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Abstract. N7‑Methylguanosine (m7G) modification is impor‑
tant in post‑transcriptional regulation. dysregulation of m7G 
RNA modification has been reported to be markedly associ‑
ated with cancer. However, its importance in bladder urothelial 
carcinoma (BLCA) remains poorly characterized. The present 
study systematically analyzed mRNA gene expression data 
and clinical information from The Cancer Genome Atlas and 
further constructed robust risk signatures for the four regu‑
lators of m7G RNA modification (nudix hydrolase 11, gem 
nuclear organelle‑associated protein 5, eukaryotic translation 
initiation factor 3 subunit D and cytoplasmic FMR1 inter‑
acting protein 1). The differential expression and cell function 
of m7G‑related genes in bladder cancer cells were verified by 
reverse transcription‑quantitative PCR, Cell Counting Kit‑8 
and colony formation assays. The four‑gene‑based model could 
accurately predict the prognosis of BLCA. Nomogram‑based 
clinical decisions had a higher net benefit compared with 
that of individual predictors. Through immune infiltration 
analysis, it was found that immune cell infiltration affected the 

prognosis of patients with BLCA. Finally, the present study 
identified potential therapeutics that differ between high and 
low‑risk groups based on four genes. In summary, the current 
findings revealed an essential role for m7G RNA modification 
regulators in BLCA, and developed risk signatures as 
promising prognostic markers in patients with BLCA.

Introduction

Bladder urothelial carcinoma (BLCA) is a malignant tumor of 
the bladder urothelium accounting for ~500,000 new cases and 
200,000 mortalities worldwide each year (1). Approximately 
70% of patients with BLCA have non‑muscle‑invasive bladder 
cancer (NMIBC), and usually undergo transurethral resection 
of the bladder tumor and subsequent radiotherapy, chemo‑
therapy, or immunotherapy. However, ~80% of patients suffer 
NMIBC recurrence within 5 years of diagnosis, with tumor 
progression occurring in 30% of cases (2). For these patients, 
a combination of surgery, radiotherapy, chemotherapy, and 
immunotherapy can be used (3). However, these treatments 
increase the surgical risk and treatment‑related toxicity, and 
patients with aggressive or advanced BLCA still face adverse 
clinical outcomes. A remaining challenge is designing 
approaches to filter patients who may benefit from aggressive 
treatment. Therefore, novel biomarkers that can be used to 
predict prognosis and treatment response are urgently needed.

Bioinformatics has become an integral tool in biomedical 
research and treatment development in the past decade, and 
it plays a vital role in deciphering genomes, transcriptomes, 
and proteomes generated via high‑throughput experimental 
techniques or from tissues collected in traditional biological 
studies  (4). For example, sequence‑based methods used to 
analyze multiple genes or proteins have been explored (5). 
The primary purpose of bioinformatics analysis is to mine 
the association between features according to the feature 
information based on multidimensional data. Based on public 
databases, potential associations among clinical patient 
parameters are analyzed, and this can be used to the reveal 
risk factors of a disease, further develop survival prediction 
models for a disease, and develop precise diagnoses and 
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treatment recommendations for patients (6). Through bioin‑
formatics analysis, previous studies have identified molecules 
and phenotypes associated with the diagnosis, treatment, 
and prognosis of BLCA, such as pyroptosis  (7), immune 
cell infiltration (8‑10), hypoxia (11), and inflammation (12). 
However, several other biological features of BLCA remain to 
be identified.

The recent progress made in the understanding of epitran‑
scriptomics has led to the identification of numerous types of 
post‑transcriptional modifications of eukaryotic RNA, such as 
5‑methylcytosine, N6‑methyladenosine, and N7‑methylguanine 
(m7G) (13). Methylated m7G RNA is one of the most conserved 
modified nucleosides, and is commonly detected in eubacteria, 
eukaryotes, (14) and archaea (15). m7G modification, which 
adds a methyl group to the seventh N of guanine (G) in RNA 
via a methyltransferase, is an important form of base modifi‑
cation involved in post‑transcriptional regulation. Recently, 
m7G‑related genes have attracted widespread attention in 
oncology; for example, a previous study has shown that methyl‑
transferase 1 (METTL1)‑mediated m7G transfer RNA (tRNA) 
modification can boost oncogene translation and promote the 
progression of intrahepatic cholangiocarcinoma (16). Based 
on the association between tumors and m7G, a previous study 
identified six genes associated with poor patient prognosis, thus 
showing potential for evaluating gastric cancer prognosis (17). 
However, to the best of our knowledge, there are no studies 
that have investigated the expression pattern, molecular func‑
tion, or prognostic value of m7G‑related regulatory genes in 
BLCA; thus, the present study aimed to mine the differentially 
expressed genes between BLCA samples and normal healthy 
tissues and to construct a prognostic model to explore the 
potential function of m7G in this disease. Furthermore, with the 
increasing use of immunotherapy and personalized medicine, 
immune infiltration has become a prognostic factor for multiple 
cancer types, and thus, the present study further predicted the 
immune landscape, immune biomarkers, and drug sensitivity 
of the risk‑stratified population, aiming to provide new clinical 
treatment options (Fig. 1).

Materials and methods

R NA‑sequencing t ranscriptomic data collect ion. 
RNA‑sequencing transcriptomic data and corresponding 
clinical information were obtained from The Cancer Genome 
Atlas (TCGA; https://portal.gdc.cancer.gov/). These data 
included 414 BLCA tissues and 19 normal adjacent tissues. 
Clinical information, including age, sex, and TNM stage was 
collected. In total, 29 m7G‑related regulatory genes were iden‑
tified by screening the Gene Set Enrichment Analysis database 
(GSEA; https://www.gsea‑msigdb.org/gsea/index.jsp) and by 
performing literature searches (18‑23). In the BLCA cohort 
from TCGA, the expression data of these 29 m7G‑related 
genes were extracted for subsequent analysis. The GSE48075 
dataset from the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo) was used as the valida‑
tion set, and this dataset contained 142 BLCA samples with 
corresponding survival information and gene expression data. 

Identification of m7G regulatory genes in BLCA. Differentially 
expressed genes (DEGs) involved in m7G methylation were 

screened between BLCA and normal adjacent tissues using 
the Wilcoxon test in R (version 4.1.2) (24). Significant results 
were those with a false discovery rate (FDR) <0.05 and 
an absolute log2‑fold change >1. Violin plots were drawn 
using the R package ‘vioplot’ (version 0.3.7, https://github.
com/TomKellyGenetics/vioplot) to show the differential 
expression of DEGs in BLCA and normal adjacent tissue 
samples. Spearman correlation analysis was performed to 
determine associations among DEGs. A protein‑protein 
interaction (PPI) network was obtained through the STRING 
database (https://string‑db.org/) (25) to query the interaction 
of DEG‑related proteins. The Gene Expression Profiling 
Interactive Analysis (GEPIA) 2 database (http://gepia2.
cancer‑pku.cn) (26) was also used to validate DEGs in BLCA.

Identification of two clusters with different clinical outcomes 
based on m7G gene consensus clustering and functional 
enrichment analysis. Based on DEGs, the BLCA cohort 
was divided into two distinct subgroups using the R package 
‘ConsensusClusterPlus’ (version 1.36.0, https://rdocumentation.
org/packages/ConsensusClusterPlus/versions/1.36.0). Survival 
curves were drawn to compare the overall survival (OS) 
between two groups based on Kaplan‑Meier analysis. 
Differences in clinical data (survival status, stage, pathological 
grade, sex, and age) between the two groups were detected 
using a χ2 test. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were performed to 
functionally annotate DEGs in the two subgroups.

Evaluation of the prognostic value of m7G‑related regulatory 
genes in patients with BLCA. Univariate Cox regression anal‑
ysis was used to estimate the correlation between m7G‑related 
genes and OS. Based on the R package ‘glmnet’ (version 4.1.3, 
https://rdocumentation.org/packages/glmnet), the least abso‑
lute shrinkage and selection operator (LASSO) Cox regression 
model was then utilized to narrow down the candidate genes 
and to develop the prognostic model. Ultimately, the four genes 
and their coefficients were retained, and the penalty parameter 
(λ) was decided by the minimum criteria. The gene expression 
acquired from the LASSO Cox regression and its coefficients 
were multiplied to generate the risk score to divide patients 
with BLCA into low‑ and high‑risk groups, and the OS time 
was compared between the two subgroups via Kaplan‑Meier 
analysis. The ‘survival’ (version 3.3.0, https://rdocumenta‑
tion.org/packages/survival), ‘survminer’ (version  0.4.9, 
https://CRAN.R‑project.org/package=survminer), and 
‘timeROC’ (version  0.4, https://rdocumentation.org/pack‑
ages/timeROC/versions/0.4) R packages were used to perform 
receiver operating characteristic (ROC) curve analysis. 
Differences in clinically relevant variables between different 
risk groups were evaluated using a χ2 test and visualized 
with heatmaps. Moreover, univariate and multivariate Cox 
regression analyses were performed by using the R pack‑
ages ‘survivalROC’ (version 1.0.3, https://rdocumentation.
org/packages/survivalROC) and ‘survival’ to assess whether 
the risk score was an independent predictor.

Validation of the m7G‑related gene prognostic model. To 
validate the prognostic value of these four m7G‑regulated 
genes, the GSE48075 cohort was used as a validation set. The 
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same risk score calculation formula and the same cutoff value 
that could distinguish between high and low‑risk groups were 
used to classify patients in three cohorts, and Kaplan‑Meier 
survival and ROC curve analyses were performed to evaluate 
the predictive performance.

Construction of prediction nomogram and decision curve. 
Based on the R package ‘rms’ (version 6.2.0, https://rdocumenta‑
tion.org/packages/rms), clinically relevant factors (histological 
grade, sex, stage, and age) and risk scores were used to construct 
prognostic nomograms to predict OS in patients with BLCA. 
Moreover, the R package ‘ggDCA’ (version 1.1, https://rdocu‑
mentation.org/packages/ggDCA/versions/1.1) was used to 
finish the decision curve analysis, which could assess whether 
the present prognostic model could benefit clinical patients.

Tumor immune infiltration analysis. To evaluate the immune 
function of the aforementioned four m7G‑regulated genes, 
the ImmuCellAI database (http://bioinfo.life.hust.edu.cn) was 
first utilized to analyze the infiltration of immune cells in 
BLCA and adjacent tissues. Next, Tumor IMmune Estimation 
Resource (TIMER; https://cistrome.shinyapps.io/timer) was 
used to assess the expression of four m7G‑related genes with 
prognostic significance in association with the infiltration of 
six different immune cell types (B cells, CD4+ T cells, CD8+ T 
cells, neutrophils, macrophages, and dendritic cells). TIMER 
is a database that uses high‑throughput sequencing data to 
analyze the infiltration of immune cells in tumor tissues, 
and mainly provides the infiltration of the above six immune 
cell types  (27). In addition, the TIMER, CIBERSORT, 
QUANTISEQ, MCPcounter, XCELL, and EPIC algorithms 
were used to assess immune component profiles, and the R 
package ‘limma’ was used for visualization. Furthermore, 
single sample (ss)GSEA was used to quantify the infiltration 
and immune function of immune cell subsets with the GSVA 

R software package (version 1.20.0, https://rdocumentation.
org/packages/GSVA/versions/1.20.0). Finally, according to 
the four‑gene expression, boxplots were used to reveal the 
differential expression of 24 immune checkpoints in the two 
subgroups of risk stratification, including T cell immune 
receptor with Ig and ITIM domains (TIGIT), programmed 
cell death 1 (PD‑1), programmed cell death ligand 1 (PD‑L1), 
tumor necrosis factor receptor superfamily, and cytotoxic 
T lymphocyte‑associated protein 4 (CTLA4).

Potential drug prediction. To explore potential compounds 
associated with four‑gene therapy, the four‑gene list was 
input into a connectivity map (Cmap; https://clue.io/), which 
included gene expression signatures derived from 9 cancer 
cell lines treated with 2,429 well‑annotated compounds. Data 
from the Cmap were compared with the four‑gene signatures 
to assign connectivity scores. The scores were inversely corre‑
lated with the compound's therapeutic effect. Next, IC50 values 
were predicted for standard chemotherapeutics in the low‑ and 
high‑risk groups with the R package ‘pRRophetic’ (28).

Validation of the expression of four prognosis‑relevant 
proteins. Immunohistochemistry data from the Human 
Protein Atlas (HPA; https://www.proteinatlas.org/) was used 
to validate the protein expression of the four aforementioned 
prognosis‑relevant genes between BLCA and normal bladder 
tissues from TCGA.

Cell culture and small interfering RNA transfection. Human 
bladder epithelial cells SV‑HUC‑1 (cat. no. CRL‑9520™), 
human bladder carcinoma cells 5637 (cat.  no.  HTB‑9™), 
and T24 (cat.  no.  HTB‑4™) were obtained from ATCC. 
SV‑HUC‑1 cells were cultured in Ham's F‑12K medium 
(cat.  no.  PM150910; Procell Life Science & Technology 
Co., Ltd.), while 5637 and T24 cells were cultured in RPMI 

Figure 1. Flowchart of the study. TCGA, The Cancer Genome Atlas; RT‑qPCR, reverse transcription‑quantitative PCR; GO, Gene Ontology; ROC, receiver 
operating characteristic; m7G, N7‑methylguanosine; BLCA, bladder urothelial carcinoma.
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1640 medium (cat.  no.  C11875500BT; Gibco; Thermo 
Fisher Scientific, Inc.). All media were supplemented with 
10% heat‑inactivated FBS (cat. no. B‑9™) and T2 and 1% 
penicillin‑streptomycin (cat. no. 15070063; Gibco; Thermo 
Fisher Scientific, Inc.). The cells were kept in a 37˚C incu‑
bator with 5% CO2. Small interfering (si) gem nuclear 
organelle‑associated protein 5 (GEMIN5) was designed and 
synthesized by Guangzhou RiboBio Co., Ltd. and transfected 
with Lipofectamine® 3000 (Thermo Fisher Scientific, Inc.). At 
48 h post‑transfection, the cells were collected for functional 
experiments. The interference efficiency was detected by 
reverse transcription‑quantitative PCR (RT‑qPCR).

RT‑qPCR. Total RNA was extracted from the three cell 
types using TRIzol® reagent (cat. no. 15596‑026; Ambion; 
Thermo Fisher Scientific, Inc.). cDNA was synthesized 
using a cDNA reverse transcription kit (cat.  no.  EP0751; 
Thermo Fisher Scientific, Inc.). cDNA was used as a template, 
and the β‑actin gene was used as the internal reference for 
normalizing the RT‑qPCR data. A two‑step standard PCR 
amplification procedure was conducted according to the 
manufacturer's instructions (cat. no. 10222ES60; Shanghai 
Yeasen Biotechnology Co., Ltd.). The relative expression of 
the target gene was calculated using the 2‑ΔΔCq method (29). 
The primers used are shown in Table SI.

Cell viability and colony formation assays. The viability 
of T24 and 5637 cells was detected using a Cell Counting 
Kit‑8 (CCK‑8) assay kit (cat. no. BS350B; Beijing Labgic 
Technology Co., Ltd.) according to the manufacturer's instruc‑
tions. The optical density was measured with a microplate 
reader (Thermo Fisher Scientific, Inc.) at a wavelength of 

450 nm. The cell viability values of each group were detected 
after 24, 48, and 72 h. For the colony formation assays, cells in 
the logarithmic growth stage were collected, and 1,000 cells 
were plated in six‑well plates. The cells were cultured for 
10 days, fixed with methanol at room temperature for 20 min, 
and stained with 0.1% crystal violet at room temperature for 
15 min. The colonies were imaged and counted using light 
microscopy. The number of colonies consisting of ≥50 cells 
was counted.

Statistical analysis. All data were statistically analyzed using 
R. FDR was used in GO and KEGG analyses. Gene expression 
and immune infiltration levels were calculated using a 
paired Student's t‑test or Wilcoxon test. Differences in OS 
between groups were compared using Kaplan‑Meier analysis. 
Independent predictors were evaluated using Cox regression 
analysis. A two‑tailed P<0.05 was considered to indicate a 
statistically significant difference.

Results

Identification of differentially expressed m7G‑related genes in 
BLCA. Differential expression analysis of 29 m7G‑regulated 
genes was performed in BLCA (n=414) and adjacent normal 
tissues (n=19). The heatmap showed that 17 of these m7G 
modification regulators were differentially expressed between 
BLCA and normal tissues (Fig. 2A). The expression levels of 
METTL1, WDR4, NSUN2, DCP2, nudix hydrolase (NUDT)10, 
NUDT11, NUDT16, NUDT3, AGO2, cytoplasmic FMR1 
interacting protein 1 (CYFIP1), EIF4E2, EIF4E3, GEMIN5, 
LARP1, NCBP1, NCBP2, and LSM1 were higher in BLCA 
tissues than in normal tissues (Fig. 2B). Fig. 2C showed that 

Figure 2. Expression of m7G‑modified regulators in BLCA. (A) Heatmap visualization of the expression levels of m7G RNA modification regulators in each 
sample. Green indicates low expression, whereas red indicates high expression. (B) Spearman's correlation analysis of the 29 m7G RNA modification regula‑
tors in BLCA. *P<0.05, **P<0.01, ***P<0.001. (C) Violin plot displaying m7G RNA modification regulators in BLCA. Blue represents normal samples and red 
represents BLCA samples. The white dot represents the median value of expression. m7G, N7‑methylguanosine; BLCA, bladder urothelial carcinoma; N, 
normal samples; T, tumor samples.
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the correlation between GEMIN5 and LARP1 was the most 
significant (correlation coefficient, 0.71). The GEPIA2 data‑
base results showed that the expression of EIF4E3, NUDT10, 
NUDT11 and METTL1 significantly differed between the 
two groups (Fig. S1). RT‑qPCR was performed to confirm 
the expression of prognostic m7G‑related genes in bladder 
cancer cells. A total of 17 gene symbols were imported into 
the STRING database to generate the PPI network. The genes 
with the highest clustering coefficient were LARP1, GEMIN5, 
NUDT11, NUDT10, and WDR4 (Fig. S2).

Identification of two clusters of patients with BLCA with 
distinct clinical outcomes using consensus clustering based 
on m7G RNA‑modification regulators. To further explore 
the clinical relevance of m7G RNA‑modifying modulators, 
patients with BLCA were clustered into subgroups according 
to the differential gene expression. Based on the similarity 
of m7G‑related genes, k=2 produced the best clustering, and 
patients with BLCA could be divided into two distinct and 

non‑overlapping groups (Fig. 3A‑C). Principal component 
analysis was used to validate the results of clustering (Fig. 3D). 
Subsequently, whether there were significant differences in 
OS, stage, age, grade, or sex between these two clusters was 
evaluated. The results showed that the prognosis in cluster 2 
was significantly better (P<0.01) than that of cluster 1 (Fig. 4B), 
but no significant differences were observed in age, sex, histo‑
logical grade, or pathological stage between the two clusters 
(Fig. 4A). Next, the m7G genes associated with prognosis were 
screened out for in‑depth analysis based on a heat map. The 
results of consensus clustering showed a strong association 
between the expression patterns of m7G‑related genes and 
clinical parameters.

Functional enrichment analysis of m7G RNA‑modification 
regulators. GO and KEGG enrichment analyses were 
performed on the DEGs between clusters 1 and 2 to inves‑
tigate the results of clustering from the perspective of 
associated pathways and biological processes. According to 

Figure 3. Consistent cluster analysis of data of patients with bladder cancer. (A) Correlation between subgroups when the number of clusters is k=2. (B) The 
CDF is shown when k=2‑9. (C) Relative change in the area under the CDF curve when k=2‑9. (D) Principal component analysis of RNA‑sequencing data. The 
red dots represent cluster 1, while the cyan dots represent cluster 2. CDF, cumulative distribution function.
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the results of the GO enrichment analysis, the upregulated 
genes were primarily enriched in ‘Extracellular matrix orga‑
nization’, ‘Extracellular structure organization’, ‘External 
encapsulating structure organization’, ‘Phagocytosis, recogni‑
tion’, ‘Complement activation, Classical pathway’, ‘Humoral 
immune response mediated by circulating immunoglobulin’, 
‘Phagocytosis, engulfment’, ‘Complement activation’, and 
‘B cell receptor signaling pathway’ (Fig. 5A and B). KEGG 
enrichment analysis results showed that these upregulated 
genes were significantly enriched in ‘Proteoglycans in cancer’, 
‘Wnt signaling pathway’, ‘ECM‑receptor interaction’, and 
‘PI3K‑Akt signaling pathway’ (Fig. 5C and D).

Construction of a prognostic model based on four m7G‑regu‑
lated genes. Based on the association between m7G RNA 
methylation regulators and the OS of patients with BLCA, 
Univariate Cox regression analysis was performed on the 
expression levels of the 29 important regulators to explore 
the clinical relevance. The results showed that 9 of the 29 
genes were notably associated with OS (P<0.05). As shown 
in Fig. 6A, NUDT10, NUDT11, AGO2, CYFIP1, GEMIN5, 
LARP1, and NCBP1 were considered risk genes with a hazard 
ratio (HR) >1, whereas NUDT4 and eukaryotic transla‑
tion initiation factor 3 subunit D (EIF3D) were considered 
protective genes with HR<1.

LASSO Cox regression analysis identified 9 genes with 
the strongest predictive ability (Fig. 6B and C). Based on the 
corresponding coefficients in the LASSO algorithm, four 
optimal genes (NUDT11, CYFIP1, GEMIN5, and EIF3D) 
were selected to establish the BLCA risk model (Fig. 6D). 
The risk score was calculated as follows: Risk score=(0.289x 
expression value of NUDT11) + (0.503x expression value of 
CYFIP1) + (0.979x expression value of GEMIN5)‑(0.807x 
expression value of EIF3D).

To explore the prognostic role of these four‑gene signa‑
ture models, patients with BLCA were divided into low‑ and 
high‑risk groups according to the median risk score. The risk 
score distribution of patients with BLCA was plotted (Fig. 7A), 
and the survival status of patients with BLCA was evaluated 
using a dot matrix (Fig. 7B). Survival analysis showed that 
patients with high‑risk scores had a poorer OS than those with 
low‑risk scores (Fig. 8A; P<0.001). The 5‑year OS rate was 
67.3% in the low‑risk group and 24.5% in the high‑risk group. 
The ROC curve analysis results showed that the area under 
the curve (AUC) at 1‑, 3‑ and 5‑year OS was 0.755, 0.745, and 
0.758, respectively, thus showing good predictive power for 
survival outcome (Fig. 8B). A heatmap with clinical relevance 
showed the differential expression of the four prognostic genes 
in the high‑ and low‑risk groups (Fig. 9A). Of note, significant 
differences in clinical parameters such as fustat (P<0.001), 
stage (P<0.01) and grade (P<0.05) were observed.

GEO database validates the predictive performance of the 
risk model. To estimate the predictive capability of four‑gene 
signatures in GEO datasets, the GSE48075 dataset was used for 
validation. A total of 57 patients with BLCA in the GSE48075 
cohort were divided into low‑ (n=29) and high‑risk (n=28) 
groups according to the cutoff value of TCGA cohort. The 
results of survival analysis showed that patients with BLCA in 
the low‑risk group had a significantly better OS compared with 
that of patients in the high‑risk group (P=0.014; Fig. 8C), which 
was consistent with the results on the training set. The AUCs for 
3‑year OS was 0.685, suggesting that the risk model had a good 
predictive ability in BLCA (Fig. 8D). Since this cohort did not 
survive >5 years, no 5‑year ROC curves were drawn.

Four‑gene risk signature independently predicts prognosis 
in patients with BLCA. Upon removing samples without 

Figure 4. Differences in the clinicopathological characteristics and OS for the two clusters. (A) Heatmap and clinicopathological features of the two clusters. 
Green indicates low expression, while red indicates high expression. (B) Comparison of OS between groups 1 and 2. ***P<0.001. OS, overall survival.
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complete clinical information, 170 samples were qualified for 
Cox regression analysis. Cox univariate analysis indicated that 
stage and the four‑gene risk score were significantly associated 
with OS in patients with BLCA (P<0.001; Fig. 9B). Multivariate 
Cox regression analysis was performed to assess whether risk 
score was independent of other clinicopathological features 
as a predictor for BLCA, and the results showed that the 
risk score of patients with BLCA was independently associ‑
ated with OS (P<0.001; Fig. 9C). In conclusion, these results 

indicated that the four‑gene risk signature could be used to 
predict the prognosis of patients with BLCA independently 
of other clinicopathological features such as sex, histological 
grade, age, or pathological stage.

Construction of a nomogram. To facilitate the clinical 
application of four‑gene risk signature, a detailed prognostic 
nomogram based on histological grade, sex, pathological stage, 
age, and risk score was established (Fig. 10A). The nomogram 

Figure 5. GO and KEGG analyses of differentially expressed genes between two clusters. Functional annotation of highly expressed genes in cluster 1 using 
(A and B) GO terms and (C and D) KEGG pathway. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 6. Establishment of a prognostic risk model based on m7G RNA modification‑regulated genes. (A) Univariate Cox regression analysis of m7G RNA meth‑
ylation regulators. (B‑D) Construction of the gene signature using least absolute shrinkage and selection operator Cox regression. m7G, N7‑methylguanosine.

Figure 7. Evaluation of prognostic models. Distribution of (A) risk scores and (B) survival status in the prognostic model.
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could precisely predict 1‑, 3‑, and 5‑year OS in patients with 
BLCA. The AUC for risk score was 0.76, which indicated 
that this model had good predictive value for patients with 
BLCA (Fig. 10B). Nomogram‑based clinical decisions had a 
higher net benefit compared with that of individual predictors 
(Fig. 10C).

Correlation of prognosis‑related m7G genes with immune 
infiltration. GO and KEGG enrichment analyses indicated that 
m7G‑related gene functions primarily involve the activation of 
cancer‑related signaling pathways, affecting complement and 
B cell activity. Further immune infiltration analysis revealed 
significant differences in normal adjacent and BLCA tissues. 
Differential expression of immune cells (Fig. 11A‑Q) indicated 
that tumor immune infiltration is important in patients with 
BLCA. According to the TIMER, CIBERSORT, QUANTISEQ, 
and MCPCOUNTER algorithms, the expression levels of 
CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and 

monocytes in the high‑risk group were higher than those in the 
low‑risk group (Fig. 11R), suggesting that immune infiltration 
may influence patient outcomes. Quantifying enrichment frac‑
tions implied that the prognosis in the high‑risk groups may 
be affected by antigen‑presenting cells' function, chemokine 
receptor, immune checkpoint expression, and parainflamma‑
tion (Fig. 11S).

The TIMER database was used to investigate the link 
between the expression levels of four genes and immune 
infiltration. After adjusting for purity, the expression of 
GEMIN5 (Fig.  12A) was positively correlated with CD8+ 
T cells (P=1.27x10‑9), dendritic cells (P=7.63x10‑8), and 
neutrophils (P=3.48x10‑6). NUDT11 expression levels were 
correlated with the number of CD8+ T cells (P=8.47x10‑4), 
CD4+ T cells (P=3.03x10‑2), dendritic cells (P=1.36x10‑3), 
macrophages (P=1.78x10‑5) and neutrophils (P=6.92x10‑3) 
(Fig. 12B). EIF3D expression levels were negatively correlated 
with macrophage levels (P=1.78x10‑5) (Fig. 12C). CYFIP1 

Figure 8. Kaplan‑Meier survival analysis of the prognostic model. Patients in both datasets were assigned to low‑risk (blue) or high‑risk (red) groups, using the 
median risk score as the cutoff value. (A) Survival curve analysis of TCGA cohort. In TCGA cohort, the low‑risk group had a higher probability of survival 
than that of the high‑risk group (P<0.001). (B) ROC curve analysis of TCGA cohort. The 1‑, 3‑, and 5‑year AUCs were 0.755, 0.745, and 0.758, respectively. 
(C) Survival curve analysis of the GEO cohort. The low‑risk group had a higher probability of survival than that of the high‑risk group (P=0.014). (D) ROC 
curve analysis of the GEO cohort. The 1‑, 2‑, and 3‑year AUCs were 0.609, 0.607, and 0.685, respectively. TCGA, The Cancer Genome Atlas; ROC, receiver 
operating characteristic; AUC, area under the curve; GEO, Gene Expression Omnibus.
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expression levels were significantly correlated with the 
number of B cells (P=3.57x10‑2), CD8+ T cells (P=1.23x10‑9), 
dendritic cells (P=1.94x10‑6), macrophages (P=4.7x10‑7) and 
neutrophils (P=7.4x10‑8) (Fig.  12D). As shown in Fig. S3, 
copy number loss of NUDT11 resulted in reduced B cell and 
neutrophil infiltration, while loss of GEMIN5 and CYFIP1 
copy number reduced the infiltration of CD4+ T cells. Loss of 
EIF3D copy number resulted in increased levels of dendritic 
cells. Kaplan‑Meier curve results indicated that enrichment of 
the four genes in CD8+ T cells was associated with a poorer 
prognosis in patients with BLCA.

Exploring a potential treatment for patients with BLCA based 
on four genes. A clear association was found between high‑risk 
patients stratified based on four genes and the expression of 
various immune checkpoints, such as CTLA4, PD‑1, PD‑L1, 

and PD‑L2 (Fig. 13A). Immune checkpoint inhibitors may be 
effective in these patients. Sensitivity analysis of chemothera‑
peutic drugs showed that A.443654, A.770041, docetaxel, and 
pazopanib were effective in low‑risk groups, while axitinib, 
cisplatin, sorafenib, vinblastine, and vinorelbine may be more 
effective in high‑risk groups. There was no difference in the 
sensitivity to doxorubicin between the two groups (Fig. 13B). 
All DEGs were divided into up and downregulated groups 
and uploaded to the CMap database to identify candidate 
small molecule drugs for treating BLCA. With P<0.01 and 
n>2 as the screening criteria, 10 small‑molecule drugs with 
treatment effects on BLCA were identified: BRD‑K50174388, 
I‑BET‑762, beclomethasone‑dipropionate, BRD‑K64233461, 
KU‑C104131, BRD‑K41668190, erlotinib, BRD‑K53120552, 
BRD‑K23021002, and heptaminol (Table  I). A negative 
enrichment score represented an inhibitory effect.

Figure 9. Impact of risk scores and clinicopathological features on prognosis in patients with bladder urothelial carcinoma. (A) Heatmap showing the distribution 
of clinicopathological features and the expression of four N7‑methylguanosine RNA‑modifying regulators in high‑ and low‑risk populations. (B) Univariate 
and (C) multivariate Cox regression analyses of clinicopathological parameters and overall survival. *P<0.05, **P<0.01, ***P<0.001. 
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Immunohistochemistry validation based on the HPA data‑
base. As shown in Fig. S4, the protein expression levels of 
GEMIN5 and CYFIP1 were elevated in BLCA compared 
with those in normal bladder tissues. NUDT11 expression was 
more evident in normal bladder tissues than in cancer tissues. 
Of note, EFI3D was not included in the figure as it was not 
included in the aforementioned database.

RT‑qPCR‑mediated verification of the mRNA expression of 
four genes in BLCA cell lines. The RT‑qPCR results showed 
that GEMIN5, CYFIP1, and EIF3D exhibited high levels of 
expression in T24 and 5637 cells, while NUDT11 exhibited 
a high expression level in SV‑HUC‑1 cells. The results were 
statistically significant (Fig. 14).

Knockdown of GEMIN5 suppresses bladder cancer cell 
proliferation. To validate the BLCA proliferation‑promoting 
ability of m7G‑associated genes, GEMIN5 was selected, since 
it had the highest HR value in the risk model, to perform 
CCK‑8 and colony formation assays. si‑GEMIN5 was used 
to knock down the expression of GEMIN5 in T24 and 5637 
cells, and si‑GEMIN5‑1 had the best knockdown effect 
(Fig. 15A). CCK‑8 (Fig. 15B) and colony formation (Fig. 15C) 
assays revealed the that knockdown of GEMIN5 inhibited the 
proliferation of T24 and 5637 cells.

Discussion

BLCA is a lethal solid tumor with complex molecular and 
cellular heterogeneity  (30). Molecular markers associated 
with BLCA presently used in the clinic include urinary 

nuclear matrix protein 22, bladder tumor antigen, and fibrin 
degradation product. However, these tumor markers have low 
specificity and poor predictive ability. Thus, there is an urgent 
need to identify novel BLCA biomarkers that have i) predictive 
and prognostic value, ii) diagnostic value, and iii) can be used 
to support the development of personalized treatment plans. 
With the development of bioinformatics‑based techniques, 
numerous studies have confirmed the predictive role of novel 
biomarkers in BLCA (31‑33). 

As a relatively more recently identified mechanism of gene 
regulation, RNA m7G modification has attracted large interest 
recently. m7G is a general tRNA modification in prokaryotes 
and eukaryotes, and is catalyzed by METTL1/WDR4, an 
integral complex involved in epigenetic regulation (34). m7G 
at position 46 of tRNA is present in the variable loop, and it is 
likely that METTL1 reduces tRNA stability by affecting this 
structure (35). In addition to tRNAs, m7G regulates the trans‑
lation of mRNA. Different methyltransferases incorporate 
m7G onto different mRNAs and/or into secondary structure 
motifs, thus exerting effects on mRNAs, including transla‑
tion (36). A general mechanism has been found to be involved 
in m7G‑mediated cancer, in which impaired m7G selectively 
suppresses the translation efficiency of oncogenic mRNAs 
with a higher frequency of m7G tRNA cognate codons by 
prolonging ribosome pausing periods (37). As evidence of the 
regulatory role of m7G in mRNA and microRNA regulation is 
continuously being uncovered, it is necessary to investigate the 
role of RNAs other than tRNA.

Although the study of m7G modification in the field of 
cancer is still in its infancy, combined with bioinformatics 
analysis, it may still provide clues for subsequent basic and 

Figure 10. Prognostic nomogram and ROC curve analysis. (A) The 1‑, 3‑, and 5‑year overall survival of patients with BLCA could be systematically predicted 
by combining clinical data with prognostic nomograms. (B) Evaluation of the predictive performance of the model by ROC curve analysis. (C) Decision curve 
analysis was used to evaluate the clinical utility of different decision strategies. The red line represents the nomogram. ROC, receiver operating characteristic.
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clinical research. The present study demonstrated that the 
majority of m7G‑related genes were expressed at higher levels 

in BLCA than in non‑BLCA tissues, and identified four genes 
associated with BLCA prognosis (namely GEMIN5, NUDT11, 

Figure 11. Immune infiltration landscape and functional analysis. Differential expression of immune cells in normal and tumor tissues: (A) CD4 naive T cells; 
(B) CD8 naive T cells; (C) Effector memory T cells; (D) Induced Tregs; (E) Natural Tregs; (F) Type 1 regulatory cells; (G) Th1 cells; (H) Th2 cells; (I) Th17 
cells; (J) T follicular helper cells; (K) Cytotoxic T cells; (L) Exhausted T cells; (M) Mucosal‑associated invariant T cells; (N) Natural killer cells; (O) γ∆ cells; 
(P) CD4+ T cells; and (Q) CD8+ T cells. (R) Association between risk score and altered immune landscape. Heatmap for anticancer immunity cycles pattern. 
(S) Single‑sample Gene Set Enrichment Analysis was used to correlate immune cell subsets and related functions. *P<0.05, **P<0.01, ***P<0.001. Tregs, regulatory 
T cells; Th, helper T cell.
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Figure 13. Potential treatment for patients with BLCA based on four genes. (A) Different expression of immune checkpoints in high and low‑risk patients. 
(B) Potential drugs for patients with BLCA. *P<0.05, **P<0.01, ***P<0.001. BLCA, bladder urothelial carcinoma.

Figure 12. Association between N7‑methylguanosine‑related gene expression and proportion of immune infiltration. Purity, B cells, CD8+ T cells, CD4+ T 
cells, macrophages, neutrophils and dendritic cells. (A) Gem nuclear organelle‑associated protein 5. (B) Nudix hydrolase 11. (C) Eukaryotic translation initia‑
tion factor 3 subunit D. (D) Cytoplasmic FMR1 interacting protein 1. TPM, transcripts per million.
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CYFIP1, and EIF3D), which were shown to be differentially 
expressed in bladder cancer cell lines based on RT‑qPCR 
validation. Through KEGG and GO enrichment analyses, 
the potential biological functions of m7G‑related genes in 
BLCA were explored. Cell experiments also demonstrated 
that the viability and proliferation of T24 and 5637 cells 
were significantly inhibited by knocking down GEMIN5. 

Next, the training set (TCGA cohort) was used to construct 
the predictive model, and the validation set (GEO cohort) 
was used to test the reliability of the model. The risk score 
calculated based on the four‑gene model could forecast BLCA 
patient prognosis independently. Predictive nomograms that 
considered both clinicopathological features and risk scores 
were also built. Consequently, the risk signature reported on 
the present study could help clinicians make precise personal‑
ized survival predictions. Moreover, the current study found 
that m7G‑related genes were closely associated with the 
immune microenvironment of BLCA, and immune infiltra‑
tion in patients with BLCA could also be predicted based in 
the present risk model. Together, this prognostic model was 
strongly associated with clinicopathological factors, immune 
cells and immune‑related functions. 

As an essential regulator of m7G, GEMIN5 expression 
was found to be significantly upregulated in BLCA and asso‑
ciated with a poor patient prognosis. GEMIN5 can regulate 
translation, and has been reported to specifically bind the 
m7G cap (38). Other studies have shown that its expression 
is increased in gastric cancer tissue, acute myeloid leukemia, 
and liver cancer  (17,39,40). Furthermore, GEMIN5 can 
exert oncogenic effects by regulating mRNA splicing and 
tumor cell motility, and by reprogramming cellular transla‑
tion (41,42). CYFIP1 is a newly identified tumor suppressor. 
CYFIP1/2, WASF1/2/3, NCKAP1/1 L, Abi1/2/3, and BRK1 
form a heteropentameric complex called the WASF regulatory 
complex  (43). Abnormal distribution of CYFIP1 has been 
observed with cancer metastasis and invasion, and a previous 
study managed to inhibit breast cancer metastasis by blocking 
CYFIP1 and Rac1 protein interactions, actin polymerization, 
and β1‑integrin/FAK/Src signaling (44). Moreover, a stapled 
peptide targeting NCKAP1 and CYFIP1 was designed to 
destabilize the WASF3 complex to inhibit invasion  (45). 
NUDT11 is a phosphoinositide phosphohydrolase, and the turn‑
over of bisphosphonates can affect cancer cell apoptosis (46). 
The present results suggested that NUDT11 was expressed at a 
lower level in BLCA than in normal tissue cells, but high levels 
of its expression implied a worse prognosis. A previous study 
showed that, when NUDT11 was suppressed, the proliferation 
and viability of prostate cancer cells were affected, and colony 

Table I. The top 10 small molecule drugs in the connectivity map dataset.

Compounds	 Enrichment	 P‑value	 n	 Percent non‑null (%)	 Type

BRD‑K50174388	 ‑0.6759	 0.0081a	 3	 100	 NA
I‑BET‑762	 ‑0.6758	 0.0025a	 3	 100	 Bromodomain inhibitor
Beclomethasone‑dipropionate	 ‑0.6758	 0.0025a	 3	 100	 Immunosuppressant
BRD‑K64233461	 ‑0.6757	 <0.001b	 3	 100	 NA
KU‑C104131	 ‑0.6757	 <0.001b	 3	 100	 NA
BRD‑K41668190	 ‑0.6757	 <0.001b	 3	 100	 NA
Erlotinib	 ‑0.6756	 <0.001b	 3	 100	 EGFR inhibitor
BRD‑K53120552	 ‑0.6755	 <0.001b	 3	 100	 NA
BRD‑K23021002	 ‑0.6755	 <0.001b	 3	 100	 NA
Heptaminol	 ‑0.6754	 <0.001b	 3	 100	 Vasoconstrictor

aP<0.01, bP<0.001. NA, not available.

Figure 14. Results of reverse transcription‑quantitative PCR analysis. 
Expression of (A) Gem nuclear organelle‑associated protein 5; (B) Nudix 
hydrolase 11; (C) Cytoplasmic FMR1 interacting protein 1; and (D) Eukaryotic 
translation initiation factor 3 subunit D. **P<0.01, ***P<0.001 vs. control.
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formation was significantly reduced (47). EIF3 is the largest 
and most complex ribosomal EIF complex (48); it binds to the 
40S ribosome and maintains the dissociation of the 40S and 
60S ribosomal subunits. The function of EIF3 in promoting 
or inhibiting tumor progression is controversial. For example, 
EIF3D has been reported to promote colon cancer (49), mela‑
noma (50), and breast cancer (51), but it is expressed at lower 
levels in liver cancer than in normal tissues. and is associated 
with a better prognosis (52). An examination of EIF3E mRNA 
levels in non‑small cell lung carcinoma and breast cancer 
showed low levels in ~1/3 of the samples (53). However, the 
EIF3E levels in human glioblastoma cells were high, and 
siRNA‑mediated knockdown inhibited cell proliferation (54). 
The present results suggested that EIF3D was a suppressor of 
BLCA, and that increased expression was associated with a 
better prognosis for patients. However, various claims about 
the association between the EIF3 subunit and cancer lack 
strength and appear to be based on experiments devoid of strict 
controls (55,56). Changes in EIF3 in other parts of the cell 
or in functions such as the activation of transcription factors 
or protein kinases can influence the status of cancer (57). In 
conclusion, the role of EIF3 is complex, and the same EIF3 
subunit could have opposite roles in different cancer types. 
The biological processes associated with the effect of EIF3D 
on BLCA need to be further investigated.

Cancer immunity plays a key role in cancer progression, and 
increasing evidence suggests that the tumor immune microen‑
vironment is vital for the initiation and progression of bladder 
cancer (10,58). Notably, the current results showed that, although 
immune cells such as CD8+ T cells markedly infiltrated BLCA, 
they did not appear to be effective in killing cancer cells in the 

high‑risk group; instead, high levels of CD8+ T cell infiltration 
led to a worse prognosis. Immune functional analysis revealed 
that the high‑risk group had higher levels of cancer‑associated 
fibroblasts, which could produce fibrous cocoons to protect 
cancer cells. Excessive parainflammation can transform 
M1‑type macrophages into M2‑type macrophages, thus inhib‑
iting immune functions and promoting tumor progression (59). 
Chemokines released by tumor cells can recruit T cells to reach 
the tumor tissue and be activated by tumor antigens. However, 
only 10% of T cells recruited to the tumor microenvironment 
can recognize tumor cells; the rest act as ‘bystanders’ and have 
no cytotoxic effect on tumor cells, such as exhausted T cells that 
express high levels of the immune checkpoint molecules PD‑1, 
CTLA4, and TIGIT (60). A recent study defined tumor‑derived 
lactate as an inhibitor of CD8+ T cell cytotoxicity (61). Therefore, 
in high‑risk patients defined based on the aforementioned risk 
model, the tumor could have strong immune evasion abilities. 
Importantly, the present study found that immune checkpoint 
molecules were significantly expressed in the high‑risk group, 
and immunotherapy may thus be effective for these patients. 
Designing anti‑BLCA drugs against these targets could be 
one future approach. Moreover, the current study found 10 
compounds and 9 drugs to potentially treat BLCA. However, 
the present study has certain limitations. As the study was based 
on information within public databases, real‑world prospective 
cohort studies are required to validate the risk score formula. 
In addition, the differential expression and cancer‑promoting 
ability of related genes were only verified through cellular 
experiments, and the biological mechanism underlying the 
effects of m7G‑related RNAs in BLCA remains unclear. 
Detailed in vitro and in vivo experiments need to be performed 

Figure 15. Effect of knockdown GEMIN5 on the proliferation of T24 and 5637 cells. (A) Expression of GEMIN5 after knockdown. (B) Colony formation assay 
to detect the influence of GEMIN5 on the proliferation of T24 and 5637 cells. (C) Cell Counting Kit‑8 assay was used to detect the influence of GEMIN5 on 
the proliferation of T24 and 5637 cells. Data are shown as the mean ± SD. *P<0.05, **P<0.01, ***P<0.001 vs. negative control small interfering RNA. GEMIN5, 
gem nuclear organelle‑associated protein 5.
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to explore the important functions of the aforementioned four 
genes with prognostic properties in BLCA.

In conclusion, the present study screened four genes related 
to patient prognosis based on the correlation between BLCA 
and m7G modification regulators, and a risk scoring model 
with good predictive accuracy was established. Moreover, 
the relationship between risk score and tumor immunity was 
evaluated, which provided new ideas and methods for the 
treatment of BLCA.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

Publicly available datasets were analyzed in the present 
study. These data can be found in the following URLs: The 
Cancer Genome Atlas database (https://portal.gdc.cancer.
gov/) and Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/). The data used and/or generated in the 
present study are available from the corresponding author on 
reasonable request.

Authors' contributions

CZ, JX, and KH conceived and designed the experiments, 
and contributed reagents/materials/analysis tools. SZ, TZ, KH 
and JL made contributions to the methodology and statistical 
analysis, and provided supervision. CZ, JX, SZ, JL and TZ 
performed the data collection and analyzed the data. TZ and 
KH confirm the authenticity of all the raw data. CZ, JX, TZ 
and KH contributed to the writing of the manuscript. All 
authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1.	 Richters A, Aben KKH and Kiemeney L: The global burden of 
urinary bladder cancer: An update. World J Urol 38: 1895‑1904, 
2020.

2.	 Zhu CZ, Ting HN, Ng KH and Ong TA: A review on the accuracy 
of bladder cancer detection methods. J Cancer 10: 4038‑4044, 2019.

3.	 Cathomas R, Lorch A, Bruins HM, Compérat EM, Cowan NC, 
Efstathiou JA, Fietkau R, Gakis G, Hernández V, Espinós EL, et al: 
The 2021 updated European association of urology guidelines on 
metastatic urothelial carcinoma. Eur Urol 81: 95‑103, 2022.

4.	 Kanehisa M and Bork P: Bioinformatics in the post‑sequence era. 
Nat Genet 33 (Suppl): S305‑S310, 2003.

5.	 Foulkes  AC, Watson  DS, Griffiths  CEM, Warren  RB, 
Huber W and Barnes MR: Research techniques made simple: 
Bioinformatics for genome‑scale biology. J Invest Dermatol 137: 
e163‑e168, 2017.

6.	 Zafeiris D, Rutella S and Ball GR: An artificial neural network 
integrated pipeline for biomarker discovery using Alzheimer's 
disease as a case study. Comput Struct Biotechnol J 16: 77‑87, 
2018.

7.	 Xie R, Xie M, Zhu L, Chiu JWY, Lam W and Yap DYH: The 
relationship of pyroptosis‑related genes, patient outcomes, and 
tumor‑infiltrating cells in bladder urothelial carcinoma (BLCA). 
Front Pharmacol 13: 930951, 2022.

8.	 Xu C, Song L, Peng H, Yang Y, Liu Y, Pei D, Guo J, Liu N, 
Liu J, Li X, et al: Clinical eosinophil‑associated genes can serve 
as a reliable predictor of bladder urothelial cancer. Front Mol 
Biosci 9: 963455, 2022.

9.	 Jin K, Qiu S, Jin D, Zhou X, Zheng X, Li J, Liao X, Yang L 
and Wei  Q: Development of prognostic signature based on 
immune‑related genes in muscle‑invasive bladder cancer: 
Bioinformatics analysis of TCGA database. Aging (Albany 
NY) 13: 1859‑1871, 2021.

10.	 Chen X, Xu R, He D, Zhang Y, Chen H, Zhu Y, Cheng Y, Liu R, 
Zhu R, Gong L, et al: CD8(+) T effector and immune checkpoint 
signatures predict prognosis and responsiveness to immuno‑
therapy in bladder cancer. Oncogene 40: 6223‑6234, 2021.

11.	 Liu Z, Tang Q, Qi T, Othmane B, Yang Z, Chen J, Hu J and Zu X: 
A robust hypoxia risk score predicts the clinical outcomes and 
tumor microenvironment immune characters in bladder cancer. 
Front Immunol 12: 725223, 2021.

12.	Olkhov‑Mitsel E, Hodgson A, Liu SK, Vesprini D, Bayani J, 
Bartlett  JMS, Xu  B and Downes  MR: Upregulation of 
IFNγ‑mediated chemokines dominate the immune transcriptome 
of muscle‑invasive urothelial carcinoma. Sci Rep 12: 716, 2022.

13.	 Boccaletto P, Magnus M, Almeida C, Zyla A, Astha A, Pluta R, 
Baginski B, Jankowska E, Dunin‑Horkawicz S, Wirecki TK, et al: 
RNArchitecture: A database and a classification system of RNA 
families, with a focus on structural information. Nucleic Acids 
Res 46: D202‑D205, 2018.

14.	 Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF and 
Pütz  J: tRNAdb 2009: Compilation of tRNA sequences and 
tRNA genes. Nucleic Acids Res 37: D159‑D162, 2009.

15.	Edmonds CG, Crain PF, Gupta R, Hashizume T, Hocart CH, 
Kowalak JA, Pomerantz SC, Stetter KO and McCloskey JA: 
Posttranscriptional modification of tRNA in thermophilic 
archaea (Archaebacteria). J Bacteriol 173: 3138‑3148, 1991.

16.	Luo Y, Yao Y, Wu P, Zi X, Sun N and He J: The potential 
role of N(7)‑methylguanosine (m7G) in cancer. J Hematol 
Oncol 15: 63, 2022.

17.	 Li  XY, Wang  SL, Chen  DH, Liu  H, You  JX, Su  LX and 
Yang  XT: Construction and validation of a m7G‑related 
gene‑based prognostic model for gastric cancer. Front 
Oncol 12: 861412, 2022.

18.	Tomikawa C: 7‑methylguanosine modifications in transfer 
RNA (tRNA). Int J Mol Sci 19: 4080, 2018.

19.	Yang Z, Zhang S, Xia T, Fan Y, Shan Y, Zhang K, Xiong J, 
Gu M and You B: RNA modifications meet tumors. Cancer 
Manag Res 14: 3223‑3243, 2022.

20.	Rong  D, Sun  G, Wu  F, Cheng  Y, Sun  G, Jiang  W, Li  X, 
Zhong  Y, Wu  L, Zhang  C,  et  al: Epigenetics: Roles and 
therapeutic implications of non‑coding RNA modifications in 
human cancers. Mol Ther Nucleic Acids 25: 67‑82, 2021.

21.	Zhang M, Song J, Yuan W, Zhang W and Sun Z: Roles of RNA 
methylation on tumor immunity and clinical implications. 
Front Immunol 12: 641507, 2021.

22.	Furuichi Y: Discovery of m(7)G‑cap in eukaryotic mRNAs. 
Proc Jpn Acad Ser B Phys Biol Sci 91: 394‑409, 2015.

23.	Reddy R, Singh R and Shimba S: Methylated cap structures 
in eukaryotic RNAs: Structure, synthesis and functions. 
Pharmacol Ther 54: 249‑267, 1992.

24.	R Core Team: R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
2012. http://www.R‑project.org/.

25.	Szklarczyk  D, Gable  AL, Lyon  D, Junge  A, Wyder  S, 
Huerta‑Cepas  J, Simonovic  M, Doncheva  NT, Morris  JH, 
Bork  P,  et  al: STRING v11: Protein‑protein association 
networks with increased coverage, supporting functional 
discovery in genome‑wide experimental datasets. Nucleic 
Acids Res 47: D607‑D613, 2019.



ONCOLOGY LETTERS  25:  169,  2023 17

26.	Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A 
web server for cancer and normal gene expression profiling and 
interactive analyses. Nucleic Acids Res 45: W98‑W102, 2017.

27.	 Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B and Liu XS: 
TIMER: A web server for comprehensive analysis of tumor‑
infiltrating immune cells. Cancer Res 77: e108‑e110, 2017.

28.	Geeleher P, Cox N and Huang RS: pRRophetic: An R package 
for prediction of clinical chemotherapeutic response from tumor 
gene expression levels. PLoS One 9: e107468, 2014.

29.	 Livak KJ and Schmittgen TD: Analysis of relative gene expres‑
sion data using real‑time quantitative PCR and the 2(‑Delta Delta 
C(T)) method. Methods 25: 402‑408, 2001.

30.	Lai H, Cheng X, Liu Q, Luo W, Liu M, Zhang M, Miao J, Ji Z, 
Lin GN, Song W, et al: Single‑cell RNA sequencing reveals 
the epithelial cell heterogeneity and invasive subpopulation in 
human bladder cancer. Int J Cancer 149: 2099‑2115, 2021.

31.	 Huang  Z, Yan  Y, Wang  T, Wang  Z, Cai  J, Cao  X, Yang  C, 
Zhang F, Wu G and Shen B: Identification of ENO1 as a prog‑
nostic biomarker and molecular target among ENOs in bladder 
cancer. J Transl Med 20: 315, 2022.

32.	Liu J, Zhou Z, Jiang Y, Lin Y, Yang Y, Tian C, Liu J, Lin H and 
Huang B: EPHA3 could be a novel prognosis biomarker and 
correlates with immune infiltrates in bladder cancer. Cancers 
(Basel) 15: 621,2023.

33.	 Yu X, Luo B, Lin J and Zhu Y: Alternative splicing event asso‑
ciated with immunological features in bladder cancer. Front 
Oncol 12: 966088, 2023.

34.	Chen Z, Zhu W, Zhu S, Sun K, Liao J, Liu H, Dai Z, Han H, 
Ren X, Yang Q, et al: METTL1 promotes hepatocarcinogenesis 
via m(7) G tRNA modification‑dependent translation control. 
Clin Transl Med 11: e661, 2021.

35.	 Zhu J, Liu X, Chen W, Liao Y, Liu J, Yuan L, Ruan J and He J: 
Association of RNA m7G modification gene polymorphisms 
with pediatric glioma risk. Biomed Res Int 2023: 3678327, 2023.

36.	Han H, Yang C, Ma J, Zhang S, Zheng S, Ling R, Sun K, Guo S, 
Huang B and Liang Y: N(7)‑methylguanosine tRNA modification 
promotes esophageal squamous cell carcinoma tumorigenesis via 
the RPTOR/ULK1/autophagy axis. Nat Commun 13: 1478, 2022.

37.	 Xia P, Zhang H, Xu K, Jiang X, Gao M, Wang G, Liu Y, Yao Y, 
Chen X, Ma W, et al: MYC‑targeted WDR4 promotes proliferation, 
metastasis, and sorafenib resistance by inducing CCNB1 translation 
in hepatocellular carcinoma. Cell Death Dis 12: 691, 2021.

38.	Xu C, Ishikawa H, Izumikawa K, Li L, He H, Nobe Y, Yamauchi Y, 
Shahjee HM, Wu XH, Yu YT, et al: Structural insights into 
Gemin5‑guided selection of pre‑snRNAs for snRNP assembly. 
Genes Dev 30: 2376‑2390, 2016.

39.	 Li XY, Zhao ZJ, Wang  JB, Shao  YH, Hui‑Liu, You  JX and 
Yang XT: m7G methylation‑related genes as biomarkers for 
predicting overall survival outcomes for hepatocellular carci‑
noma. Front Bioeng Biotechnol 10: 849756, 2022.

40.	Shao J, Wang S, West‑Szymanski D, Karpus J, Shah S, Ganguly S, 
Smith J, Zu Y, He C, Li Z, et al: Cell‑free DNA 5‑hydroxymeth‑
ylcytosine is an emerging marker of acute myeloid leukemia. Sci 
Rep 12: 12410, 2022.

41.	 Lee JH, Horak CE, Khanna C, Meng Z, Yu LR, Veenstra TD and 
Steeg PS: Alterations in Gemin5 expression contribute to alter‑
native mRNA splicing patterns and tumor cell motility. Cancer 
Res 68: 639‑644, 2008.

42.	Wollen KL, Hagen L, Vågbø CB, Rabe R, Iveland TS, Aas PA, 
Sharma A, Sporsheim B, Erlandsen HO, Palibrk V, et al: ALKBH3 
partner ASCC3 mediates P‑body formation and selective clear‑
ance of MMS‑induced 1‑methyladenosine and 3‑methylcytosine 
from mRNA. J Transl Med 19: 287, 2021.

43.	 Limaye AJ, Whittaker  MK, Bendzunas  GN, Cowell  JK and 
Kennedy EJ: Targeting the WASF3 complex to suppress metas‑
tasis. Pharmacol Res 182: 106302, 2022.

44.	Chang JW, Kuo WH, Lin CM, Chen WL, Chan SH, Chiu MF, 
Chang IS, Jiang SS, Tsai FY, Chen CH, et al: Wild‑type p53 
upregulates an early onset breast cancer‑associated gene GAS7 
to suppress metastasis via GAS7‑CYFIP1‑mediated signaling 
pathway. Oncogene 37: 4137‑4150, 2018.

45.	Teng Y, Qin H, Bahassan A, Bendzunas NG, Kennedy EJ and 
Cowell JK: The WASF3‑NCKAP1‑CYFIP1 complex is essen‑
tial for breast cancer metastasis. Cancer Res 76: 5133‑5142, 
2016.

46.	Morrison  BH, Bauer  JA, Kalvakolanu  DV and Lindner  DJ: 
Inositol hexakisphosphate kinase 2 mediates growth suppressive 
and apoptotic effects of interferon‑beta in ovarian carcinoma 
cells. J Biol Chem 276: 24965‑24970, 2001.

47.	 Grisanzio C, Werner L, Takeda D, Awoyemi BC, Pomerantz MM, 
Yamada  H, Sooriakumaran  P, Robinson  BD, Leung  R, 
Schinzel AC, et al: Genetic and functional analyses implicate 
the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer 
pathogenesis. Proc Natl Acad Sci U S A 109: 11252‑11257, 2012.

48.	Bandyopadhyay A, Lakshmanan V, Matsumoto T, Chang EC 
and Maitra U: Moe1 and spInt6, the fission yeast homologues of 
mammalian translation initiation factor 3 subunits p66 (eIF3d) 
and p48 (eIF3e), respectively, are required for stable association 
of eIF3 subunits. J Biol Chem 277: 2360‑2367, 2002.

49.	 Yu X, Zheng B and Chai R: Lentivirus‑mediated knockdown 
of eukaryotic translation initiation factor 3 subunit D inhibits 
proliferation of HCT116 colon cancer cells. Biosci Rep  34: 
e00161, 2014.

50.	Sudo H, Tsuji AB, Sugyo A, Kohda M, Sogawa C, Yoshida C, 
Harada YN, Hino O and Saga T: Knockdown of COPA, identi‑
fied by loss‑of‑function screen, induces apoptosis and suppresses 
tumor growth in mesothelioma mouse model. Genomics 95: 
210‑216, 2010.

51.	 Fan Y and Guo Y: Knockdown of eIF3D inhibits breast cancer cell 
proliferation and invasion through suppressing the Wnt/β‑catenin 
signaling pathway. Int J Clin Exp Pathol 8: 10420‑10427, 2015.

52.	Golob‑Schwarzl  N, Krassnig  S, Toeglhofer  AM, Park  YN, 
Gogg‑Kamerer M, Vierlinger K, Schröder F, Rhee H, Schicho R, 
Fickert  P and Haybaeck  J: New liver cancer biomarkers: 
PI3K/AKT/mTOR pathway members and eukaryotic translation 
initiation factors. Eur J Cancer 83: 56‑70, 2017.

53.	 Hershey JW: The role of eIF3 and its individual subunits in 
cancer. Biochim Biophys Acta 1849: 792‑800, 2015.

54.	Sesen  J, Cammas A, Scotland SJ, Elefterion  B, Lemarié A, 
Millevoi S, Mathew LK, Seva C, Toulas C, Moyal ECJ and 
Skuli N: Int6/eIF3e is essential for proliferation and survival of 
human glioblastoma cells. Int J Mol Sci 15: 2172‑2190, 2014.

55.	 Feng X, Li J and Liu P: The biological roles of translation initia‑
tion factor 3b. Int J Biol Sci 14: 1630‑1635, 2018.

56.	Wolf DA, Lin Y, Duan H and Cheng Y: eIF‑Three to Tango: 
Emerging functions of translation initiation factor eIF3 in protein 
synthesis and disease. J Mol Cell Biol 12: 403‑409, 2020.

57.	 Yin Y, Long J, Sun Y, Li H, Jiang E, Zeng C and Zhu W: The 
function and clinical significance of eIF3 in cancer. Gene 673: 
130‑133, 2018.

58.	Luo Y, Chen L, Zhou Q, Xiong Y, Wang G, Liu X, Xiao Y, Ju L 
and Wang X: Identification of a prognostic gene signature based 
on an immunogenomic landscape analysis of bladder cancer. 
J Cell Mol Med 24: 13370‑13382, 2020.

59.	 Undi RB, Filiberti A, Ali N and Huycke MM: Cellular carci‑
nogenesis: Role of polarized macrophages in cancer initiation. 
Cancers (Basel) 14: 2811, 2022.

60.	Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, 
de Rooij MAJ, Hirt C, Mezzadra R, Slagter M, Dijkstra K, et al: 
Low and variable tumor reactivity of the intratumoral TCR 
repertoire in human cancers. Nat Med 25: 89‑94, 2019.

61.	 Elia I, Rowe JH, Johnson S, Joshi S, Notarangelo G, Kurmi K, 
Weiss S, Freeman GJ, Sharpe AH and Haigi MC: Tumor cells 
dictate anti‑tumor immune responses by altering pyruvate utili‑
zation and succinate signaling in CD8(+) T cells. Cell Metab 34: 
1137‑1150.e1136, 2022.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


