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Abstract. Epithelial ovarian cancer (EOC) is the type of OC 
with the highest mortality rate. Due to the asymptomatic nature 
of the disease and few available diagnostic tests, it is mostly 
diagnosed at the advanced stage. Therefore, the present study 
aimed to discover predictive and/or early diagnostic novel 
circulating microRNAs (miRNAs or miRs) for EOC. Firstly, 
microarray analysis of miRNA expression levels was performed 
on 32 samples of female individuals: Eight plasma samples 
from patients with pathologically confirmed EOC (mean age, 
45 (30‑54) years), eight plasma samples from matched healthy 
individuals (HIs) (mean age, 44 (30‑65) years), eight EOC 
tissue samples (mean age, 45 (30‑54) years) and eight benign 
ovarian (mean age, 35 (17‑70) years) neoplastic tissue samples 
A total of 31 significantly dysregulated miRNAs in serum 
and three miRNAs in tissue were identified by microarray. 
The results were validated using reverse transcription‑quan‑
titative PCR on samples from 10 patients with pathologically 
confirmed EOC (mean age, 47(30‑54) years), 10 matched His 
(mean age, 40(26‑65) years], 10 EOC tissue samples (mean 
age, 47(30‑54) years) and 10 benign ovarian neoplastic tissue 

samples (mean age, 40(17‑70) years). The ‘Kyoto Encyclopedia 
of Genes and Genomes’ (KEGG) database was used for target 
gene and pathway analysis. A total of three miRNAs from EOC 
serum (hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p and hsa‑let‑7d‑3p) 
and one microRNA from tissue samples (hsa‑miR‑200c‑3p) 
were validated as significant to distinguish patients with 
EOC from HIs. KEGG pathway enrichment analysis showed 
seven significant pathways, which included ‘prion diseases’, 
‘proteoglycans in cancer’, ‘oxytocin signaling pathway’, ‘hippo 
signaling pathway’, ‘adrenergic signaling in cardiomyocytes’, 
‘oocyte meiosis’ and ‘thyroid hormone signaling pathway’, in 
which the validated miRNAs served a role. This supports the 
hypothesis that four validated miRNAs, have the potential to 
be a biomarker of EOC diagnosis and target for treatment.

Introduction

Epithelial ovarian cancer (EOC) is the most common and 
lethal type of ovarian malignancy. Early detection of EOC is 
key in the clinic. A total of ~70% of EOC cases are diagnosed 
at the advanced stage (International Federation of Gynecology 
and Obstetrics stages IIB to IV) and <30% of these patients 
survive for >5 years (1). By contrast, the 5‑year survival rate 
of patients diagnosed at stage I is 90% and the 5‑year survival 
rate of patients diagnosed at stage II is up to 70% (2). EOC 
is an aggressive disease characterized by multiple metastases 
driven by dysregulated genes (3). Detection of tumor particles 
(cells, cell‑free nucleic acids and exosomes) in body fluids 
(liquid biopsy) in the early stages of cancer would enable 
preclinical diagnosis and improve survival rate. Liquid biopsy 
is used for the detection of serum biomarkers and to prove that 
these markers are specific to the disease (4).

MicroRNAs (miRNAs or miRs) belong to the class of 
small (18‑22 nucleotides) non‑coding RNAs and are involved 
in post‑transcriptional gene regulation and inhibition of gene 
expression. miRNAs regulate up to 60% of all human genes 
and are involved in development, differentiation, metabolism, 
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proliferation, cell cycle, immune system, inflammation and 
carcinogenesis (5).

Bioinformatic analysis is a powerful approach to support 
the laboratory results in biomarker studies for early diagnosis 
of cancer; in miRNA studies, target genes and pathways 
should be investigated using bioinformatics tools. Therefore, 
the aim of the present study was to detect significant dysregu‑
lated serum and tissue miRNAs by comparing their expression 
levels in patients and healthy individuals (HIs), as well as in 
patients with EOC and simple ovarian cysts (SOCs). To the 
best of our knowledge, the present study is the first to compare 
fresh EOC tissue and serum.

Material and methods

Study outline. The present study involved three steps: i) Serum 
and tissue miRNA profiling by microarray; ii) dysregulated 
miRNA validation by reverse transcription‑quantitative PCR 
(RT‑qPCR) and iii)  bioinformatics analysis (Fig.  1). The 
sample collection and analysis process were approved by the 
Istanbul University Faculty of Medicine Clinical Researches 
Ethics Committee (Istanbul, Turkey; approval no. 2014/1175). 
All experiments were performed in accordance with the 
approved guidelines and regulations indicating in World 
Medical Association Declaration of Helsinki (6).

Sample collection. A total of 40 samples were collected from 
four groups of females: Ten plasma samples from patients with 
pathologically confirmed EOC (mean age, 47 (30‑54) years), 
ten plasma samples from matched healthy individuals (HIs) 
(mean age, 40 (26‑65) years) eight EOC tissue samples (mean 
age, 47 (30‑54) years) and eight benign ovarian (mean age, 40 
(17‑70) years) neoplastic tissue samples. No patients had been 
administered neoadjuvant chemotherapy and all patients had 
undergone primary cytoreductive surgery. All cases of OC 
were histologically diagnosed and classified in accordance 
with the World Health Organization criteria (7). For micro‑
array analysis, the first eight samples with best qualified were 
used in each group; RNA samples extracted from tissues with 
RIN values >5 were chosen for microarray analysis and the 
total RNAs extracted from all serum samples were used. 
10 samples per group were used for the validation step by 
RT‑qPCR (Table I). The sample collection was performed at 
Istanbul University Medical Faculty Department of Obstetrics 
and Gynecology (Istanbul, Turkey) between January 1, 2015 
and March 31, 2016. Peripheral blood was collected into 
EDTA tubes (5 ml) and immediately centrifuged at 3,500 x g 
for 15 min at 4˚C. The serum supernatant was transferred to 
RNase‑free tubes. Sample serum fractions were collected and 
stored at ‑80˚C until needed. For the collection of tissue, after 
the routine surgical operation, ~500 mg tissue was deposited in 
a sterile centrifuge tube containing RNAlater™ stabilization 
and storage solution (Ambion; Thermo Fisher Scientific, Inc.), 
stored at 4˚C overnight and then stored at ‑80˚C until needed.

Total RNA isolation. To extract total RNA, including miRNA, 
from serum, a mirVana™ PARIS™ RNA and Native Protein 
Purification kit (Ambion; Thermo Fisher Scientific, Inc.) 
was used according to the manufacturer's protocol. To test 
purification quality and normalize variation, cel‑miR‑39 

(Table SI; Qiagen GmbH), synthetic Caenorhabditis elegans 
miRNA (working solution of 1.6x10‑8 copies/ml), was spiked 
in each serum sample before the extraction protocol. Synthetic 
cel‑miR‑39 was selected as the spike‑in due to the absence 
of homologous sequences in Homo  sapiens. Total RNA 
was eluted with 35 µl mirVana elution solution. The purity 
and concentration of RNA were determined by NanoDrop 
IMPLEN P‑Class (Thermo Fisher Scientific, Inc.).

Total RNA was isolated from tissue samples for micro‑
array and RT‑qPCR analysis using a RNeasy® Plus Mini kit 
(Qiagen GmbH), according to the manufacturer's protocol. The 
quantity of obtained total RNA was measured by NanoDrop 
IMPLEN P‑Class (Thermo Fisher Scientific, Inc.) and quality 
controls were conducted by an Agilent RNA 6000 Nano kit 
on an Agilent Bioanalyzer 2100 system (Agilent Technologies, 
Inc.). RNA extract was evaluated with the bioanalyzer; the 
eight samples with the highest quality [RNA integrity number 
(RIN) value >5] were selected for microarray analysis; all 
serum samples were selected.

MiRNA microarray analysis. miRNA expression analysis 
was performed using miRNA microarray chips (SurePrint 
G3 Human miRNA r21 8x60K; Agilent Technologies, 
Inc.) and miRNA Labelling and Hybridization kit (Agilent 
Technologies, Inc.) according to the manufacturer's instruc‑
tions. Total RNA extracted from both serum and tissue was 
labelled with cyanine 3‑cytidine bisphosphate. The labelled 
miRNAs were hybridized for 24 h at 56˚C on Human miRNA 
Microarray Version 16 slides (Agilent Technologies, Inc.), 
which include 1,368 miRNAs encoded by genes located across 
all chromosomes. The hybridized slides were scanned using 
an Agilent SureScan Microarray Scanner (Model G2600D; 
Agilent Technologies, Inc.) and the images were analyzed 
by Agilent Feature Extraction (v.11.0.1.1) software (Agilent 
Technologies, Inc.). Also, divisive hierarchical clustering 
method was followed for top to down clustering analysis. 
Microarray results were submitted to the Gene Expression 
Omnibus database (accession no. GSE216150).

RT‑qPCR. The candidate miRNAs [P<0.05 and fold change 
(FC)>2] obtained from microarray bioinformatics analysis 
were validated by stem‑loop RT‑qPCR. miRNAs were 
quantified using TaqMan® MicroRNA Assays (Thermo 
Fisher Scientific, Inc.; Table SI). RT was performed with 
the SureCycler 8800 Thermal Cycler (Agilent Technologies, 
Inc.) using a TaqMan MicroRNA Reverse Transcription kit 
(Thermo Fisher Scientific, Inc.). The samples were normalized 
using TaqMan MicroRNA Assays (Thermo Fisher Scientific, 
Inc.) spiked with cel‑miR‑39 for serum and U6 small nuclear 
RNA (snRNA) for tissue.

According to the manufacturer's protocol of TaqMan 
MicroRNA Reverse Transcription kit (Thermo Fisher 
Scientific, Inc.) for cDNA synthesis, 7  µl reaction mix 
contained 0.15 µl 100 mM dNTP mix in 1.5 µl 10X RT Buffer, 
supplemented with 1 µl RT enzyme, 0.19 µl RNase Inhibitor and 
4.16 µl Invitrogen™ UltraPure™ DNase/RNase‑Free Distilled 
Water (Thermo Fisher Scientific, Inc.). cDNA synthesis was 
performed using 5 µl samples containing 4 ng/µl total RNA for 
serum and 10 ng/µl total RNA for tissue. The reaction mix and 
3 µl 5X TaqMan MicroRNA Assays were reverse‑transcribed 
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for 30 min at 16˚C, 30 min at 42˚C, 5 min at 85˚C and stopped 
at 4˚C. RT‑qPCR was performed using a Stratagene Mx3005P 
RT‑qPCR system (Agilent Technologies, Inc.). For each 
20 µl PCR reaction, 10 µl TaqMan miRNA RT‑qPCR Assay 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) and 
20X TaqMan® MicroRNA Assays containing PCR primers 
and probes (5'‑carboxyfluorescein and 3'‑tetramethylrho‑
damine), 2.5 µl cDNA from serum and 6.5 µl Invitrogen™ 
UltraPure DNase/RNase‑Free Distilled Water were mixed. 
For tissue, 1.33 µl cDNA and 7.67 µl Invitrogen UltraPure™ 
DNase/RNase‑Free Distilled Water were added into each 
reaction. Every batch of amplifications included two water 
blanks and primers as no template negative controls for each 
of the cDNA products and RT‑qPCR steps. The reaction was 
performed at 50˚C for 2 min and 95˚C for 10 min, followed 
by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min. Data were 
normalized to cel‑miR‑39 for serum samples and U6 snRNA 
for tissue samples and analyzed using a Stratagene Mx3005P 
RT‑qPCR system (Agilent Technologies, Inc.) with the auto‑
matic Cq setting for adapting baselines and thresholds for 
Cq determination. The 2‑ΔΔCq method calculates relative fold 
changes using Cq values (8).

Statistical analysis of microarray results. Statistical analysis 
of raw microarray data extracted from Agilent Feature 
Extraction (v.11.0.1.1) software was conducted using 
GeneSpring v.12.6 software (Agilent Technologies, Inc.). 
Raw data were normalized by quantile normalization and 
probes <50% coefficient of variation were filtered. Samples 
with high variation and low quality (RIN value <5) were 
eliminated in the quality control step. Obtained probes 
involved thousands of signal results, requiring correction of 
these probes results. The most effective method to control 
family‑wise error rate (FWER) is Bonferroni's test which 
is the exact value and the underlying P‑values are vali‑
dated for all dependency structures (9). Unpaired student's 

t test with Bonferroni's FWER correction was performed. 
P<0.05 and FC>2 were considered to indicate as a statisti‑
cally significant difference; probes with these values in the 
gene expression analysis were identified as significantly 
dysregulated miRNAs.

Statistical analysis of RT‑qPCR results. GraphPad Prism 
(v.7.04; Dotmatics) was used to perform statistical analysis 
for validation of RT‑qPCR data. Mann‑Whitney U test was 
used to analyze the difference in serum miRNA expression 
levels between EOC and HI and in tissue miRNA expression 
between EOC and SOC. SD of two replicates, confidence 
intervals (CIs) and P‑values were calculated using Cq values 
obtained from RT‑qPCR results. Receiver operating char‑
acteristic (ROC) curves were generated and areas under the 
ROC curves (AUC) were calculated to obtain sensitivity and 
specificity. The best threshold or cut‑off value for the distinc‑
tion between control and patient outcomes was set at 0.5. 
P<0.05 was considered to indicate a statistically significant 
difference.

Target gene and pathway enrichment analysis. Targets of 34 
significantly differentially expressed miRNAs resulted from 
the microarray study (31 serum and three tissue miRNAs) 
were predicted using the DIANA‑microT‑CDS algorithm with 
a threshold of 0.8 and DIANA‑miRPath v3.0 (10) was used to 
identify Kyoto Encyclopedia of Genes and Genomes' (KEGG) 
pathways (11) with P‑value and false discovery rate <0.05.

Results

Patient characteristics. The demographic and clinical char‑
acteristics of patients are shown in Table I. There were three 
groups: HI, EOC and SOC; control groups were HIs for EOC 
in serum and SOC for EOC in tissue. In the EOC group, 
8 patients were still alive at time of writing whereas 2 were not 
(died after 23 and 32 months of treatment).

Microarray results. In the serum samples, 31 miRNAs were 
significantly downregulated (Table  II) in EOC samples 
compared to HI serum samples. However, three miRNAs were 
significantly upregulated in tissue samples in EOC tissues 
compared to SOC samples.

Significant changes in expression levels of the miRNA 
are shown in Fig. 2, determined using hierarchical clustering 
analysis. The hierarchical clustering of dysregulated miRNAs 
in serum and tissue demonstrated that the subgroups were 
well‑differentiated from the unified set of differentially 
expressed miRNAs (Fig. 2A and B). According to serum results 
of the HIs and patients with EOC, 31 downregulated miRNAs 
were clearly separated (Fig. 2A). Additionally, in SOC and 
EOC tissues, three upregulated miRNAs (hsa‑miR‑200c‑3p, 
hsa‑miR‑4665‑3p and hsa‑miR‑6737‑3p) were clearly sepa‑
rated (Fig. 2B). Expression levels for each significant (P<0.05 
and fold change >2) miRNA in serum and tissue are presented 
as box‑whisker plots in Fig. 2C.

RT‑qPCR results. According to FC values, the first 10 
miRNAs that had the highest logarithmic FC of the total 
31 miRNAs were determined. Among all miRNAs after 

Figure 1. Workflow for expression analysis of miRNAs. CV, coefficient of 
variation; FWER, family‑wise error‑rate; miRNA, microRNA; Q, quantile; 
QC, quality control; RIN, RNA integrity number; RT‑q, reverse transcription-
quantitative.
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validation, three miRNAs (hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p 
and hsa‑let‑7d‑3p) were validated.

To confirm the miRNA microarray results, samples were 
analyzed for miRNA expression by RT‑qPCR. The expres‑
sion levels of serum miRNAs were compared in 10 EOC 
and HI serum samples. According to the RT‑qPCR results, 
expression levels of hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p and 
hsa‑let‑7d‑3p were significantly downregulated (Table III). For 
tissue miRNA validation, 10 EOC and 10 SOC tissue samples 
were used. RT‑qPCR analysis indicated that hsa‑miR‑200c 
3p expression was significantly upregulated in EOC tissues 
compared with SOC samples (Table III).

ROC curve analysis was performed to determine the 
discriminability of serum and tissue miRNAs detected 
(Fig.  3). The AUC was >0.50 for all candidate miRNAs. 
Therefore, they appear to be successful in distinguishing 
patients with EOC from HIs and patients with SOC. The 
relative expression levels of the miRNAs are shown in Fig. 4 
for patients with EOC and the HIs. Relative expression levels 
of hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p and hsa‑let‑7d‑3p were 
down regulated in EOC serum samples (Fig. 4A). Relative 
expression of hsa‑miR‑200c 3p was upregulated in EOC 
tissues compared to SOC samples (Fig. 4B).

Target gene and pathway enrichment analysis of miRNAs. 
Following microarray analysis, 34 dysregulated miRNAs (31 
serum and three tissue miRNAs) were determined. Using these 
significantly dysregulated miRNAs, target genes and pathways 
were identified by enrichment analysis. A total of 47 enriched 
pathways were found and the most significant pathways were 
selected according to P‑value (P<0.0009). The top seven path‑
ways (‘prion diseases’, ‘proteoglycans in cancer’, ‘oxytocin 
signaling pathway’, ‘hippo signaling pathway’, ‘adrenergic 
signaling in cardiomyocytes’, ‘oocyte meiosis’ and ‘thyroid 
hormone signaling pathway’) were taken into consideration 
because of their relation with ovarian cancer (Table IV). At 
least one validated miRNAs was involved in each of these 
pathways. When these pathways were evaluated, all except 
‘oocyte meiosis’ had an interaction with OC.

Discussion

The physiological and pathological roles of altered miRNAs 
have been demonstrated in many tumor types such as breast, 
colon, pancreatic cancers (12) and may serve a key role in 
the diagnosis, prognosis and treatment of cancer (13). The 
cell‑free forms of circulating miRNAs in peripheral blood 

Table I. Demographic and clinical characteristic of samples used in microarray and validation steps.

	 Microarray	 Validation
	----------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------- 
	 Healthy 	 Patients with 	 Patients with 	 Healthy 		  Patients
Variable	 individuals	 EOC 	 SOC	 individuals	 Patients with EOC	 with SOC

Number of samples	 8 (serum)	 8 (serum and tissue)	 8 (tissue)	 10 (serum)	 10 (serum and tissue)	 10 (tissue)
(source)
Median age (range),	 44 (30‑65)	 45 (30‑54)	 35 (17‑70)	 40 (26‑65)	 47 (30‑54)	 40 (17‑70)
years
CA‑125, U/ml	 ‑	 1348.5	 88.9	 ‑	 1520.2	 83.2
Alcohol consumption	 N	 N	 N	 N	 N	 N
Cigarette consumption	 N	 N	 N	 N	 N	 N
Treatment	 N	 N	 N	 N	 N	 N
Histological type	 ‑	 Three cases of 	 Five cases of 	 ‑	 Five cases of 	 Four cases of
		  stage 3C 	 endometrioid 		  stage 3C grade 3 	 endometrioid
		  grade 3 serous	 cyst, one case		  serous cancer, two	 cyst, two
		  cancer, two	 of dermoid		  cases of stage 3B 	 cases each of 
		  cases of	 cyst, two 		  grade 3 serous cancer, 	 dermoid cyst, 
		  stage 3B	 cases of		  one case each of	 mucinous 
		  grade 3 serous 	 serous		  stage 2B grade 1 	 cystadenoma 
		  cancer, one	 cystadenoma		  serous cancer,	 and serous
		  case each of			   stage 2A endometrioid 	 cystadenoma
		  stage 2B grade 1			   and stage 1A grade 3 	
		  serous cancer,			   serous cancer	
		  stage 2A				  
		  endometrioid and				  
		  stage 1A grade 3				  
		  serous cancer				  
Metastasis, n	 ‑	 8	 ‑	 ‑	 9	 ‑

CA‑125, cancer antijen‑125; EOC, epithelial ovarian cancer; N, no; SOC, simple ovarian cyst; ‑, not available.
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are highly stable as they are protected from endogenous 
RNase activity (5) and are therefore potential candidates as 
biomarkers.

In the present study, three downregulated miRNAs 
(hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p and hsa‑let‑7d‑3p) in 
serum of patients with EOC and one upregulated miRNA 
(hsa‑miR‑200c‑3p) in EOC tissue samples were validated by 
comparison with HIs and patients with SOC, respectively. 
After validation of the miRNAs, target genes and involved 
pathways were analyzed. After validation step, significantly 
dysregulated miRNAs (hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p 
and hsa‑let‑7d‑3p I serum; hsa‑miR‑200c 3p in tissue) were 
analyzed using KEGG analysis in terms of OC pathogenesis.

Prion diseases are fatal neurodegenerative diseases that 
occur in humans and some animals (14). These diseases are 
directly associated with misfolded prion proteins derived 
from normal prion proteins expressed by the prion protein 
gene (PRNP) (15). This conversion is caused by factors such 
as prion infection, mutations or unknown factors. Prion 
disease‑associated pathways cause neuronal death and 
comprise ‘oxidative stress’, ‘regulated activation of comple‑
ment’, ‘ubiquitin‑proteasome and endosomal‑lysosomal 
systems’, ‘synaptic alterations and dendritic atrophy’, ‘corti‑
costeroid response’ and ‘endoplasmic reticulum stress’ (14). 
Kim et al (15) found that prion disease‑associated somatic 
mutations of the PRNP gene are caused by aberrant expression 

Table II. Significantly differentially expressed miRs in EOC compared with HI serum and SOC tissue samples by microarray.

miR	 miRBase accession number	 Corrected P‑value	 Regulation	 Log fold‑change	 Sample source

Hsa‑miR‑1909‑5p	 MIMAT0004484	 2.84x10‑9	 Down	 ‑4.88594	 Serum
Hsa‑miR‑6775‑3p	 MIMAT0027451	 1.93x10‑5	 Down	 ‑4.66636	 Serum
Hsa‑miR‑3935	 MI0016591	 1.11x10‑7	 Down	 ‑4.27686	 Serum
Hsa‑miR‑6511a‑3p	 MIMAT0025479	 3.25x10‑8	 Down	 ‑4.11005	 Serum
Hsa‑miR‑6756‑3p	 MIMAT0027413	 6.04x10‑4	 Down	 ‑4.06512	 Serum
Hsa‑miR‑885‑5p	 MIMAT0004947	 5.21x10‑7	 Down	 ‑4.06315	 Serum
Hsa‑miR‑6794‑3p	 MIMAT0027489	 1.32x10‑9	 Down	 ‑4.01289	 Serum
Hsa‑miR‑3646	 MI0016046	 3.56x10‑9	 Down	 ‑3.98497	 Serum
Hsa‑miR‑6743‑3p	 MIMAT0027388	 3.54x10‑3 	 Down	 ‑3.94265	 Serum
Hsa‑miR‑548am‑5p	 MIMAT0022740	 4.92x10‑7	 Down	 ‑3.84752	 Serum
Hsa‑miR‑7111‑3p	 MIMAT0028120	 4.9x10‑3 	 Down	 ‑3.81715	 Serum
Hsa‑miR‑4728‑3p	 MIMAT0019850	 7.51x10‑4	 Down	 ‑3.79012	 Serum
Hsa‑miR‑6784‑3p	 MIMAT0027469	 2.33x10‑6	 Down	 ‑3.78141	 Serum
Hsa‑miR‑6804‑3p	 MIMAT0027509	 7.80x10‑6	 Down	 ‑3.67437	 Serum
Hsa‑miR‑1306‑3p	 MIMAT0004947	 5.66x10‑7	 Down	 ‑3.59189	 Serum
Hsa‑miR‑6824‑3p	 MIMAT0027549	 2.59x10‑7	 Down	 ‑3.57616	 Serum
Hsa‑miR‑6761‑3p	 MIMAT0027423	 7.93x10‑6	 Down	 ‑3.45328	 Serum
Hsa‑miR‑449c‑3p	 MIMAT0013771	 4.39x10‑5	 Down	 ‑3.40556	 Serum
Hsa‑miR‑195‑3p	 MIMAT0004615	 6.82x10‑5	 Down	 ‑3.21695	 Serum
Hsa‑miR‑6847‑3p	 MIMAT0027595	 9.39x10‑5	 Down	 ‑3.03194	 Serum
Hsa‑miR‑6730‑3p	 MIMAT0027362	 9.03x10‑5	 Down	 ‑2.95574	 Serum
Hsa‑miR‑1296‑5p	 MIMAT0022740	 6.10x10‑5	 Down	 ‑2.90261	 Serum
Hsa‑miR‑4695‑3p	 MIMAT0019789	 4.30x10‑5	 Down	 ‑2.82112	 Serum
Hsa‑miR‑4763‑5p	 MIMAT0019912	 3.10x10‑5	 Down	 ‑2.79861	 Serum
Hsa‑miR‑615‑3p	 MIMAT0003283	 1.08x10‑4	 Down	 ‑2.73022	 Serum
Hur_2	 SERUM REFERENCE	 1.18x10‑2 	 Down	 ‑2.55936	 Serum
Hsa‑let‑7d‑3p	 MIMAT0007882	 7.22x10‑3 	 Down	 ‑2.07235	 Serum
Hsa‑miR‑6776‑3p	 MIMAT0027453	 9.53x10‑6	 Down	 ‑3.3754	 Serum
Hsa‑miR‑3184‑3p	 MIMAT0022731	 3.69x10‑6	 Down	 ‑3.2145	 Serum
Hsa‑miR‑6759‑3p	 MIMAT0027419	 1.58x10‑5	 Down	 ‑3.1554	 Serum
Hsa‑miR‑6894‑3p	 MIMAT0027689	 5.72x10‑5	 Down	 ‑2.9809	 Serum
Hsa‑miR‑937‑3p	 MIMAT0004980 	 3.21x10‑5	 Down	 ‑2.7339	 Serum
Hsa‑miR‑6737‑3p	 MIMAT0027376	 6.02x10‑5 	 Up	 3.851476	 Tissue
Hsa‑miR‑4665‑3p	 MIMAT0019740	 1.1x10‑7 	 Up	 4.859524	 Tissue
Hsa‑miR‑200c‑3p	 MIMAT0000617	 9.65x10‑5 	 Up	 7.873392	 Tissue

miR, microRNA.
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of oncogenes and a stability gene(s) causing genetic variants 
and metastatic properties. Somatic mutations of the PRNP gene 
can be observed in patients with OC at a rate of 5.3% (15‑20). 
In the present study, one validated miRNAs, hsa‑miR‑200c‑3p, 
was involved in prion diseases pathway, according to its target 
genes. Hsa‑miR‑200c‑3p is involved in regulating cellular 
transformation, such as epithelial‑mesenchymal transition 
(EMT), metastasis, cell proliferation and differentiation, 
inflammation, angiogenesis, cellular transformation, apop‑
tosis, chemoresistance and tissue turnover (21‑25).

Proteoglycans (PGs) are extracellular matrix components 
and play a key role in cell signaling and structural organiza‑
tion, which controls normal and pathological processes (26). 
Altered expression and structural variable caused by different 
types of covalently linked glycosaminoglycan chains PGs 
accumulate in remodeled tumor stroma in malignancy (26‑28). 
They affect tumor growth via formation of a permissive provi‑
sional matrix that regulates tissue organization, cell‑cell and 
cell‑matrix interactions and tumor cell signaling (26). Studies 
indicate a role of PGs in OC. Davies et al (29) found a larger 
variety of heparan sulfate PGs in normal ovaries compared 
with ovarian tumors. It was also suggested that stromal 
induction of one type (syndecan‑1) of heparan sulfate PG 
contributes to the pathogenesis of ovarian malignancy (29). 
Furthermore, PGs have been suggested as therapy targets 
for several cancer types, such as melanoma, breast cancer, 

squamous cell carcinoma, mesothelioma and neuroblas‑
toma (30,31). Certain PGs are also considered as biomarkers 
of cancer. For example, syndecan‑1 and glypican‑1 have been 
recorded as biomarkers for OC and their upregulation is an 
indicator of poor prognosis (32). Therefore, PGs are one of the 
most important proteins in several cancers and also OC (28). 
In the present study, when analyzing the miRNAs involved in 
‘proteoglycan in cancer’, only one validated tissue miRNA, 
hsa‑miR‑200c‑3p, was found to be involved in PG biosyn‑
thesis. Therefore, upregulation of hsa‑miR‑200c‑3p results in 
aberrant expression patterns of proteoglycans and regulate OC 
progression via PGs.

Oxytocin is a key hormone in the female reproductive 
system, especially during pregnancy and lactation. Notably, 
there is an association between decreased risk of OC and 
oxytocin, which is released during breastfeeding  (33,34). 
Although the underlying molecular mechanism is not clear, 
there have been some studies to illuminate the role of oxytocin 
in OC. Therefore, the present study may bring a new perspec‑
tive to OC pathogenesis. Similarly to the present study, 
Zhang et al (35) identified ‘oxytocin signaling pathway’ in 
KEGG enrichment pathways in EOC cases via next genera‑
tion sequencing (NGS). Ji et al (34) showed that increased 
levels of oxytocin receptors in ovarian tumors are associated 
with decreased metastasis‑free survival time. Therefore, it 
was hypothesized that the oxytocin signaling pathway serves 

Figure 2. Hierarchical clustering and box‑whisker plots of differentially expressed miRNAs in both serum and tissue samples. (A) Hierarchical clustering of 
differentially expressed miRs in serum EOC and HI samples. EOC serum samples are distributed under the red line and the HI samples under the blue line. 
Red rectangles indicate expression lower than the mean intensity and the green rectangles indicate expression higher than the mean intensity. (B) EOC and 
SOC tissue samples with P<0.05 determined by microarray analysis. EOC serum samples are distributed under the blue line and the SOC samples under the 
red line. Vertical codes represent different samples. (C) Box‑whisker plots of serum miRs (hsa‑miR‑1909‑5p, hsa‑miR‑885‑5p and hsa‑let‑7d‑3p) in both EOC 
and HI and the tissue miR (hsa‑miR‑200c‑3p) in both SOC and EOC. EOC, epithelial ovarian cancer; HI, healthy individual; miR, microRNA; SOC, simple 
ovarian cyst.
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a role in OC metastasis. Additionally, it was demonstrated 
that oxytocin antagonizes OC via the VEGF pathway (34). 
Morita et al (36) and Ji et al (34) demonstrated the inhibitory 
role of oxytocin on OC cell proliferation, migration and inva‑
sion in SKOV3 and A2780 cell lines. In another study, oxytocin 
has a protective effect via controlling anti‑inflammatory 
mechanisms by interaction with lower levels of systemic and 
tumor‑associated IL‑6 (37). Therefore, the oxytocin signaling 
pathway may have a key role in OC migration, invasion, prolif‑
eration and metastasis and molecular regulators involved in 
this pathway have the potential to determine OC pathogenesis. 
Considering this, it was hypothesized that three dysregulated 
and validated miRNAs, hsa‑miR‑200c‑3p, hsa‑miR‑1909‑5p 
and hsa‑miR‑885‑5p, identified in the present study, were 
involved in OC development via their effect on the oxytocin 
signaling pathway. Hsa‑miR‑1909‑5p regulates the growth of 
epithelial ovarian tumors, endothelial cell function and angio‑
genesis of serous ovarian tumors (38). Hsa‑miR‑885‑5p serves 
a regulatory role in OC and downregulation of hsa‑miR‑885‑5p 
may drive tumor growth, invasion, metastasis, EMT and 
chemotherapy resistance (39‑43). The aforementioned studies 
support the suggestion that the miRNAs validated in the 
present study have the potential as a diagnostic and therapeutic 
target for OC. However, underlying mechanisms should be 
validated with further studies.

The Hippo signaling pathway is a highly conserved 
pathway in Drosophila and mammals and has the role in 
controlling organ size and tumor growth (44‑47). It limits cell 
number by regulating proliferation and apoptosis (47,48). The 
primary components of the Hippo pathway induce tumori‑
genesis by inducing repair and regeneration of tumor stem 

cells and proliferation (47‑50). Previous studies have found 
that deregulation of the Hippo pathway is associated with 
tumor progression, which occurs extensively in gynecological 
malignancies, including endometrial, ovarian and cervical 
cancer  (47‑50). Yes1‑associated transcriptional regulator 
(YAP1) is a key downstream oncogene of the Hippo signaling 
pathway, which plays a role in promoting tumorigenesis in 
human OC by promoting cell proliferation and apoptosis resis‑
tance (47,51). Ye et al (52) demonstrated that YAP expression 
serves an important role in regulating proliferation and differ‑
entiation of ovarian germline stem cells and ovarian function. 
The transcription of the Hippo pathway is actuated by the 
neuron‑restrictive silencer factor to promote proliferation of 
OC cells, which increases dephosphorylation of YAP, macro‑
phage stimulating 1 and large tumor suppressor kinase 1 (48). 
Xu et al (53) showed that miRNA‑149‑5p directly targets the 
core kinase components of the Hippo signaling pathway and 
promotes chemotherapeutic resistance in OC. Similarly to the 
oxytocin signaling pathway, three dysregulated miRNAs vali‑
dated in the present study, hsa‑miR‑200c‑3p, hsa‑miR‑1909‑5p 
and hsa‑miR‑885‑5p, serve a role in the hippo signaling 
pathway. Altered expression of these miRNAs may cause OC 
due to the hippo signaling pathway. These findings supports 
the significance of our validated miRNAs on OC in terms of 
diagnosis, treatment or therapy response.

The β‑adrenergic signaling pathway mediates sympa‑
thetic nervous system‑induced fight‑or‑f light stress 
responses that contribute to the initiation and progression 
of cancer  (54). There are several β‑adrenergic mediating 
mechanisms such as increased expression of pro‑inflamma‑
tory cytokines, like IL‑6 and IL‑8, by tumor cells (55,56), 

Table III. Significantly dysregulated and validated miRs in serum and tissue.

	 Sample Stages and
	 miRNA Levels
	----------------------------------------------------------
			   Standard	 Log		  Sample		  Down‑
miR	 P‑value	 95% CI	 deviation	 fold‑change	 Regulation	 source	 Up‑Regulated	 Regulated

Hsa‑miR‑1909‑5p	 0.002	 1‑1	 0.0000	 ‑1.35	 Down	 Serum	 3C (n=1)	 2B (n=1), 3B 
								        (n=2), 2A 
								        (n=1), 3C 
								        (n=4), 1A 
								        (n=1)
Hsa‑miR‑885‑5p	 0.0195	 0.563‑0.997	 0.1107	 ‑2.64	 Down	 Serum	 1A (n=1)	 2B (n=1), 3B 
								        (n=2), 2A 
								        (n=1), 3C 
								        (n=5)
Hsa‑let‑7d‑3p	 0.0488	 0.460‑0.941	 0.1227	 ‑2.35	 Down	 Serum	 1A (n=1)	 2B (n=1), 3B 
								        (n=2), 2A 
								        (n=1), 3C 
								        (n=5)
Hsa‑miR‑200c‑3p	 0.0273	 0.623‑1.037	 0.1056	 2.87	 Up	 Tissue	 2B (n=1), 3B 	 1A (n=1)
							       (n=2), 2A 	
							       (n=1), 3C 	
							       (n=5)	

CI, confidence interval; miR, microRNA.
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matrix metalloproteinase‑associated increases in tissue 
invasion  (57,58), VEGF‑mediated increases in angiogen‑
esis  (59) and focal adhesion kinase‑mediated resistance to 
anoikis/apoptosis (60). Zhang et al (35) analyzed differential 
gene expression between EOC and healthy samples by NGS and 
obtained 117 dysregulated genes that are related to important 
pathways, including ‘adrenergic signaling in cardiomyocytes’. 

Another study also showed that β2‑adrenergic signaling is 
the underlying biological pathway through which stress influ‑
ences OC development (61). A study also found a feed‑forward 
loop that is the underlying mechanism by which sustained 
adrenergic signaling increases tumor innervation, resulting 
in increased norepinephrine accumulation and enhanced 
tumor growth  (62). In adrenergic signaling pathway, as in 

Figure 3. Receiver operating characteristic parameters for (A) serum and (B) tissue miRNA. AUC, area under the curve; miR, microRNA.

Figure 4. Relative expression analysis of differentially expressed serum and tissue miRNAs (A) Relative expression of serum miRs was significantly lower in 
patients with EOC than healthy individuals. A total of three validated miRNAs were downregulated in patients with EOC. (B) Relative expression of validated 
tissue miR was significantly higher in patients with EOC than simple ovarian cyst (controls). EOC, epithelial ovarian cancer; miR, microRNA.
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Table IV. Target gene and pathway enrichment analysis of dysregulated miRs identified from microarray results.

		  Number				  
KEGG		  of 	 Number			 
pathway	 P‑value	 miRs	 of genes	 Associated miR	 Associated gene

Prion diseases	 1.28x10‑9	 9	 14	 miR‑6775‑3p, miR‑548am‑5p, miR‑	 EGR1, STIP1, IL1B, BAX, HSPA5,
				    6824‑3p, miR‑195‑3p, miR‑7111‑3p,	 NCAM1, NCAM2, NOTCH1,
				    miR‑3184‑3p, miR‑200c‑3pa, miR‑4695‑	 PRKACG, PRNP, PRKX, C6,
				    3p, miR‑6737‑3p 	 MAPK1, ELK1
Proteoglycans 	 2.18x10‑7 	 26	 90	 miR‑7111‑3p, miR‑3646, miR‑200c‑3pa,	 FZD7, ESR1, PPP1CA, BRAF,
in cancer				    miR‑6824‑3p, miR‑6759‑3p, miR‑6794‑	 PRKCA, STAT3, WNT16, WNT7A,
				    3p, miR‑548am‑5p, miR‑4728‑3p, miR‑ 	 SMAD2, CBL, CAMK2G, NRAS,
				    3184‑3p, miR‑195‑3p, miR‑4695‑3p,	 PTCH1, CAV1, WNT5A, PPP1CC,
				    miR‑885‑5pa, miR‑449c‑3p, miR‑6894‑	 PXN, ROCK2, FRS2, FZD6, RDX,
				    3p, miR‑6775‑3p, miR‑6847‑3p, miR‑	 IQGAP1, ITGA5, RAF1, WNT2B,
				    6737‑3p, miR‑6730‑3p, miR‑3935, miR‑	 WNT4, TIAM1, IGF1R, EGFR,
				    6804‑3p, miR‑4763‑5p, miR‑6776‑3p,	 TLR4, RHOA, PPP1R12B, CAV2,
				    miR‑1296‑5p, miR‑6756‑3p, miR‑6784‑	 KRAS, FZD3, RRAS2, MSN, ITGB5, 
				    3p, miR‑6511a‑3p	 MAPK13, ANK2, RPS6KB2,
					     COL21A1, HPSE, CAMK2A, PTK2,
					     ITGAV, ANK3, FZD4, PPP1R12A,
					     DCN, PLCG1, CASP3, PIK3R3,
					     CCND1, CTNNB1, HIF1A, FLNB,
					     PRKACG, FLNA, ITGA2, SOS1,
					     PIK3CG, PTPN11, PRKX, DDX5,
					     SRC, FGF2, LUM, PRKCB, IGF1,
					     GAB1, AKT3, PLCE1, PIK3CA,
					     SDC2, FN1, CDKN1A, PDPK1,
					     VMP1, WNT9B, TWIST1, FGFR1,
					     MAPK1, ITPR2, KDR, ELK1,
					     WNT9A, ERBB4, RPS6KB1, CD44
Oxytocin 	 7.45x10‑6 	 26	 79	 miR‑3646, miR‑6894‑3p, miR‑548am‑5p,	 PPP1CA, FOS, PRKCA, CACNG8, 
signaling				    miR‑6847‑3p, miR‑200c‑3pa, miR‑6775‑	 EEF2K, GUCY1B3, MYLK4,
pathway				    3p, miR‑3935, miR‑4728‑3p, miR‑4695‑	 ADCY5, CAMK2G, CAMK4, NRAS, 
				    3p, miR‑6737‑3p, miR‑1909‑5pa, miR‑	 PRKAA2, CD38, ADCY2, RCAN1,
				    6794‑3p, miR‑3184‑3p, miR‑6824‑3p,	 CALM1, GUCY1A3, CACNB4,
				    miR‑1296‑5p, miR‑7111‑3p, miR‑6730‑	 PPP1CC, ROCK2, MAP2K5,
				    3p, miR‑6756‑3p, miR‑195‑3p, miR‑	 PPP3R1, RAF1, KCNJ14, EGFR,
				    6759‑3p, miR‑6804‑3p, miR‑885‑5pa,	 GNAI3, RHOA, PPP1R12B, KRAS,
				    miR‑6776‑3p, miR‑6784‑3p, ‑miR‑449c‑	 CALM2, CAMKK2, NFATC4,
				    3p, ‑miR‑6511a‑3p	 NPR1, CAMK2A, PPP3CA, RYR1, 
					     PLCB1, PPP1R12A, JUN, PIK3,
					     R3CCND1, PPP3CB, PRKACG,
					     CACNB1, PTGS2, PIK3CG, PRKX,
					     OXTR, SRC, PRKAA1, CAMK1,
					     KCNJ6, CACNA1, CPRKCB,
					     PRKAB2, KCNJ2, GNAQ, PRKAG2,
					     GUCY1A2, PIK3CA, CDKN1A,
					     CACNG3, CACNA2D1, CACNB2,
					     MEF2C, CAMK1D, NFATC3,
					     MAPK1, ITPR2, KCNJ5, KCNJ3,
					     ELK1, PLCB4, MYLK, PLA2G4C,
					     GNAI1, PPP3R2, CACNB3,
					     ADCY6
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Table IV. Continued.

KEGG 		  Number	 Number 		
pathway	 P‑value	 of miRs	 of genes	 Associated miR	 Associated gene

Hippo 	 4.56x10‑5 	 26	 63	 miR‑449c‑3p, miR‑200c‑3, pmiR‑6759‑	 FZD7, PPP1CA, GSK3B, WNT16,
signaling				    3p, miR‑6894‑3p, miR‑6743‑3p, miR‑	 PARD6G, WNT7A, YAP1, SMAD2,
pathway				    3935, miR‑6784‑3p, miR‑6804‑3p, miR‑	 YWHAE, PPP2R2C, PPP2CA,
				    548am‑5p, miR‑7111‑3p, miR‑4728‑3p,	 NF2, WNT5A, BMPR1B, YWHAG,
				    miR‑195‑3p, miR‑4763‑5p, miR‑4695‑	 PPP1CC, GLI2, FZD6, WNT2B,
				    3p, miR‑3646, miR‑1909‑5pa, miR‑6847‑ 	WNT4, MOB1, BYWHAB, TEAD3,
				    3p, miR‑885‑5pa, miR‑6775‑3p, miR‑	 AMOT, WWTR1, TP53BP2, FZD3,
				    6776‑3p, miR‑6794‑3p, miR‑6824‑3p,	 BMP8B, YWHAQ, LLGL2, FZD4,
				    miR‑6737‑3p, miR‑6756‑3p, miR‑3184‑	 CCND1, SMAD4, CTNNB1, TP73,
				    3p, miR‑6730‑3p	 PPP2R2A, PPP2R1A, LLGL1,
					     DLG3, FRMD6, SAV1, TEAD1,
					     YWHAZ, GDF6, CSNK1E,
					     BMPR1A,, CTNNA3, LEF1,
					     RASSF1, WNT9B, MOB1A,
					     CTNNA2, LATS1, BMP7, FGF1,
					     FBXW11, PPP2R1B, PARD6B,
					     INADL, TGFBR2, WNT9A, 
					     BMPR2, TGFB3
Adrenergic 	 1.04x10‑4	 25	 62	 miR‑548am‑5p, miR‑6824‑3p, miR‑	 PPP1CA, RAPGEF3, SCN7A, 
signaling in				    4695‑3p, miR‑3646, miR‑4728‑3p, miR‑	 PRKCACA, CNG8, PPP2R5E,
cardiomyocytes				    6730‑3p, miR‑6776‑3p, miR‑885‑5pa,	 ATP1B2, ADCY5, TPM1, CAMK2G,
				    miR‑6756‑3p, miR‑6759‑3p, miR‑6847‑	 ATP2B2, PPP2R3A,
				    3p, miR‑6894‑3p, miR‑3184‑3p, miR‑	 ADCY2, CALM1, AGTR1,
				    7111‑3p, miR‑195‑3p, miR‑6737‑3p,	 PPP2R2C, PPP2CA, CREB5,
				    miR‑200c‑3pa, miR‑6794‑3p, miR‑6784‑	 CACNB4, PPP1CC, BCL2,
				    3p, miR‑6511a‑3p, miR‑4763‑5p, miR‑	 PPP2R5D, GNAI3, PPP1R1A,
				    449c‑3p, miR‑1909‑5pa, miR‑6775‑3p,	 CALM2, MAPK13, PPP2R5A,
				    miR‑3935	 RAPGEF4, CREB1, CAMK2A,
					     SCN5A, PLCB1, PPP2R5B,
					     ACTC1, PIK3R3, PLN, PPP2R2A,
					     PPP2R1A, PRKACG, CACNB1,
					     SLC8A1, ATP1A4, PIK3CG,
					     PRKX, PPP2R3C, CACNA1C,
					     GNAQ, AKT3, PIK3CA, AGTR2,
					     ATP2B4, CACNG3, CACNA2D1,
					     ATP2A2, CACNB2, MAPK1,
					     PPP2R1B, PLCB4, GNAI1,
					     CACNB3, KCNE1, ADCY6
Oocyte meiosis	 3.3x10‑4 	 21	 55	 miR‑3646, miR‑6756‑3p, miR‑6759‑3p,	 SLKE, SPL1, PPP1CA, PPP2R5E,
				    miR‑885‑5pa, miR‑200c‑3pa, miR‑6847‑	 SMC1A, ADCY5, CCNB1, PGR,
				    3p, miR‑548am‑5p, miR‑7111‑3p, miR‑ 	 CAMK2G, YWHAE, ADCY2,
				    6824‑3p, miR‑6784‑3p, miR‑449c‑3p,	 CALM1, PPP2CA, CPEB4,
				    miR‑6775‑3p, miR‑3184‑3p, miR‑6894‑	 YWHAG, PPP1CC, CDK2, BUB1, 
				    3p, miR‑195‑3p, miR‑4728‑3p, miR‑	 PP3R1, CPEB1, CUL1, PPP2R5D,
				    4695‑3p, miR‑6776‑3p, miR‑6737‑3p,	 YWHAB, IGF1R, PLCZ1, ANAPC1,
				    miR‑6794‑3p, miR‑6730‑3p	 CALM2, YWHAQ, PPP2R5A,
					     CAMK2A, PPP3CA, PPP2R5B, AR,
					     PPP3CB, CCNE2, PPP2R1A,
					     PRKACG, CPEB2, YWHAZ,
					     ANAPC7, PRKX, MAD2L1,
					     ANAPC5, RPS6KA3, IGF1, CDC27,
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oxytocin and hippo signaling pathways, three dysregulated 
miRNAs validated in the present study, hsa‑miR‑200c‑3p, 
hsa‑miR‑1909‑5p and hsa‑miR‑885‑5p, were found to have 
a role via their target genes. Depending on the effect of 
adrenergic signaling pathway by miRNA's target genes, these 
validated miRNAs may serve a crucial role in OC develop‑
ment. Because β‑adrenergic signaling pathway promotes 
tumor growth and accelerate metastasis in OC.

Thyroid hormones serve major roles in cell proliferation, 
development and metabolism (63). Thyroid hormone recep‑
tors control tumor cell proliferation and cancer cell defense 
pathways under physiological conditions  (64,65). Previous 
studies have reported that thyroid hormones not only serve 
a key role in the promotion of cancer cell proliferation, but 
also inhibit apoptosis (65). In epidemiological analyses, risk 
of OC development was shown to be almost double in ovarian 
cancer patients with a history of hyperthyroidism compared 
to hypothyroidism OC patients  (64). Hyperthyroidism is 
caused by thyroid hormones and triiodothyronine hormone 
(T3) is one of these hormones. T3 is shown having direct 
inflammatory effects on ovarian surface epithelial (OSE) 
cells function in vitro. OSE cell responses to T3 include an 
increased expression of estrogen receptor alpha (ERα) mRNA, 
which encodes the ER isoform most strongly associated with 
OC (66). Thyroid hormone binding to αvβ3 integrin promotes 
cell proliferation in OC and natural thyroid hormone deriva‑
tives may antagonize these actions (67). A study focused on 
the potential association between miRNAs associated with 
oxidative stress and dysregulation of thyroid hormone in 
cancer progression (63). They suggested that thyroid hormone 
regulates the expression of different miRNAs either directly 

or indirectly to effect oxidative stress. In the present study, 
hsa‑miR‑200c‑3p and hsa‑miR‑885‑5p interacted with thyroid 
hormone signaling pathways via target genes. Therefore, it may 
be suggested that our validated miRNAs have an increasing 
value for understanding the OC pathogenesis.

To the best of our knowledge, hsa‑let‑7d‑3p has previously 
not been detected as associated with enriched pathways. 
According to the DIANA‑microT‑CDS algorithm, target genes 
of hsa‑let‑7d‑3p were SIGLEC6, AKAP6, ZIC1 and ASXL2 but 
none of these genes were found in enriched pathways with other 
miRNAs. It was hypothesized that this miRNA alone affects 
mechanisms that play a role in cancer development. When 
RT‑qPCR results for hsa‑let‑7d‑3p were analyzed, expression of 
this miRNA differed in each patient in terms of disease stage. 
In 10 serum samples from patients, hsa‑let‑7d‑3p was downreg‑
ulated in 9 patients who were staged at IIA, IIB, IIIB and IIIC. 
Only in the sample from a stage IA patient was hsa‑let‑7d‑3p 
upregulated (Table  III). These findings indicated that this 
miRNA was downregulated in advanced stages of the disease. 
However, studies have suggested that it plays a role in the forma‑
tion of several cancer types, including OC (68‑73). According to 
the function of its target genes, hsa‑let‑7d‑3p is involved in cell 
differentiation, cell cycle, tumor, cell proliferation, apoptotic 
resistance, drug resistance and metastasis (68,74‑84).

The present miRNAs identified as biomarkers are candi‑
dates for OC prediction. The aim of the present study was to find 
novel miRNA candidates and simultaneously study tumor tissue 
and serum of the same patients. This was to question whether 
changes in miRNA expression profiles in the serum and in the 
tissue can be identified. miRNA expression that changed signifi‑
cantly in serum did not change significantly in tissue. According 

Table IV. Continued.

KEGG 		  Number	 Number 		
pathway	 P‑value	 of miRs	 of genes	 Associated miR	 Associated gene

					     RBX1, CPEB3, MAPK1, ITPR2,
					     FBXW11, PPP2R1B, FBXO43,
					     PPP3R2, ADCY6
Thyroid 	 5.3x10‑4 	 24	 56	 miR‑4695‑3p, miR‑6776‑3p, miR‑	 ESR1, GSK3B, PRKCA, ATP1B2,
hormone				    548am‑5p, miR‑3646miR‑6759‑3p, miR‑	 MED13L, NRAS, RCAN1, RXRG,
signaling				    6784‑3p, miR‑4763‑5p, miR‑6894‑3p,	 DIO2, RAF1, MED13, SLC16A10,
pathway 				    miR‑200c‑3pa, miR‑3184‑3p, miR‑7111‑	 WNT4, THRA, PLCZ1, NOTCH2,
				    3p, miR‑885‑5pa, miR‑6824‑3p, miR‑	 RCAN2, KRAS, NCOA3, GATA4,
				    1296‑5p, miR‑4728‑3p, miR‑6737‑3p,	 MED1, ITGAV, PLCB1, TBC1D4,
				    miR‑6756‑3p, miR‑6511a‑3p, miR‑195‑	 NOTCH1, PLCG1, PIK3R3,
				    3p, miR‑6794‑3p, miR‑6775‑3p, miR‑	 CCND1, CTNNB1, HIF1APLN,
				    6847‑3p, miR‑449c‑3p, miR‑6730‑3p	 PRKACG, NCOR1, ATP1A4,
					     NCOA2, PIK3CG, HDAC2, PRKX,
					     KAT2A, SRC, PRKCB, KAT2B,
					     EP300, AKT3, SLC16A2, PLCE1,
					     PIK3CA, PDPK1, PFKFB2,
					     ATP2A2, STAT1, RXRB, MAPK1,
					     PLCB4, NCOA1, SIN3A

aValidated miR. KEGG, Kyoto Encyclopedia of Genes and Genomes; miR, microRNA.
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to the results obtained by liquid biopsy, serum biomarker studies 
did not fully reflect tissue changes because different miRNAs 
were found in liquid biopsy samples compared to tissue samples 
of same patient. This makes it important to identify biomarkers 
specific to liquid biopsy for the diagnosis, treatment and moni‑
toring of the disease. Novel serum miRNAs (hsa‑miR‑1909‑5p, 
hsa‑miR‑885‑5p and hsa‑let‑7d‑3p) were identified and validated, 
which showed that they may contribute to the emergence of 
EOC. In addition, among tissue miRNAs, hsa‑miR‑200c‑3p was 
a promising candidate for a prognostic and diagnostic biomarker 
for EOC. Hence, these identified miRNAs may serve as both 
prognostic and diagnostic biomarkers in EOC. Depending on 
enriched pathways, the validated miRNAs were demonstrated 
to serve crucial roles in OC pathogenesis. Therefore, they need 
to be further studied as diagnostic, prognostic and therapeutic 
serum biomarkers of OC. Although the results demonstrated OC 
pathogenesis, the small sample size is a limitation for biomarker 
research. Thus, it is suggested that further studies are conducted 
with a large‑scale analysis. Additionally, the present study only 
included validation of four serum and three tissue miRNAs; 
other differently expressed serum miRNAs determined by 
microarray need to be quantitatively validated and assessed for 
diagnostic and prognostic implications in EOC.
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