and the DSC of the heart, lungs and breasts was >0.91, which 
improved the efficiency without sacrificing the contour quality 
of the patients with early breast cancer, and saved 56.92% of 
time on average. This study also confirmed the inter‑observer 
differences in the delineation of CTV and OARs (21). When 
automatic delineation based on a single atlas is performed in 
patients receiving radiotherapy in a prone position, the samples 
are stratified according to BMI and breast cup size, which can 
not only improve the automatic segmentation atlas, but can also 
improve the accuracy of CTV and OAR automatic segmenta‑
tion. Among the improvements, the improvement effect to the 
heart was particularly obvious, DSC >0.9, and the automatic 
drawing time was reduced to 30‑40% compared with the 
manual delineation time (22). ABAS can also provide reliable 
and high‑quality automatic contour delineation of CTV and 
OARs for patients with breast cancer in the lateral position 
during radiotherapy (23).

Based on the aforementioned studies, it was found that 
ABAS was more accurate in segmentation of large‑volume, 
well‑defined structures such as the heart, lungs and breasts, 
with general consistency of the automatic delineation of 
the chest wall. The automatic delineation of the supracla‑
vicular, internal mammary and axillary lymph nodes had 
the worst effect, as the lymph nodes are small in size, have 
unclear boundaries and change their position with the posi‑
tion of the arm (24). Automatic delineation results should be 
reviewed and corrected for preclinical use, especially if the 
target volume contains regional lymph nodes. The ABAS 
has been widely used in clinical practice, which solves the 
problems of the accuracy and reliability of manual delinea‑
tion, reduces the delineation time and improves the efficiency 
of delineation. However, the selection of atlas stratification 
factors will also affect the segmentation results of ABAS, 
and more experiments are needed to determine the optimal 
stratification factors.
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Automatic delineation based on deep learning. Atlas‑based 
auto‑segmentation depends on the accuracy of the image 
registration algorithm; it does not perform well in the delinea‑
tion of structures with large anatomical changes and unclear 
edges, such as the tumor target volume and the lymph nodes. 
Moreover, the unpredictability of the tumor shape makes it 
difficult to ensure that all cases are included in the template 
library. The success rate of irregular structure segmentation 
based on the model of normal anatomical structure is insuf‑
ficient (25). With the continuous development of computer 
technology, deep learning of artificial intelligence has been 
applied to medical image processing, and breakthroughs 
have been made. Automatic segmentation technology based 
on deep learning has great potential in the daily practice of 
radiotherapy, as it can not only speed up the contour drawing 
process, improve the accuracy and consistency of the contour, 
and promote compliance with the delineation guidelines, 
but it can also promote the application of online adaptive 
radiotherapy (26). Compared with traditional methods using 
manual features, deep learning‑based methods can adaptively 
explore representative features in medical images and also 
have transfer learning ability, that is, features learned from 
one dataset can be effectively applied to other datasets (27,28). 
At present, deep learning algorithms commonly used in breast 
cancer radiotherapy include convolutional neural networks 
(CNN) (28), fully convolutional networks (FCN) (29,30), 
U‑Net (31) and generative adversarial network (GAN) (25), 
among others.

CNN is a neural network composed of a convolutional layer, 
pooling layer and fully connected layer (28). The fully convo‑
lutional network (FCN) replaces the fully connected layer with 
the convolutional layer based on CNN. The ability of CNN 
to extract features can be improved by stacking layers (i.e., 
model depth). With the continuous increase in model depth, 
the features of input data can be extracted and the network can 
be trained repeatedly with input data to learn more complex 
functions, whose performance greatly benefits from the model 
depth (29,30). However, in the process of training a very deep 
convolutional network, gradient disappearance will occur, 
which makes it difficult to optimize the deep convolutional 
network, and feature disappearance will lead to the perfor‑
mance degradation of segmentation. However, the residual 
network (ResNet) solves this problem by adding the ‘shortcut 
connection’ with the output of the convolutional layer (31). 
Shortcut connection refers to the direct forwarding of the 
feature map computed at each encoding stage to each decoding 
stage, allowing the decoder at each stage to learn the features 
that will be lost when the encoder is pooled (32). Men et al (33) 
deployed an expanded convolution module network with four 
paths in front of the ResNet‑101 network and developed a 
very deep dilated residual network (DD‑ResNet). DD‑ResNet 
is an end‑to‑end model, which can realize rapid training and 
testing, automatically delineate two‑dimensional (2D) breast 
CTV of patients with breast cancer undergoing radiotherapy 
after breast‑conserving surgery, and is compared with the 
performance of deep dilated convolution neural network 
(DDCNN) and deep deconvolution neural network (DDNN). 
DDCNN and DDNN were also developed by Men et al (34) 
for the automatic delineation of CTV and OARs for rectal and 
nasopharyngeal carcinoma. DDCNN adopted a multi‑scale 

convolution architecture to extract multi‑scale context features 
in early layers, expanded the receptive field of expanded convo‑
lution at the end of the network and then replaced the fully 
connected layer with the fully convolutional layer to achieve 
pixel‑by‑pixel segmentation (34). DDNN performed decon‑
volution based on VGG‑16, reconstructed high‑resolution 
feature maps from low resolution and then replaced the fully 
connected layer with the fully convolutional layer to realize 
pixel segmentation in CT images through self‑adaptation (35). 
Among the three different models, the segmentation effect 
of left breast CTV was similar to that of right breast CTV, 
and the overall segmentation effect of DD‑ResNet was better 
than that of DDCNN and DDNN. The mean DSC of CTV on 
the left and right sides of DD‑ResNet, DDCNN and DDNN 
was 0.91/0.91, 0.85/0.85 and 0.87/0.88, respectively. The 
mean Hausdorff distance (HD) was 10.7/10.5, 15.6/15.1 and 
14.1/13.5 mm, respectively. The DSC of the DD‑ResNet model 
was comparable to or even better than that of manual delinea‑
tion by radiologists. Manual delineation of each patient took 
10‑20 min, but the automatic delineation of the DD‑ResNet, 
DDNN and DDCNN took only 15, 21 and 4 sec, respectively. 
Although the training time of the DD‑ResNet model was 
longer than that of the other two models, the overall contouring 
effect was good and the consistency with the contours drawn 
manually by experts was the best.

U‑Net is a neural network architecture mainly used for 
image segmentation. The basic structure consists of two paths: 
A contraction (contracting) path, also known as the encoder 
or the analysis path, to extract important features of the image 
and reduce the resolution of the image, and the extension path, 
also known as the decoder or synthesis path, which gradually 
restores the image details, locates the size of the lesion, and 
restores the image to the size of the input image. The overall 
network structure forms a ‘U’ shape, and shortcut connec‑
tions are adopted between corresponding layers to allow the 
network to retrieve the spatial information lost due to pooling 
operations (32,36,37).

At present, a number of image segmentation networks 
are being further studied based on U‑Net. Liu et al (38) 
constructed a new CNN network based on 2D U‑Net known as 
the U‑ResNet model; a deep network was added in U‑Net and 
then ResNet was used as the decoder, and the network archi‑
tecture was designed as 2.5D architecture. Compared with 
DD‑ResNet, U‑ResNet had a shortcut connection between the 
encoder and decoder, which could reduce the loss of informa‑
tion. The CT images of 160 patients after breast‑conserving 
surgery were used for training, verification and testing, and 
compared with the U‑Net model. In the automatic delineation 
of CTV, the mean DSC of U‑ResNet and U‑Net was 0.94 and 
0.93 (P<0.001), respectively, while the mean 95th percentile HD 
(95% HD) was 4.31 and 4.88 mm (P<0.03), respectively. In all 
OARs, the accuracy of U‑ResNet was better than that of U‑Net, 
and the difference was statistically significant. Senior oncolo‑
gists evaluated automatically delineated CTV and OARs, and 
found that most of the contours were directly applicable to the 
clinic and the scores were not statistically different from the 
manually delineated contours, indicating that the U‑ResNet 
model proposed in this study showed good consistency with 
manually delineated contours. However, the consistency 
between the two oncologists was poor, which verified the 
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large differences between the observers. The U‑ResNet model 
automatically delineated CTV and OARs in 10.03 sec, while 
manual delineation took 20‑30 min, showing that the model 
greatly reduced the delineation time (38). Another study 
combined U‑Net with ResNet and added multi‑resolution level 
processing to construct a fully convolutional neural network 
known as BibNet, which could not only adapt the size of the 
input image, but also process features with different resolu‑
tion sizes (39). The DSC of BibNet multi‑organ delineation of 
the left and right breast was >0.92, the DSC of the heart was 
as high as 0.95, and the HD values for the left breast, right 
breast and heart were 20.6, 20.0 and 8.5 mm, respectively. The 
results were better than those of U‑Net. BibNet saved patients 
~15.5 min of time compared with manual contouring. The data 
set of the training set patients was from three different institu‑
tions, and the patients were in the supine position with their 
arms raised. The robustness test set was from another different 
institution, where the patients were in the supine position with 
arms raised on the affected side. The results found that BibNet 
had good robustness.

During automatic segmentation, scanning 2D CT images 
slice by slice may cause the loss of three‑dimensional (3D) 
anatomical structure information and reduce the segmentation 
accuracy. Studies have demonstrated that compared with 2D 
architectures, 3D architectures can extract features distrib‑
uted across multiple slices, showing better performance in 
segmentation (40,41). Chung et al (42) used a 3D U‑Net CNN, 
which was based on a U‑Net structure, and combined it with 
the 3D version of EfficientNet‑B0 as the backbone. The CTV 
(bilateral breast and regional lymph nodes) and OARs (heart, 
left and right lungs, esophagus, spinal cord and thyroid) of 
breast‑conserving patients were automatically segmented. The 
CTV of the regional lymph nodes was delineated according 
to ESTRO guidelines, including axillary, internal mammary, 
supraclavicular and even interthoracic lymph nodes. For 
OARs, the mean DSC was >0.8, and the mean 95% HD was 
<5 mm. In CTV, the delineation effect of the breast was better, 
the mean DCS was >0.9 and the DS of regional lymph nodes 
was mostly >0.7. The dose distribution was also analyzed, 
and except for slight differences in the spinal cord and large 
differences in the regional lymph nodes, most of the automatic 
delineation showed good agreement with the manual delinea‑
tion. Qualitative evaluation was performed in this study, and 
experts gave high scores for the differences and auxiliary scores 
of automatic delineations based on deep learning. However, all 
the contours of the study were drawn by one expert, ignoring 
the differences between observers. In the follow‑up study, 
using network architecture based on the aforementioned 
study, the OARs of 10 patients with adjuvant radiotherapy 
after breast conservation were studied by 11 experts (attending 
physician, resident, clinical fellows and dosimetrist) from two 
institutions with different clinical backgrounds, and then the 
automatically delineated contours were corrected by these 
experts (43). The mean DSC of manual delineation, automatic 
delineation and correction after automatic delineation was 
0.88, 0.90 and 0.90, respectively. The HD of breast and heart 
delineated by auto‑delineation and subsequent correction were 
significantly lower than those delineated manually In the study 
of inter‑observer variability, it was found that the automatic 
delineation system improved the quality of breast radiotherapy 

and reduced the inter‑observer variability, and the time spent 
using the automatic delineation system was 84% lower than 
that spent on manual delineation, which was a significant 
reduction in the delineation time. At present, the research on 
3D U‑Net is extensive. Oya et al (44) used gradient‑weighted 
class activation mapping 3D U‑net CNN for CTV segmentation 
in whole breast radiotherapy, and the mean DSC was >0.85. 
Two radiotherapy centers in Norway used 3D U‑Net CNN 
to automatically delineate CTV and OARs, and performed 
verification and dosimetric evaluation. The results showed that 
the model had good clinical applicability and has been put into 
clinical use (45). Patients with breast cancer require different 
clinical treatments, such as breast‑conserving surgery or 
radical mastectomy, among other options. The aforementioned 
studies showed the advantages of automatic delineation based 
on deep learning in breast‑conserving surgery. Liu et al (46) 
studied the delineation effect of CTV based on 2.5D CNN in 
modified radical mastectomy for breast cancer, with a mean 
DSC of 0.90. The 95% HD was 5.65 mm and it only took 
3.45 sec to delineate the chest wall CTV using this model. In 
clinical evaluations, ~99% of automatic segmentation of the 
chest wall CTV slices can be directly applied to the clinic.

As for the automatic segmentation algorithm based on 
deep learning in breast cancer radiotherapy, GAN was also 
combined with U‑Net, the dilated fully convolutional network 
was combined with a phase‑based active contour model, and 
a deep neural network was combined with dynamic stridden 
convolution, all obtaining relatively accurate segmentation 
results (25,47,48). With the continuous progress of computer 
technology, automatic segmentation algorithms are constantly 
improved and new automatic radiotherapy delineation 
systems are constantly emerging. The development of these 
systems can effectively save time and reduce inter‑observer 
and intra‑observer differences. However, most early studies 
only evaluated the performance of automatic delineation 
based on volume and surface‑based geometric parameters, 
which could not necessarily reflect the actual clinical impact 
caused by geometric contour differences, whereas dosimetric 
analysis could evaluate the impact of contour on treatment 
planning (49). Dosimetric parameters are measures considered 
to be more clinically relevant than geometric consistency, 
and evaluation of the performance of automated delineation 
should include dose assessment for geometric differences, 
considering dose distribution to assess the clinical impact of 
local geometric differences (10,50). At present, the gold stan‑
dard for the delineation of target volume and OARs is still 
manual delineation by radiologists, and the automatic delinea‑
tion contour still needs to be reviewed by these experts. In 
the evaluation of the performance of the automatic delineation 
system, the qualitative score of radiologists should be added. 
In conclusion, the performance of the automatic delineation 
system should be evaluated in multiple fields.

3. Differences in the recognition of cardiac substructures 
by different automatic delineation techniques

In a large case‑control study (5) of radiotherapy for breast 
cancer in women, the incidence of major coronary events was 
found to increase by 7.4% for every 1 Gy increase in the mean 
cardiac dose, while the cumulative incidence of acute coronary 
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events was found to increase by 16.5% in another study (51), 
with radiation‑related risks increasing linearly with the mean 
cardiac dose. Moreover, in women with and without cardiovas‑
cular risk factors, the increase in myocardial infarction rate per 
Gy was similar (52). Modern breast radiotherapy technology 
has been able to achieve a lower level of mean cardiac dose 
radiation, but some substructures of the heart such as the left 
anterior descending (LAD) artery or coronary artery may be 
exposed to higher doses of radiation, which may also cause 
cardiovascular‑related adverse events, especially in patients 
with left breast cancer treated with radiotherapy. Several 
studies have shown that in addition to the mean heart dose, the 
dose to the cardiac substructures, such as the atrium, ventricle 
and LAD artery, should be limited in the radiotherapy for 
breast cancer (53‑56). Several studies have also suggested that 
the left ventricle, LAD artery or coronary artery should be 
considered as separate OARs (57,58).

Automatic segmentation of cardiac substructures based on 
the atlas. Patients with breast cancer are not usually admin‑
istered intravenous contrast agents when performing routine 
scans. The lack of intravenous contrast enhancement and 
the presence of motion artifacts caused by the breathing and 
heartbeat of the patients in the CT scans of the radiotherapy 
planning system makes it challenging to manually sketch 
the substructure of the heart, and makes the method vulner‑
able to differences between and within observers (59,60). 
van den Bogaard et al (59) developed an automatic LAD artery 
segmentation tool in non‑contrast planning CT based on 
anatomical landmarks. The whole heart (WH), right atrium, 
right ventricle, left ventricle and left atrium of each patient 
were delineated using an internally generated atlas, in which 
the WH and left and right ventricles were used as anatomical 
markers for automatic LAD artery segmentation. The average 
time for automatic LAD artery delineation was 57.2 sec, and 
the manual LAD artery delineation time was 20‑30 min. The 
DSC of the LAD artery was only 0.15, and the maximum HD 
was 4.8 mm, showing poor geometric consistency. However, 
the dosimetric study showed that there was a high consis‑
tency between the manual and automatic delineation, and the 
maximum deviation of the average maximum dose to at least 
5% of the volume and minimum dose to at least 95% of the 
volume of the LAD artery was 0.01 Gy. The contouring of 
the LAD artery depends on the anatomical landmarks defined 
in the ABAS. If the WH and ventricle are not delineated 
correctly, the automatic contouring of the LAD artery will 
also be biased. To improve the performance of automatic 
segmentation, Kaderka et al (60) established a diversified 
atlas, including patients with left and right breast cancer, those 
treated in the supine and prone positions, those with breast 
augmentation, and those with automatically delineated WH, 
left and right atria and ventricles, and LAD artery. The DSC of 
the WH was 0.93±0.02 and the mean HD was 18±6 mm. The 
DSC of the atrium and ventricle were ~0.8, and the DSC of the 
LAD artery was still very low, only 0.09±0.07, with a mean 
HD of 73±61 mm. However, when including the LAD artery, 
the manual and automatic delineation of dosimetric param‑
eters had strong consistency. With the continuous deepening 
of research, the segmentation of cardiac substructures has 
been refined. Jung et al (61) automatically delineated the WH, 

the four heart chambers and the coronary arteries (left main 
coronary artery, LAD artery, left circumrotary artery and right 
coronary artery). A cardiac structure atlas library was created 
by using the CT of 30 groups of adult female patients, and 
for small structures such as arteries, the MASD was used for 
evaluation. The mean DSC of the WH was 0.97, and the mean 
DSC of the four chambers was 0.7. The MASD of the heart 
was the best at 1.0 mm. The MASD of the four compartments 
was ~4.5 mm. The consistency of the four coronary arteries 
was poor, and the mean MASD was <10.3 mm. According to 
the dosimetric comparison, the mean dose difference between 
the WH and the atrium was the smallest at <0.06 Gy, and the 
mean dose difference between the ventricle and the coronary 
arteries, with the exception of the LAD artery (mean differ‑
ence, 2.3 Gy), was <0.3 Gy. Apart from the poor geometric 
consistency of the LAD artery translated into large differences 
in dosimetry, the method showed excellent performance in 
both geometry and dosimetry. The prerequisite for accurate 
segmentation of cardiac substructures in this study was the 
accuracy of WH contouring. Subsequently, a new automated 
segmentation heart atlas library was created using patient 
data from the RadComp clinical trial (62). The patient images 
were non‑contrast radiotherapy plan CT images, and the 
same automatic segmentation method was used to automati‑
cally segment the WH, the four heart chambers and the LAD 
artery (63). The DSC and MASD of the WH and the heart 
cavities were similar to those in previous studies, while the 
MASD of the LAD artery was 6.4 mm, which was better than 
the 7.3 mm found in a previous study (61). The mean differ‑
ence in LAD dose was 1.8 Gy, and the dose difference of the 
left breast was significantly higher than that of the right breast. 
This method can be directly applied to the CT images of breast 
cancer radiotherapy planning. Although the automatic LAD 
artery segmentation and manual LAD artery segmentation 
had great differences, they had a high consistency in dosim‑
etry. Milo et al (64) segmented the cardiac substructures of 
patients with breast cancer undergoing radiotherapy based on 
non‑contrast enhanced CT into 22 substructures: 18 cardiac 
substructures and the ascending aorta, pulmonary trunk, and 
the superior and inferior vena cava. The results of this study 
were similar to those of the aforementioned studies. ABAS 
showed excellent geometric consistency and dose correlation 
in the WH and for atrial and ventricular segmentation, but 
still showed great differences in smaller structures such as the 
coronary arteries.

Through the aforementioned studies, it can be observed 
that although the delineation effect of the WH and heart cavity 
was good, the manual delineation of small structures such 
as the coronary arteries was poor in terms of repeatability, 
and the results of automatic delineation were not reliable. 
The difficulty of delineation of coronary arteries and other 
structures can be avoided by constructing geometric alterna‑
tive volumes. Tan et al (65) proposed to extend and improve 
the anterior myocardial region containing the LAD artery as 
an OAR. Stockinger et al (66) defined six cardiac structures 
and geometric alternative volumes (aortic value, pulmonary 
value, deep structures, right anterior myocardium, left ante‑
rior myocardium and complete myocardium), and developed 
a cardiac atlas. Munshi et al (58) proposed the ‘coronary 
strip’ (spatial arc of spread of coronary vessels) as a new 
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OAR. Loap et al (67) defined the high‑risk heart region as a 
substitute for the LAD artery, and the maximum dose limit of 
the high‑risk heart regions effectively reduced the radiation 
exposure to the LAD artery. A number of scholars have 
proposed high‑risk regions of different cardiac substructures, 
but none of them have been integrated into the cardiac atlas. 
Loap et al (68) proposed a simplified functional cardiac atlas, 
defined the cardiac high‑risk regions of LAD substitutes and 
evaluated the automatic segmentation of cardiac conduc‑
tion system substructures for the first time. Validation 
results showed that the performance of the cardiac atlas was 
acceptable and could save a lot of delineation time.

Automatic segmentation of cardiac substructures based 
on deep learning. Compared with automatic segmentation 
methods based on the atlas, deep learning has strong ability 
in term of learning complex and low‑contrast anatomical 
features, and has more advantages in the automatic segmen‑
tation of cardiac substructures, which can provide more 
robust and reliable automatic segmentation results (69). 
van den Oever et al (70) developed a two‑stage depth algo‑
rithm based on a small data set for the automatic segmentation 
of cardiac substructures in non‑contrast planning CT. In 
the first stage, the InceptionResNetV2 network was used to 
identify the slice containing the heart structure. In the second 
stage, a deep learning model composed of three U‑Net3+ 
neural networks was used to train and segment the left and 
right atria, and the ventricles, as well as the WH. The volume 
change between the automatic delineation of the WH and the 
heart chamber and the real value was very small. The median 
DSC of the WH was 0.96, the DSC of the four heart cham‑
bers was >0.80, among which the DSC of the left and right 
ventricles was >0.88, and the DSC of the atrium was lower. 
The automatic delineation could be completed within 30 sec. 
The WH and heart chamber could be delineated with high 
accuracy, but the manual delineation of the blood vessels and 
valves of the heart was extremely difficult, and the effect of 
automatic segmentation was also poor. Jin et al (71) used the 
3D deep neural network combined with ResNet and U‑Net to 
achieve fast and accurate automatic segmentation of the left 
and right atrium, left and right ventricle, aortic valve, LAD 
valve, tricuspid valve, mitral valve and pulmonary valve, and 
increased the DSC of the LAD valve to 0.39±0.10. The mean 
segmentation time per patient was only 2.1 sec, which was a 
significant time saving. The study also evaluated the impact of 
image artifacts caused by implants such as tissue expanders on 
the performance of automatic segmentation for the first time 
and found that images with artifacts can reduce the accuracy 
and robustness of image segmentation. Harms et al (72) used 
the mask scoring regional convolutional neural network 
(RCCN) composed of five subnetworks to automatically 
segment the heart cavity, valves and major blood vessels. The 
backbone network ResNet50 learned multi‑scale features from 
CT images, and then the regional proposal network detected 
the location of all substructures through these feature atlases. 
Finally, the structure information was extracted from the three 
subnetworks. The model innovatively included two modules: 
Attention gate (AG), a simple convolutional layer sequence that 
could make the whole network better by detecting the tissue 
boundary with low contrast and enhancing the robustness to 

noise and uninformative features, and mask scoring (MS), 
where multiple maskers could be generated in each cardiac 
substructure type for each patient and then scored to select 
the best segmentation structure. The mean DSC of large 
vessels, coronary arteries and heart valves was 0.93, 0.66 and 
0.77, respectively, and the 95% HD was 4.44±5.91, 7.19±7.58 
and 5.38±3.45 mm, respectively. The mean surface distance 
and the mean centroid distance were significantly better than 
those of 3D U‑Net and RCNN without AG and MS, and all 
substructures could be delineated within 5 sec (72). Another 
study used mutually reinforcing deep learning to automati‑
cally delineate coronary arteries and heart valves. The model 
was composed of the retinal U‑Net, a classification module 
and a segmentation module, and compared with 3D U‑Net, 
Mask‑RCNN, MS‑RCNN and the proposed network without 
a classification model. It was found that the new proposed 
network had the same effect as mask scoring RCCN in the 
automatic delineation of large structures such as the heart 
cavity, which was significantly better than the other three 
networks, and was significantly better than the other four 
networks in the segmentation of small structures such as the 
coronary arteries (73).

Although coronary CT angiography and MRI have high 
recognition of cardiac substructures, they are not used in 
the routine clinical nursing process of patients with breast 
cancer undergoing radiotherapy. The aforementioned auto‑
matic segmentation algorithms are all based on non‑contrast 
enhanced CT images to segment cardiac substructures. Deep 
learning algorithms can be used to train enhanced CT or even 
MRI, and then the model can be applied to the automatic 
segmentation of non‑contrast enhanced CT images used in 
conventional treatment. Morris et al (74) used 3D U‑Net to 
train the multi‑channel input data of MRI and CT, and then 
used U‑Net to segment cardiac substructures on non‑contrast 
CT images. The DSC of the coronary arteries was >0.5, and 
the DSC of the LAD artery reached 0.53. Automatic delineate 
of each patient too ~14 sec. Bruns et al (75) reconstructed the 
coronary CT angiography image and the fully aligned virtual 
non‑contrast CT image at the same time through contrast 
enhancement acquisition on a dual‑layer detector CT scanner, 
manually segmented the coronary CT angiography image 
and then propagated it to the virtual non‑contrast CT image. 
The reference segmentation with voxel accuracy was used to 
train the automatic segmentation of deep learning and then 
applied to the non‑contrast enhanced CT, which showed excel‑
lent performance in heart and large artery segmentation. The 
method had good generality for images obtained from single 
energy CT scanners from different institutions and images 
with different layer thicknesses, and could accurately segment 
the heart cavity and large vessels in 74% of cases in the multi‑
center evaluation. Based on the study by Bruns et al (75), van 
Velzen et al (76) developed a deep learning method for the 
segmentation of ventricles and large arteries, and for planning 
the trajectory localization of three major coronary arteries in 
CT scans. The median DSC was 0.76 to 0.88 in the cardiac 
cavity and aorta evaluated in 2D images, and 0.87 to 0.93 in 
3D images. This method not only had good consistency in 
geometry but the dosimetry analysis results also showed that 
automatic delineation could accurately predict the results. 
The deep convolutional neural network could also generate 
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synthetic contrast‑enhanced CT images from non‑enhanced 
contrast CT images, and then be used to contour cardiac 
substructures. Chun et al (77) applied this method to the 
automatic segmentation of cardiac substructures in patients 
with breast cancer undergoing radiotherapy and proved the 
feasibility of this method.

In high‑risk patients with early and locally advanced 
breast cancer, irradiation of the regional lymph nodes in addi‑
tion to whole breast radiation should be required to reduce 
the risk of local recurrence and distant metastasis. From 
the aforementioned research, it can be seen that, compared 
with that in other organs or tissues with clear and regular 
boundaries, the consistency of automatic delineation of the 
regional lymph nodes was poor and the delineation effect 
was not good. However, in general, the deep learning‑based 
automatic delineation algorithm was significantly better 
than the atlas‑based automatic delineation algorithm for the 
regional lymph nodes. Chung et al (42) used the 3D U‑Net 
CNN method to automatically delineate regional lymph 
nodes with a DSC >0.7 in most patients with breast cancer. In 
other tumors, the automatic delineation algorithm based on 
deep learning could generate high‑quality automatic delinea‑
tion results of the lymph nodes, with a median DSC >0.7 and 
a maximum DSC of 0.91 (78,79). The improved algorithm 
model can also be applied to the automatic delineation of 
radiation therapy for breast cancer. The aforementioned 
studies show that deep learning also provides excellent 
performance in the automatic delineation of regional lymph 
nodes. However, the overall delineation effect of the regional 
lymph nodes was relatively poor compared with that of other 
OARs with a large volume and clear boundary. At present, 
the regional lymph nodes are still the main obstacle to the 
automatic delineation of radiotherapy. In the future, it is 
necessary to improve the accuracy of automatic delineation 
through further technological improvement, the design of 
advanced detection and the use of segmentation technology 
combined with deep learning (80). On the other hand, 
the automatic delineation effect of regional lymph node 
structures with small volumes can be improved by reducing 
the scanning layer thickness during CT positioning (81).

4. Conclusions

In the automatic delineation of radiotherapy for patients 
with breast cancer, the segmentation effect of automatic 
segmentation based on a multi‑atlas is better than that 
based on a single atlas. However, it is not true that the 
greater the number of atlases the better. A large number 
of atlases will not only reduce the segmentation accuracy, 
but also increase the cost of calculation. The selection of 
an appropriate atlas for different patients is also a problem 
to be solved. The deep learning algorithm achieves better 
results than the atlas‑based algorithm in the research. In 
non‑contrast‑enhanced CT images of patients with breast 
cancer for automatic delineation of OARs and target volume, 
both methods show a superior performance in large‑volume 
tissues and organs with a clear boundary. However, the 
delineation effect is poor in small‑volume structures with 
unclear boundaries, such as the regional lymph nodes and 
coronary arteries. The effect of automatic contouring based 

on deep learning was better than that based on the atlas, and 
the deep learning algorithm could train multi‑modal images. 
To solve the problem of the poor delineation effect of the 
regional lymph nodes, the automatic delineation algorithm 
based on deep learning can be adopted in practical applica‑
tion. On the other hand, the scanning layer thickness during 
CT positioning can be reduced to improve the automatic 
delineation effect of these small regional lymph nodes. 
As the tumor boundary does not have significant imaging 
features, tumors of different stages are very different, and 
there are potentially undetectable tumor areas, so the overall 
automatic delineation effect of target volume is not as good as 
that of OARs. Although enhanced CT and MRI can enhance 
image contrast, the use of multimodality approaches and a 
better understanding of the association between imaging and 
biology/pathology will result in better accuracy of definition. 
However, in the routine nursing process of radiotherapy for 
patients with breast cancer, only non‑contrast CT is generally 
used, and most of the automatic drawing software are based 
on non‑contrast CT images. Deep learning can realize the 
transmembrane state segmentation task without additional 
image acquisition. Only on non‑contrast CT images can 
parameters trained on enhanced CT or MRI images be used 
for automatic delineation, which can effectively improve the 
accuracy. At the same time, it can also improve the regional 
lymph node delineation effect. At present, delineation of 
cardiac substructure in radiotherapy for breast cancer is not 
a routine clinical task, as manual delineation is difficult, and 
automatic delineation of the cardiac substructure is still in 
the research stage. However, with the continuous progress 
of precision medicine, the prolongation of patient survival 
time and the improvement of the requirements for quality of 
life after treatment, the requirements for radiotherapy will 
become more stringent in the future, and the delineation of 
cardiac substructure may become a routine clinical task. 
In addition to the advances in algorithms, it is necessary to 
develop standards for image acquisition and structure delin‑
eation within radiotherapy institutions. The quality of images 
presented to image processing algorithms is a very impor‑
tant factor in the reliability of algorithms. Standardization 
will facilitate the wider use and acceptance of automated 
segmentation tools in routine clinical practice. At present, 
the regional lymph nodes are still the main obstacle to the 
automatic delineation of radiotherapy. In the future, it is 
necessary to improve the accuracy of automatic delineation 
through further technological improvement, the design of 
advanced detection and the use of segmentation technology 
combined with deep learning.
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