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Abstract. Breast cancer is the most common malignancy 
and ranks second among the causes of tumor‑associated 
death in females. The recurrence and drug resistance 
of breast cancer are intractable due to the presence of 
breast cancer stem cells (BCSCs), which are adequate to 
initiate tumor formation and refractory to conventional 
remedies. Runt‑related transcription factor 2 (RUNX2), a 
pivotal transcription factor in mammary gland and bone 
development, has also been related to metastatic cancer 
and BCSCs. State‑of‑the‑art research has indicated the 
retention of RUNX2 expression in a more invasive subtype 
of breast cancer, and in particular, triple‑negative breast 
cancer development and drug resistance are associated with 
estrogen receptor signaling pathways. The present review 
mainly focused on the latest updates on RUNX2 in BCSCs 
and their roles in breast cancer progression and drug resis‑
tance, providing insight that may aid the development of 
RUNX2‑based diagnostics and treatments for breast cancer 
in clinical practice.
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1. Introduction

Breast cancer, a phenomenon of uncontrolled proliferation of 
breast epithelial cells caused by carcinogenic factors, is the 
most common malignancy and ranks second among the causes 
of tumor‑associated death in females; it has become a public 
health issue and endangers women's health worldwide (1). 
According to the data released by the International Agency for 
Research on Cancer of the World Health Organization, breast 
cancer surpassed lung cancer in 2020 and became the world's 
most	significant	cancer	type	with	the	most	newly‑diagnosed	
cases and deaths among females (2). Women with early breast 
cancer or locoregional relapse are usually able to be cured 
by multidisciplinary remedies, such as surgery, radiotherapy, 
chemotherapy and pharmacotherapy. However, for those with 
metastatic breast cancer, the clinical treatment outcomes are 
still far from satisfactory and only palliative care (e.g., focusing 
on the prolongation of survival and alleviation of symptoms) 
may be possible, largely due to the metastatic heterogeneity 
and the elusive pathogenesis of breast cancer. For instance, as 
reviewed by Li et al (3), triple‑negative breast cancer (TNBC) 
may	have	worse	cause‑specific	survival	and	overall	survival	
than the non‑TNBC counterpart in all stages and substages, 
regardless	of	influencing	factors	from	univariate	and	multi‑
variate analyses (e.g., tumor grade, age, ethnicity, surgery and 
radiation treatments).

Runt‑related transcription factor 2 (RUNX2) belongs 
to the RUNX family (including RUNX1‑3) and has been 
recognized as a key modulator and master transcription factor 
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for osteogenesis, as well as prostate and skeletal develop‑
ment (4‑7). To date, RUNX2 has been involved in diverse 
physiological processes, including osteogenic differentiation 
of mesenchymal stem/stromal cells, chondrocyte hypertrophy, 
immunomodulation, vascular invasion and endothelial cell 
migration via modulating a variety of signaling cascades 
(e.g., MAPK and NK‑κB pathway macrophage reprogram‑
ming) (8‑11). Meanwhile, the dysregulation and alteration of 
RUNX2 expression or activity may result in arteriosclerosis, 
skeletal dysplasia (e.g., cleidocranial dysplasia) and tumori‑
genesis (4,12‑14). For instance, RUNX2 is involved in the 
progression of various tumor types, such as osteosarcoma, renal 
cell carcinoma, gastric cancer and breast cancer (15‑20). For 
instance, a recent study by our group reported the facilitating 
effect of RUNX2 during aggressiveness and chemoresistance 
of	TNBC	cells	via	activating	MMP1,	which	was	significantly	
associated with poor prognosis (21). Of note, other studies have 
also indicated the involvement of RUNX2 in breast cancer 
stem cells (BCSCs) and breast cancer progression (22,23). For 
instance, Zhang et al (23,24) found that RUNX2 was required 
for the activity of CD44+/CD24‑/low BCSCs during breast 
cancer development, while miR‑205/RUNX2 axis was further 
identified	with	s	negative	regulatory	effect	upon	the	activity	of	
CD44+/CD24‑ BCSCs. Taken together, these studies indicated 
the involvement of RUNX2 in BCSCs and its roles in breast 
cancer diagnosis and drug resistance, revealing its promising 
prospective clinical application and utility as an antitumor 
drug target in the future.

The present review article mainly focused on the roles of 
RUNX2 and BCSCs in the progression and management of 
breast cancer. Furthermore, current advances in therapeutic 
approaches for breast cancer, ranging from RUNX2‑based 
remedies to drug resistance, were summarized. Collectively, 
the systematic and detailed research on RUNX2 has consti‑
tuted a prospective area of diagnosis and treatment strategy 
innovation for breast cancer.

2. Breast cancer and classification

Breast cancers are divided into different molecular subtypes, 
including luminal A, luminal B, human epidermal growth 
factor receptor 2 (HER2)‑positive and basal‑like breast cancer. 
Among them, luminal A is a class of breast cancer with an 
immunohistochemical index showing estrogen receptor 
(ER) positivity, progesterone receptor (PR) positivity and 
HER2 negativity. Of the aforementioned subtypes, luminal 
A breast cancer is the most common type of breast cancer, 
which may be targeted by hormonal therapy with a favorable 
prognosis (25,26).

Distinct from luminal A breast cancer, the HER2+ luminal 
B subtype features poor differentiation and a worse prog‑
nosis (27). HER2‑positive breast cancer accounts for 12‑20% of 
all invasive breast cancers, which exhibits multifaceted deterio‑
rative characteristics, including a higher degree of malignancy, 
faster disease progression, greater likelihood of relapse and 
metastasis, and poor prognosis (28). HER2‑targeted therapies 
have been widely used for the treatment of HER2‑positive 
breast cancer, such as monoclonal antibodies, kinase inhibi‑
tors and antibody‑drug conjugates (ADCs). Basal‑like breast 
cancer is positive for basal cytokeratin and epidermal growth 

factor receptors and/or c‑Kit expression, and it accounts for 
~15% of breast cancers. It usually features rapid development 
of local and distant metastases, and thus, it has relatively high 
mortality	rates	(29).	Gene	expression	profiling	typically	clas‑
sifies	triple‑negative	breast	cancer	(TNBC)	as	a	major	subtype	
of basal‑like breast cancer without the expression of ER, PR 
or HER2 (30), which is clinically characterized by a strong 
aggressive nature, high metastatic potential, proneness to 
relapse and poor prognosis (31). Although poly(ADP ribose) 
polymerase inhibitors (e.g., programmed cell death‑1 mono‑
clonal antibody, trophoblast cell surface antigen 2 ADC) have 
been used for a subset of TNBCs, the prognosis of patients 
with TNBC is still far from satisfactory (Table I).

3. Status of clinical treatment of breast cancer

Breast cancer is a heterogeneous disease with highly aggressive 
and complex biological features, and the clinical treatment and 
prognosis of different patients vary greatly (32). As mentioned 
above, patients with early breast cancer may be effectively 
cured and the focus of treatment is to avoid overtreatment 
and undertreatment (33). However, metastatic breast cancer 
cannot be radically cured by current clinical remedies and its 
management mainly focuses on prolonging survival time and 
maintaining quality of life instead (34).

Currently, the major clinical remedies of breast cancer are 
endocrine therapy, molecular targeted therapy and chemo‑
therapy (26). For instance, patients with stage I and II breast 
cancers are recommended to undergo breast‑conserving 
surgery and radiation treatment, whereas those with node‑posi‑
tive breast cancer are systemically treated with chemotherapy, 
endocrine therapy and trastuzumab. As to patients with 
stage III breast cancer, chemotherapy is applied to facilitate 
breast‑conserving surgery (35).

However, as the molecular phenotypes vary across breast 
cancers, breast cancer is not sensitive to either conventional 
endocrine therapy or molecular targeted therapies (36). 
Therefore, chemotherapy remains the primary strategy for 
breast	cancer	management.	However,	the	efficacy	of	conven‑
tional postoperative adjuvant chemotherapy is unreliable, 
and residual metastatic lesions eventually lead to tumor 
recurrence, which largely attributes to secondary tumor 
recurrence and metastasis caused by acquired chemotherapy 
resistance (37,38). Thus, there is an urgent need to explore the 
drug resistance mechanisms and to identify novel therapeutic 
targets to finally overcome the resistance of breast cancer 
to	chemotherapy,	which	is	of	great	clinical	significance	for	
clinical practice in the future. Of note, state‑of‑the‑art updates 
have indicated the role of the transcription factor RUNX2 
in BCSCs and drug resistance in breast cancer, which will 
provide overwhelming new references for the development of 
the next generation of therapeutic targets and innovative drugs 
for breast cancer management.

4. The RUNX family

RUNX is a highly conserved transcription factor family that 
has an important role in the regulation of gene expression 
involved in embryonic development and cell differentiation. 
Recent studies have demonstrated that members of the RUNX 
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transcription factor family are involved in the differentiation 
of a variety of hematopoietic cells. RUNX2 is required for 
osteogenesis, whereas RUNX1 and RUNX3 control blood cell 
development	at	different	stages	of	cell	lineage	specification.

RUNX1 is also known as acute myeloid leukemia gene 1. 
Mutations in this gene are common in patients with lympho‑
blastic and myeloid leukemia (39). It has been suggested 
that	RUNX1	deficiency	is	associated	with	familial	platelet	
disorders. Familial platelet disorders predispose to myeloid 
leukemia and are associated with thrombocytopenia, as well 
as marked reductions in B‑lymphoid, T‑lymphoid and myeloid 
lineages (40).

RUNX2 has a key role in the development of bone and 
cartilage tissue, while abnormal expression of RUNX2 is 
associated with a variety of cancer types, and in particular, 
the process of tumor bone metastasis (41). To date, RUNX2 
has been proven to be involved in melanoma, thyroid 
cancer and hepatocellular carcinoma (42‑44). For instance, 
Guan et al (44) found that circular (circ) RNA_102272 
promoted cisplatin resistance of hepatocellular carcinoma via 
inhibiting the targeting effect of microRNA (miR)‑326 upon 
RUNX2. Of note, Matthijssens et al (45) reported that RUNX2 
was	able	to	significantly	induce	glycolysis	and	oxidative	phos‑
phorylation, and resulted in increased mitochondrial activity, 
which collectively suggested the promoting effect of RUNX2 
in accelerating tumor cell metabolism, and in particular, in 
benefiting	the	invasion	and	migration	of	leukemic	cells	via	
mediating the interaction between glycolysis and mitochon‑
drial respiration. RUNX2 also functions in the development 
of gastric cancer, including tumor invasion and metastasis 
by simultaneously facilitating the proliferation of gastric 
cancer cells and increasing the self‑renewal potential (19). 
Ji et al (46) found that metastasis associated lung adenocar‑
cinoma transcript 1 was able to modulate the transcription 
and translation of RUNX2 to further increase the metastasis 
of recurrent colorectal cancer via binding to miR‑15 family 
members, inhibiting LDL receptor related protein 6 expres‑
sion and enhancing β‑catenin signaling, or binding to splicing 
factor proline and glutamine rich (SFPQ) and dissociating 
the SFPQ/polypyrimidine tract binding protein 2 dimer. 
Collectively, RUNX2 holds the potential to function as an 
important indicator for the detection of multiple cancers in the 
early stage, which also serves as a promising therapeutic target 
for clinical practice.

RUNX3 has a significant role in the occurrence and 
development of a variety of human cancers. Zhang et al (47) 
indicated that RUNX3 inhibits colorectal cancer prolifera‑
tion and metastasis. Liu et al (48) found that RUNX3 inhibits 
glutamine	metabolism	in	gastric	cancer.	A	study	identified	
a	NO•/RUNX3/kynurenine	metabolic	axis,	which	enhances	
disease aggressiveness in pancreatic cancer (49).

To summarize, the RUNX family not only plays a role in 
normal physiological functions, but abnormal expression of 
any member of the family may cause a variety of different 
diseases.

5. Physiological and pathological roles of RUNX2

RUNX2, together with RUNX1 and RUNX3, is an essential 
transcription factor of the RUNX family (50). To date, studies 
have indicated the role of RUNX2 in numerous physiological 
and pathological processes, such as osteoblast differentiation, 
chondrocyte maturation (51), skeletal and mammary gland 
development (22), osteoarthritis, osteosarcoma, prostatic 
carcinoma, gastric cancer and even breast cancer (19,52‑55).

Roles of RUNX2 in physiological processes. RUNX2 has 
important roles in various types of cells, such as chondrocytes, 
osteoblasts and mesenchymal stem/stromal cells (MSCs) (56). 
Meanwhile, RUNX2 has been reported essential for breast 
development (57), which also exhibits good interaction with 
twist family BHLH transcription factor (TWIST)1 in regu‑
lating cranial neural crest‑derived cell fate and thus guides 
craniofacial muscle development (58).

For decades, RUNX2 has been recognized as a key 
transcription factor for bone formation and osteoblast 
differentiation,	as	identified	by	cell	sorting,	lineage	tracing	
and single‑cell transcriptome analysis. For instance, 
Shu et al (59) developed a dual‑recombinase fate‑mapping 
system for the capture of the spatio‑temporal skeletal 
progenitor transition during postnatal bone formation. 
During	 intramembranous	ossification,	RUNX2	promotes	
the differentiation of MSCs into anterior osteoblasts and 
immature osteoblasts (12). Furthermore, Liu and Lee (60) 
reviewed the regulatory network of key transcription 
factors governing bone formation, such as Msh homeobox 
2,	TWIST	and	promyelocytic	leukemia	zinc‑finger	protein.	
During	endochondral	ossification,	RUNX2	maintains	the	
survival of terminal hypertrophic cartilage and promotes 
its trans‑differentiation into osteoblasts (61). Despite 
the fast‑growing understanding of the transcriptional 
mechanisms of osteogenesis, the detailed mechanisms of 
RUNX2‑related skeletal development and precise orches‑
tration of osteogenesis remain largely elusive.

RUNX2 has also been reported to have a crucial func‑
tion during breast development via directly regulating the 
expression pattern of a number of genes related to mammary 
gland development (62). Studies have revealed the expression 
of RUNX2 in mammary tissues, including basal cells and 
luminal cells, which thereby participates in breast develop‑
ment. For instance, Inman and Shore (63) and Sato et al (64) 
verified	that	osteopontin	may	act	as	a	target	of	RUNX2	and	
exert its function in breast differentiation in breast epithelial 
cells during pregnancy and lactation.

Table I. Molecular typing of breast cancer.

Subtype  ER PR HER2

Luminal A + + ‑
Luminal B (HER2‑negative) + ‑ ‑
HER2‑positive (ER‑positive) + Any +
HER2‑positive (ER‑negative) ‑ ‑ +
Basal‑like (Triple negative) ‑ ‑ ‑

The information presented is derived from Ref. (132). ER, estrogen 
receptor; PR, progesterone receptor; HER2, human epidermal growth 
factor receptor 2.
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RUNX2 is associated with breast cancer. Besides its critical 
role in physiological development, RUNX2 also functions as 
an oncogene in numerous types of cancer. RUNX2 has been 
associated with a wide variety of processes, including tumor 
progression and heterogeneity, via mediating the responses of 
cells to signaling pathways hyperactive in tumors (65), such 
as the connective tissue growth factor‑RUNX2‑RANKL 
axis (66), miR‑130a‑5p‑RUNX2‑serine/threonine kinase 
32A network (67), the bone morphogenetic protein 
(BMP)/TGF‑β‑RUNX2 loop (65) and the Zic family member 
2‑RUNX2‑nucleolar and coiled‑body phosphoprotein 1 
signaling axis (68). To date, RUNX2 has emerged as a key 
mediator in the metastasis of cancers with preinvasive and 
promigratory behaviors in osteosarcoma, breast cancer, 
thyroid cancer, prostatic carcinoma and melanoma cells (69). 
Furthermore, numerous investigations of the molecular 
mechanisms of RUNX2 have revealed the mode of action in 
tumor metastasis and growth via activating the expression of 
bone matrix and adhesion proteins, matrix metalloproteinase 
(MMP) and angiogenic factors in cancer cells (70,71).

As mentioned above, breast cancer is composed of distinct 
subtypes with multiple stages during tumor progression. Of 
note, RUNX2 has been reported to have an important role 
in	bone	metastasis,	which	is	the	final	stage	of	breast	cancer	
development (72). For instance, phosphorylation of RUNX2 
mediated by tyrosine kinase ABL is adequate to promote 
breast cancer invasion (73), while the interaction with core 
binding factor subunit β	protein	is	sufficient	to	guide	breast	
cancer cell invasion (53).

During tumor metastasis, cancer cells function via 
autophagy to recover nutrients to maintain their own survival 
and RUNX2 promotes autophagy by increasing acetylation of 
α‑tubulin sub‑units of microtubules, and thus promotes the 
metastasis of breast cancer cells (74). It has been indicated that 
the integrin subunit α5 (ITGA5)β3 expressed on the surface 
of breast cancer cells was able to anchor cells to osteoblasts 
by binding the tripeptide Arg‑Gly‑Asp motif of bone matrix 
proteins (75). During the aforementioned process, RUNX2 
facilitated breast cancer cell recruitment and colonization 
in bone in an ITGA5‑dependent manner (76). SET domain 
containing 7, histone lysine methyltransferase (SET7)/9 in 
breast cancer is able to activate target gene expression through 
histone methylation or directly act as a target via non‑histone 
methylation. It has also been indicated that SET7/9 is able to 
promote multiple malignant biological behaviors in the devel‑
opment of breast cancer by activating RUNX2 (77). TGF‑β 
is indispensable in normal physiological function (78) and 
had a complex ‘double‑edged sword’ role in the occurrence 
and development of tumors (79). Furthermore, RUNX2 may 
promote bone metastasis in breast cancer cells through the 
activation of the TGF‑β signaling pathway (80). In addition, 
accumulating evidence has indicated that multiple miRNAs 
(e.g., miR‑30, miR‑135, miR‑203, miR‑205, miR‑505‑3P and 
miR‑590‑3P) are adequate to inhibit the development and 
metastasis of breast cancer via targeting RUNX2 (23,71,81‑84). 
Taken together, abnormal expression of RUNX2 may be asso‑
ciated with the occurrence and progression of breast cancer, 
and the underlying molecular mechanisms, including target 
genes and the concomitant signaling pathways, remain to be 
fully elucidated.

6. BCSCs

CSCs and epithelial‑mesenchymal transition (EMT) are the 
major elements contributing to the metastasis and recurrence 
of cancers (85,86). In general, CSCs are unique subpopula‑
tions of solid tumors (e.g., breast cancer, lung cancer and 
stomach cancer) with stem cell‑related characteristics, such as 
self‑renewal, differentiation and tumorigenic potential, which 
have re‑emerged as a hot topic of increased interest in the 
field	(87,88).	In	breast	cancer,	BCSCs	promote	angiogenesis	
in mammary tissues by dedifferentiating to endothelial cells 
and secreting proangiogenic or angiogenic factors, which 
collectively facilitates metastasis and therapy resistance of 
breast cancer (89). Of note, studies have demonstrated that 
a series of signaling pathways are involved in orchestrating 
the phenotypes of CSCs, including the Hippo, Wnt, Notch 
and	Hedgehog	pathways	(90).	Meanwhile,	drug	efflux	trans‑
porters and multi‑drug resistance genes expressed in BCSCs 
also confer resistance against conventional chemotherapeutic 
drugs (90).

Breast cancer and BCSCs. Despite the inspiring advance‑
ments in radiation and chemotherapies, breast cancer is still an 
intractable disease owing to tumor relapse and drug resistance 
caused by BCSCs (90). BCSCs participate in the occurrence 
and development of breast cancer and usually result in cancer 
relapse with enhanced aggressiveness (91). Although only a 
small proportion of breast cancer cells may lead to tumors 
xenografts, these tumor‑initiating cells are able to reconstruct 
tumors with a similar heterogeneity to that of the primary 
tumor, which indicates the distinct stem cell‑like plasticity 
of BCSCs (92). To date, a large number of studies have indi‑
cated the pivotal role of the different pathways involved in 
the regulation of BCSCs, such as Wnt, Hedgehog and Notch 
signaling. For instance, Katoh (93) summarized Wnt signaling 
cascades	cross‑talk	with	the	fibroblast	growth	factor,	Notch,	
Hedgehog and TGF‑β/BMP signaling cascades and regulate 
the expression of functional CSC markers. Furthermore, 
Ibrahim et al	(94)	verified	syndecan‑1	as	a	novel	biomarker	
for	inflammatory	TNBC	and	modulating	the	BCSC	phenotype	
via orchestrating the IL‑6/STAT3‑Notch and EGFR signal 
cascades. 

According to the currently recognized stem cell markers for 
breast cancer, BCSCs may be divided into the CD44+/CD24‑ 
and aldehyde dehydrogenase (ALDH)+ subtypes (95). The 
most rapidly proliferating ALDH+ BCSCs have an epithelial 
cell morphology, whereas the CD44+/CD24‑ mesenchymal 
subsets display declined proliferation but high invasion and 
metastasis (96). In general, based on the expression levels of 
CD44, breast cancers of different molecular subtypes show 
variations in the proportion of CD44+/CD24‑ BCSCs (97). For 
instance, the proportion of CD44+/CD24‑ BCSCs in basal‑like 
breast	cancer	is	significantly	higher	than	that	in	luminal	A	and	
luminal B breast cancers (98), which may be accountable for 
the worse prognosis of basal‑like breast cancer as compared 
with that of the luminal A and luminal B subtypes (Table II). 
Collectively, the existence of BCSCs has tremendously 
increased the metastasis, angiogenesis and therapy resistance 
of breast cancer, as well as the secondary tumor formation in 
patients. Therefore, devising therapeutic interventions with 
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multidisciplinary strategies to target BCSCs would be of great 
help in boosting patients' survival rates and in increasing the 
sensitivity to anti‑tumor drugs for breast cancer.

RUNX2 and BCSCs. State‑of‑the‑art renewal has indicated 
the involvement of RUNX2 in various cancer types. The 
pro‑cancer role of RUNX2 in breast cancer is known to be 
related to BCSCs (7). Furthermore, several studies have 
indicated a potential link between RUNX2 and CD44. 
For instance, in colorectal cancer, RUNX2 interacts with 
brahma‑related gene 1 to target CD44 for promoting invasion 
and migration of colorectal cancer cells (99). In prostate cancer 
cells, RUNX2 forms a complex with intracellular domain of 
CD44 as a co‑transcriptional factor, activates the expression 
of metastasis‑related genes, and contributes to migration and 
tumor formation (54).

As a surface marker of BCSCs, CD44 rather than CD24 is 
positively correlated with RUNX2 expression, which suggests 
the association of RUNX2 with CD44+/CD24‑ BCSCs. For 
instance, Zhang et al (24) found that RUNX2 promoted the 
malignant biological behavior of breast cancer cells by regu‑
lating the proportion of BCSCs. As a common event in breast 
cancer progression, PR Ser294 phosphorylation is required 
to maintain BCSCs fate via cooperation with the growth 
factor‑initiated signaling pathway and key phosphor‑PR 
targets (e.g., solute carrier family 37 member 2 and RUNX2). 
With the aid of the microsphere formation test, RUNX2 has 
been proven to act as an important driver of BCSC formation 
in vitro	(100).	In	detail,	RUNX2	has	a	critical	influence	in	both	
EMT and BCSCs, and the ectopic expression of RUNX2 may 
subsequently induce the occurrence of EMT via the regulation 
of key pathways (e.g., TGF‑β, Wnt) (101). Meanwhile, RUNX2 
also has a critical role in CD44+/CD24‑ MCF10AT1 cells with 
BCSC characteristics (102).

Taken together, RUNX2 has a critical role in promoting 
the development and metastasis of breast cancer via regulating 
the proportion of BCSCs, which provides new insight for the 
further dissection of the pathogenesis and therapeutic remedies 
for breast cancer.

7. Drug resistance in breast cancer

Attributed to the rapid development of technologies, the diag‑
nosis and treatment of breast cancer have markedly improved; 
however, drug resistance in breast cancer remains an issue, 
as the mechanisms comprise disorders in the orchestration 
of	hormones,	apoptosis	and	efflux	pump	activation,	signaling	
pathways and oncogenes (103).

Relationship between CSCs and drug resistance. CSCs are 
self‑renewal cells with high tumorigenic potential. CSCs are 
able to adapt to changes in the surrounding environment and 
are more resistant to radiotherapy and chemotherapy than 
other cells in the tumor. Several studies have indicated that 
the dual effects of intrinsic and extrinsic factors contributes to 
CSC‑mediated therapy resistance.

CSCs have a very slow cell cycle and possess an anti‑apop‑
totic machinery, DNA repair systems and persistent stemness, 
which lead to drug resistance during cancer treatment (104). 
Besides, CSC drug resistance may also be caused by external 
factors, such as the tumor microenvironment (TME). When 
the TME is always in a state of nutrition, metabolism and 
oxygen	deficiency,	it	promotes	the	adaptation	of	CSCs	to	the	
TME (105). CSC drug resistance is complex. CSCs promote 
tumor progression, treatment resistance and disease recur‑
rence, which may achieved by their sustained proliferation, 
invasion into normal tissue, promotion of angiogenesis, 
evasion of the immune system and resistance to conventional 
anticancer therapies (106,107).

BCSCs and drug resistance in breast cancer. Cancer metas‑
tasis and drug resistance currently remain major challenges in 
cancer therapy (106). Increasing evidence suggests that CSCs 
favor cancer metastasis and drug resistance, leading to relapse 
of cancer and death of patients (108). On the one hand, BCSCs 
have been considered the result of overactivation of mutant 
normal breast stem cells during self‑renewal. On the other 
hand, BCSCs are resultant of the dedifferentiation of cancer 
cells caused by somatic mutations or microenvironmental 
components during treatment (109).

The	proportion	of	BCSCs	was	found	to	be	significantly	
increased in chemoresistant and radioresistant breast cancer 
cell lines and human tissues (110). Furthermore, overactivation 
of the anti‑apoptotic PI3K signaling pathway and the anti‑
oxidant nuclear factor E2‑related factor 2 signaling pathway 
collectively contribute to cellular resistance and resistance 
of BCSCs to radiation‑induced ROS attack and apoptosis 
compared with non‑BCSCs (111,112). Further mechanistic 
studies revealed that BCSCs with a high level of free radical 
scavenger expression were more tolerant to the hypoxic envi‑
ronment and thus conferred a radiation‑resistant phenotype by 
reducing the accumulation of intracellular ROS (113). In addi‑
tion, certain cell surface pumps in BCSCs (e.g., ATP binding 
cassette subfamily G member 2) are able to impair the intra‑
cellular accumulation of anticancer drugs (114). Collectively, 
the variations in BCSCs are responsible for increased drug 
resistance of breast cancer.

Table II. BCSC markers.

First author, year Marker BCSCs Location Function (Refs.)

Dzobo, 2021 CD44 + Cell membrane Cell‑cell interactions, cell adhesion and migration (133)
Fillmore, 2007 CD24 ‑ Cell membrane Cell differentiation (134)
Tomita, 2016 ALDH1 + Cytoplasm Oxidize xenobiotic and intracellular aldehydes (135)

BCSC, breast cancer stem cell; ALDH1, aldehyde dehydrogenase 1.
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RUNX2 and drug resistance of breast cancers. Overexpression 
of RUNX2 commonly leads to reduced sensitivity of cancer 
cells (e.g., osteosarcoma) to chemotherapy, which may thus be 
used as a reliable marker for the evaluation of chemotherapy 
resistance (115). Conversely, loss of RUNX2 expression is 
adequate to increase the sensitivity of osteosarcoma cells 
to the chemotherapeutic agent doxorubicin (116). First, 
Sugimoto et al (117) found that silencing RUNX2 was able to 
enhance	the	sensitivity	of	AsPC‑1	cells	in	P53‑deficient	human	
pancreatic cancer to gemcitabine (GEM) by stimulating Tap63 
(isoform of p63 gene)‑mediated cell death. Furthermore, 
Ozaki et al	(118)	verified	that	increased	Tap73‑dependent	cell	
death mediated by RUNX2 depletion enhanced the sensitivity 
of P53‑mutant pancreatic cancer MiaPaCa‑2 cells to GEM. 
In addition, RUNX2 was found to weaken the proapop‑
totic activity and enhance the sensitivity to GEM drugs of 
P53‑mutant Panc‑1 pancreatic cancer cells via suppressing 
Tap63 expression (118). These findings demonstrate that 
RUNX2 is associated with drug sensitivity to GEM in pancre‑
atic cancer cells lacking functional P53.

In breast cancer, Tamoxifen (TAM) resistance is responsible 
for a large proportion of breast cancer‑associated mortalities. 
Jeselsohn et al (119) found that RUNX2 was able to interact with 

ERα to directly induce SOX9 transcription and reduce the sensi‑
tivity of breast cancer cells to TAM. Of note, Geter et al (120) 
identified RUNX2 as the only RUNX family member that 
was transcriptionally or translationally upregulated in both 
TAM‑resistant LCC9 cells and patient‑derived xenograft derived 
from tamoxifen‑resistant cell lines, suggesting that RUNX2 has 
a core role in the drug resistance of breast cancer. The study's 
results revealed that RUNX2 promoted the metastasis of breast 
cancer, and knockdown of RUNX2 was able to significantly 
restore the sensitivity of breast cancer to TAM (120). Furthermore, 
Othman et al (121) found that silencing of RUNX2 increased the 
sensitivity of breast cancer cells to microtubule‑targeting agents. 
Wang et al (122) demonstrated that serum miR‑4530 may sensi‑
tize breast cancer to taxane‑ and anthracycline‑based neoadjuvant 
chemotherapy by suppressing RUNX2. A recent study revealed 
that RUNX2 directly targeted MMP1 and facilitates aggressive‑
ness and chemoresistance of TNBC cells (21).

However,	the	specific	mechanisms	of	RUNX2‑associated	
drug	resistance	in	breast	cancer	still	require	confirmation	and	
further elucidation. Systematic and detailed dissection of the 
underlying mechanisms will contribute to conquering drug 
resistance and provide new references for the treatment of 
breast cancer (Fig. 1).

Figure 1. Schematic diagram of possible drug resistance mechanisms of RUNX2 in breast cancer. In breast cancer, aberrant RUNX2 expression contributes 
to drug resistance. Elevated serum miR‑4530 levels may sensitize breast cancer to drugs by suppressing RUNX2. The drug resistance of breast cancer may 
be initiated by the direct transcription of SOX9 induced by the interaction of RUNX2 with ERα. In addition, RUNX2 may regulate BCSCs, which cause drug 
resistance through protein ABCG2 or the PI3K and NRF2 signaling pathways. ROS in BCSCs also have a certain role. Finally, RUNX2 may affect EMT 
through secreted protein MMP1 or signaling pathways, such as TGF‑β and Wnt, and EMT regulates BCSCs and eventually leads to breast cancer resistance. 
RUNX2, Runt‑related transcription factor 2; miR, microRNA; ER, estrogen receptor; NRF2, nuclear factor erythroid 2‑related factor 2; BCSC, breast cancer 
stem cell; ROS, reactive oxygen species; ABCG2, ATP binding cassette subfamily G member 2; EMT, epithelial to mesenchymal transition.
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8. Discussion

RUNX2 has been recognized as a master transcription factor 
for osteogenesis and bone metastases of invasive breast 
cancer (72). In highly metastatic breast cancer, RUNX2 
phosphorylation has associations with the invasive capacity 
of MDA‑MB‑231 cells by modulating the activity of tyrosine 
kinase ABL, which is involved in the activation of the classical 
BMP‑SMAD signaling cascades (17). It was further indicated 
that RUNX2 facilitates the aggressiveness and chemoresis‑
tance of TNBC and the concomitant tumorigenesis and cancer 
progression via activating MMP1, which thus provides a basis 
for developing RUNX2‑MMP1 axis‑based novel candidates 
for breast cancer diagnostics (21).

Longitudinal studies have highlighted the potential 
utility	of	RUNX2	as	a	pivotal	contributor	to	bone‑specific	
metastasis during breast cancer. For instance, Li et al (76) 
verified	the	facilitating	effect	of	RUNX2	and	the	targeted	
ITGA5 during the adhesion and attraction of breast cancer 
cells, as well as osteotropism and bone colonization. In 
contrast to the aforementioned studies indicating the critical 
role	of	RUNX2	in	bone‑specific	metastasis	or	progression	of	
breast cancer, the present review mainly focused on the latest 
updates on the interaction between RUNX2 and BCSCs 
and their biofunctions, which contribute to the aggressive‑
ness and drug resistance of breast cancer. Furthermore, the 
systematic and detailed investigation of the RUNX2‑BCSCs 
axis in breast cancer and knowledge regarding its utility in 
diagnosis and treatment are still far from satisfactory and 
further preclinical and clinical investigations are required in 
the future.

Of note, current progress has also highlighted the 
potential application of developing computational models 
based	on	the	data	fusion	paradigm	for	identification	of	the	
disease‑related non‑coding RNAs (ncRNAs) as a future 
direction in disease assessment (123,124). For instance, 
Huang et al (123) summarized the advances in miRNAs 
and algorithm design for complex diseases by computa‑
tional models, which may help overcome the obstacles to 
disease prediction. Simultaneously, Chen et al (125) and 
Wang et al (126) put forward the limitations and future 
directions of the disease prediction utility of long ncRNAs 
(lncRNAs) or circular RNAs (circRNAs) for complex 
diseases by combing experimental technology with compu‑
tational prediction algorithms. Similarly, a series of ncRNAs 
have	been	identified	to	be	linked	to	the	disease	progression	
of breast cancer or TNBC, such as the miR‑20a‑5p/high 
mobility group AT‑hook 2 axis, lncRNA‑CDC6/miRNA‑215 
and circRNA_002502/miR‑182‑5p/forkhead box O3a 
axis (127‑130). In addition, Yin et al (131) performed 
a weighted gene co‑expression network analysis and 
competing endogenous RNA network analysis based on the 
Cancer	Genome	Atlas	database	and	identified	the	prospective	
association of 3,301 key modules and 453 genes with breast 
cancer prognosis. Therewith, it would be of great interest and 
importance to perform further studies to predict the associa‑
tion of RUNX2 and BCSCs with breast cancer development 
and drug resistance based on powerful computational model 
construction,	which	may	also	benefit	the	development	of	the	
framework of oncology diagnostics and therapeutics from 

a different perspective in the future. The present review 
mainly summarized the research progress on RUNX2 and 
BCSC in terms of breast cancer progression and diagnosis, 
may	benefit	the	identification	of	key	mechanisms	of	breast	
cancer and supply references for the concomitant anticancer 
treatment and drug development in the future.

As a malignant tumor type with high morbidity and 
mortality rates, breast cancer persistently endangers the health 
and lives of females. While chemotherapy remains the major 
remedy for breast cancer, drug resistance severely limits the 
efficacy	and	usually	results	 in	tumor	metastasis	and	recur‑
rence.

In recent years, RUNX2 in breast cancer has attracted 
considerable attention, as increasing evidence indicated its 
pivotal role in tumor development and metastasis, as well as its 
association with BCSCs‑related drug resistance. Based on the 
current literature, it may be presumed that RUNX2 enhances 
drug resistance in breast cancer by regulating the proportion 
and biofunction of BCSCs, which will vastly enhance the 
current understanding of the pathogenesis and provide reliable 
targets for clinical treatment and drug development in the 
future.
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