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Abstract. Late diagnosis is one of the major contributing 
factors to the high mortality rate of lung cancer, which is now 
the leading cause of cancer‑associated mortality worldwide. 
At present, low‑dose CT (LDCT) screening in the high‑risk 
population, in which lung cancer incidence is higher than 
that of the low‑risk population is the predominant diagnostic 
strategy. Although this has efficiently reduced lung cancer 
mortality in large randomized trials, LDCT screening has high 
false‑positive rates, resulting in excessive subsequent follow‑up 
procedures and radiation exposure. Complementation of 
LDCT examination with biofluid‑based biomarkers has been 
documented to increase efficacy, and this type of preliminary 
screening can potentially reduce potential radioactive damage 
to low‑risk populations and the burden of hospital resources. 
Several molecular signatures based on components of the 
biofluid metabolome that can possibly discriminate patients 
with lung cancer from healthy individuals have been proposed 
over the past two decades. In the present review, advancements 
in currently available technologies in metabolomics were 

reviewed, with particular focus on their possible application in 
lung cancer screening and early detection.
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1. Introduction

Lung cancer is one of the most common malignancies and is 
the leading cause of cancer‑associated mortality worldwide (1). 
The poor prognosis and high mortality rate of lung cancer are 
mainly due to late diagnosis (2). At present, only ~15% of 
newly diagnosed lung cancer cases are diagnosed in the early 
stages (stages I‑II), which contributes to >60% probability of 
5‑year survival when effective treatment is available (3‑5). 
However, >60% patients with lung cancer are first diagnosed 
already in the advanced stages (stage  IV) or already with 
metastatic tumors, who typically only have 5‑year survival 
rates of <5% (6).

In addition to the reduction in exposure to tobacco smoke, 
screening for the early detection of lung cancer has been 
considered to be a major strategy for decreasing the rate of 
lung cancer mortality (7). At present, low‑dose CT (LDCT) 
screening in the high‑risk population is the predominant tool 
used for detecting lung cancer in the early stages (2). The results 
of the US National Lung Screening Trial (ClinicalTrials.gov 
number, NCT00047385) found that compared with chest X‑ray 
examination, LDCT screening was associated with a 20% 
reduction in lung cancer‑specific mortality in a high‑risk group 
of participants defined by their smoking status (8). In addi‑
tion, other previous studies have also confirmed the validity 
of LDCT screening for the early detection of lung cancer to 
reduce mortality rate  (9,10). However, potentially healthy 
individuals are also at risk of being subjected to expensive and 
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potentially harmful diagnostic procedures, such as positron 
emission tomography, transthoracic/bronchoscopic biopsy or 
even surgery, due to the considerably high false‑positive rate of 
LDCT (nearly 96.4%) (8). Therefore, the combination of LDCT 
with additional biomarker‑based tests has been proposed 
to be a more favorable strategy for improving the effective‑
ness of lung cancer screening programs whilst reducing the 
cost and harmfulness to otherwise healthy individuals (11). 
Such tests can either pre‑select individuals from a high‑risk 
population for LDCT examination or discriminate between 
benign and malignant pulmonary nodules detected by LDCT 
screening (12).

Several different components of blood, including specific 
serum/plasma proteins, autoantibodies, microRNA, cell‑free 
DNA and circulating tumor cells, have all been proposed to be 
potential lung cancer biomarkers (13‑15). However, they typically 
have low specificities and few were found for wider beneficial 
application in clinical practice, especially for the early detection 
of lung cancer. Instead, monitoring cancer‑related metabolites is 
an emerging and promising approach for the detection and diag‑
nosis of a number of malignant tumors, including colorectal, 
gastric, gynecological and lung cancer (16‑20).

2. Method

A search for articles published in English on PubMed 
(https://pubmed.ncbi.nlm.nih.gov/) was conducted regarding 
the use of metabolic biomarkers in lung cancer screening 
and early diagnosis that were published between Jan 1, 2002 
and Aug 1, 2022. The search terms used were ‘lung cancer’, 
‘metabolites’, and ‘early detection’. A total of 127 unique 
articles were identified and examined. Of these 127 articles, 
25 were excluded due to being inappropriate article types, such 
as chapters in books, comments or review articles. Among the 
remaining 102 articles, 59 articles were removed due to being 
on unrelated topics, such as those not on lung cancer, not on 
cancer detection, not on metabolomics or not on biofluids 
(blood, urine and exhaled breath). Following evaluation of the 
full text of the remaining 43 articles, 12 were rejected, as these 
studies did not encompass early‑stage lung cancer cases or it 
was unclear if early‑stage lung cancer cases were included in 
the studies. Finally, the present review included 31 articles for 
analysis, as shown in the flow chart in Fig. 1.

3. Metabolomics: A new source of cancer biomarkers

Metabolomics, also known as metabolic profiling, uses 
quantitative and qualitative analyses to determine key 
metabolism‑associated molecules of different molecular 
masses (21,22). It reveals information into specific states of 
cancer that are otherwise not apparent (22). Previously, the 
assessment of metabolic changes is limited to measuring the 
levels of individual hormones and metabolites using imaging 
modalities and standard clinical laboratory tests  (23). By 
contrast, metabolomics involves the measurement of vast 
numbers of metabolites systematically, including carbohy‑
drates, nucleotides, carboxylic acids, amino acids and lipids 
in blood, urine, or other body fluids (24). Metabolomics has 
emerged to be a potentially powerful approach for identi‑
fying cancer biomarkers and drivers of tumorigenesis (25). 

In addition, compared with other ‘omes’, such as genome, 
transcriptome, and the proteome, the metabolome reflects 
the real‑time status of a particular phenotype to reveal what 
exactly has happened in the organisms exactly, providing bona 
fide biomarkers for disease surveillance (Fig. 2).

4. Metabolomics techniques and technologies

The main methodologies involved in metabolomics have been 
based on nuclear magnetic resonance (NMR) spectroscopy 
and mass spectrometry (MS) techniques, coupled with either 
gas chromatography (GS) or liquid chromatography (LC), 
each with their specific advantages and limitations (Table I). 
NMR is highly selective and non‑destructive, rendering it 
recognized to be the gold standard for elucidating the structure 
of metabolites. However, the sensitivity of NMR is relatively 
low, only being able to detect metabolites with concentra‑
tions >10‑5 M (26). By contrast, MS has higher sensitivity and 
selectivity (26). Modern MS provides highly specific chemical 
information, such as accurate molecular mass, isotope distri‑
bution patterns for element formulation determination, and 
characteristic fragment‑ion information directly related to the 
chemical structure of metabolites (27). In addition, the high 
sensitivity of MS allows for the detection and measurement of 
a large number of primary metabolites (the initial end products 
created by a live organism as a result of growth) and secondary 
metabolites (aid in the performance of various biological 
tasks that are not engaged in the growth and maintenance of 
cellular activity) at picomolar to femtomolar levels. As one of 
the major tools for the collection of ‘omic’ information, MS 
techniques use big data for processing and interpretation by 
machine learning  (28,29). These unique advantages make 
MS an essential tool for metabolomics analysis (30). Over 
the past decade, various comprehensive reviews have already 
discussed how NMR and MS work, and how each can be 
used for metabolomics (31‑33). Despite their own advantages 
and disadvantages, several studies have shown how they can 

Figure 1. Flow chart depicting the identification and selection of articles.
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be used to complement each other (31‑35). Indeed, the use of 
multiple technologies greatly broadens the level of metabolite 
coverage and the types of samples that can be studied (36).

5. Metabolomics for the early detection of lung cancer

Over the past two decades, a number of metabolomics studies 
have been performed based on NMR and/or MS techniques to 
generate metabolite profiles that can discriminate patients with 
lung cancer from healthy individuals using different types of 
biological samples. The present review summarizes the studies 
that include early‑stage lung cancer cases to evaluate the viability 
of using metabolomics for the early detection of lung cancer.

Blood metabolomics. Blood samples, including plasma and 
serum, are the most widely studied biological fluids for lung 
cancer research. It can be used for characterizing metabolic 

markers, using both targeted (measuring a specific set or 
family of compounds only) and untargeted (global profiling) 
approaches (Table II) (37-54).

Previous studies have described alterations in the levels 
of amino acids, especially in alanine, glutamine, histidine, 
leucine, isoleucine, lysine and serine, in the serum or plasma 
of patients with lung cancer (37‑42,44). These alterations may 
be associated with the increase in amino acid demand caused 
by the proliferation of the tumor cells, highlighting the impor‑
tant role of amino acid metabolic pathways in lung cancer 
progression.

Lactic acid is another commonly altered metabolite in 
patients with lung cancer (37,39). Previous studies on lactate 
metabolism in patients with cancer have suggested that 
changes in the level of this metabolite are due to the increased 
glucose uptake and lactate production by the tumor in the 
absence of oxygen (55,56). In support of this, in various tumor 

Table I. Comparison between NMR and MS.

Properties	 NMR	 MS

Sensitivity	 Low	 High, at picomolar and femtomolar levels
Selectivity	 Generally used for non‑selective analysis	 Generally used for selective and non‑selective
		  (targeted and untargeted) analysis
Sample measurement	 All metabolites with NMR concentration levels	 Different chromatographic techniques are
	 can be detected in one assay	 required for different types of metabolites
Sample recovery	 i) Non‑destructive; and	 i) Destructive; and ii) samples can't be
	 ii) samples can be recovered and stored for a long	 recovered 
	 period; iii) samples can be analyzed multiple times	
Reproducibility	 High	 Moderate
Sample preparation	 Small sample volumes	 i) High quality of sample preparation; and
		  ii) different columns and optimized ionization
		  conditions are required
Number of metabolites	 40‑200, depending on spectral resolution	 ≥500
detected		

NMR, nuclear magnetic resonance; MS, mass spectrometry.

Figure 2. Relationship between ‑omes with systems biology. Cancer is caused by changes at the genomic level which results in altered RNA transcription, 
protein expression and function. The metabolome reflects the real‑time status of phenotype and reveals what exactly has happened in the organisms.
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Table II. List of metabolic studies of blood and urine applied to lung cancer.

A, Serum and plasma

		  Analytical		
First author, year	 Research subjects	 techniques	 Major findings	 (Refs.)

Rocha et al, 2011	 85 LC (69 eLC)	 NMR	 Compared with CTR samples, LC samples had	 (37)
	 and 78 CTR		  significantly: i) Higher levels of LDL, VLDL, lactic	
			   acid and pyruvic acid; and ii) lower levels of HDL,	
			   glucose, citrate, formate, acetate, amino acids (such	
			   as alanine, glutamine and histidine) and methanol	
Deja et al, 2014	 77 LC (35 eLC)	 NMR	 Compared with COPD samples, LC samples had	 (38) 
	 and 22 COPD		  significantly: i) Higher levels of N‑acetylated	
			   glycoproteins, leucine, lysine, mannose, choline and	
			   lipids; and ii) lower levels of acetate, citrate and methanol	
Klupczynska et al,	 90 LC (70 eLC)	 Liquid	 A new set of six amino acids (aspartic acid, β‑alanine,	 (44) 
2016	 and 63 CTR	 chromatography	 histidine, asparagine, phenylalanine and serine)	
		  ‑MS	 ensured higher accuracy to distinguish LC from CTR	
	 		  (from 90.3 to 77.1% depending on the histological type)	
Puchades-Carrasco	 142 LC (72 eLC)	 NMR	 Compared with CTR samples, LC samples had	 (39) 
et al, 2016	 and 87 CTR		  significantly: i) Higher levels of leucine/isoleucine,	
			   acetate, N‑acetyl‑cysteine, glutamate, methanol,	
	 		  glycerol, creatine and lactic acid; and ii) lower	
	 		  levels of HDL, LDL, VLDL, adipic acid, lipids,	
	 		  glutamine, Choline–N(CH3)3, threonine and histidine	
Louis et al, 2016	 331 LC (93 eLC)	 NMR	 Compared with CTR samples, LC samples had	 (45) 
	 and 315 CTR		  significantly: i) Higher levels of glucose,	
			   N‑acetylated glycoproteins, b‑hydroxybutyrate,	
			   leucine, lysine, tyrosine, threonine, glutamine,	
			   valine and aspartate; and ii) lower levels of	
			   alanine, lactate, sphingomyelin and	
			   phosphatidylcholine (and other cholinated	
			   phospholipids), citrate and other phospholipids	
Klupczynska et al,	 50 eLC and 25	 UHPLC‑Q‑	 In total, 36 metabolites were significantly altered	 (41)
2017	 CTR	 Orbitrap‑	 between LC and CTR samples, including carnitine,	
	 	 HRMS	 acyl‑carnitines, malic acid, pyroglutamic	
			   acid, histidine and histamine. A signature consisting	
			   of 12 of these identified metabolites allowed the	
			   building of a cancer classifier characterized by a	
			   receiver operating characteristic AUC value of 0.836	
Ros‑Mazurczyk	 31 LC (25 eLC)	 GC‑MS	 Compared with CTR samples, LC samples had	 (40) 
et al, 2017	 and 92 CTR		  significantly: i) Higher levels of benzaldehyde; and ii) 	
			   lower levels of 17 metabolites, including amino acids,	
			   carboxylic acids and alcohols	
Chen et al, 2015	 30 LC (22 eLC)	 GC‑MS and	 Compared with CTR samples, LC samples had	 (42) 
	 and 30 CTR	 liquid	 significantly: i) Higher levels of phosphorylcholine,	
		  chromatography	 glycerophospho‑N‑arachidonoyl, ethanolamine,	
		  ‑MS	 γ‑linolenic acid, α‑hydroxyisobutyric acid and 9,12‑	
			   octadecadienoic acid; and ii) lower levels of	
			   prasterone sulphate, sphingosine, serine and 2,3,4‑	
			   trihydroxybutyric acids	
Mazzone et al,	 94 LC (57 eLC)	 GC‑MS and	 79 metabolites significantly increased and 70	 (46) 
 2016	 and 190 CTR	 liquid	 metabolites decreased in the LC group. In total,	
		  chromatography	 the ratios of 9,723 metabolites differed significantly	
		  ‑MS	 between the LC and CTR groups	
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Table II. Continued.

A, Serum and plasma

		  Analytical		
First author, year	 Research subjects	 techniques	 Major findings	 (Refs.)

Yu et al, 2017	 199 eLC and	 ESI‑MS	 LC samples had significantly increased levels of	 (47)
	 147 CTR		  LPE(18:1) and ePE(40:4) but decreased levels of	
			   C(18:2)CE and SM(22:0) compared with those in CTR	
			   samples	
Ros‑Mazurczyk	 100 eLC and	 MALDI‑	 PC, diacylophospholipids and SMs were frequently	 (43)
et al, 2017	 300 CTR	 MS and	 upregulated, whilst LPC 18:2, LPC 18:1 and LPC 18:0	
		  liquid	 were significantly downregulated in	
		  chromatography	 LC samples	
		  ‑MS		
Xiang et al, 2018	 99 LC (33 eLC)	 Liquid	 In total, 28 endogenous metabolites were present at	 (48)
	 and 112 CTR	 chromatography	 significantly different levels in patients with LC	
		  ‑MS	 compared with those in CTR group. Cortisol, cortisone	
			   and 4‑methoxyphenylacetic acid had high sensitivity and	
			   specificity values (AUC=0.955) as biomarkers for	
			   discriminating between LC and CTR	
Klupczynska et al,	 20 eLC and 20	 Liquid	 Compared with CTR samples, LC samples had	 (49)
2019	 CTR	 chromatography	 significantly: i) Higher levels of PC (PC 42:4, 42:1, 44:3	
		  ‑MS	 and 40:2) and LPC (LPC 26:0 and 26:1); and ii) lower	
	 		  levels of PC 34:4. A biomarker panel of the seven	
	 		  aforementioned metabolites was able to distinguish eLC	
	 		  from CTR with a sensitivity of 70‑90% and a specificity	
	 		  of 90‑93%	
Zhang et al, 2020	 156 LC (130 eLC)	 Liquid	 β‑hydroxybutyric acid, LPC 20:3, PC acyl ester C40:6,	 (50)
	 and 60 CTR	 chromatography	 citric acid and fumaric acid were significantly different	
		  ‑MS	 between CTR and eLC samples	
Huang et al, 2020	 200 eLC and	 LDI‑MS	 Compared with CTR samples, LC samples had	 (51)
	 200 CTR		  significantly: i) Higher levels of cystenie, histamine,	
			   fatty acid, uracil and uric acid; and ii) Lower levels of	
			   hydroxypicolinic acid and indoleacrylic acid. A	
			   biomarker panel of these seven metabolites was able to	
			   distinguish eLC from CTR with a sensitivity of 70‑90%	
			   and a specificity of 90‑93%	
Derveaux et al,	 114 LC (48 eLC)	 NMR	 In total, 62 metabolites, including lactate, valine, alanine,	 (52)
2021	 and 118 CTR		  maleic acid and phenylalanine, were significantly	
			   different between LC and CTR samples	
Qi et al, 2021	 98 LC (52 eLC)	 Liquid	 In total, five metabolites (palmitic acid, heptadecanoic	 (53)
	 and 75 CTR	 chromatography	 acid, 4‑oxoproline, tridecanoic acid and ornithine) had	
		  ‑MS	 the potential for early lung cancer screening. The	
			   discrimination accuracy and AUC score reached as high	
			   as 0.829 and 0.869	
Wang et al, 2022	 171 eLC and	 Liquid	 In total, nine lipids (LPC 16:0, 18:0 and 20:4; PC	 (54)
	 140 CTR	 chromatography	 16:0‑18:1, 16:0‑18:2, 18:0‑18:1, 18:0‑18:2; and 16:0‑22:6	
		  ‑MS	 and triglycerides 16:0‑18:1) were identified as the	
			   features most important for early‑stage cancer detection	
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cells such as lung carcinoma, renal carcinoma and gastric 
carcinoma cells, glucose is preferentially catabolized through 
fermentation into lactate even when oxygen is not limiting, in 
a phenomenon known as the Warburg effect (55,57).

Phospholipids are important constituents of the cell 
membrane (58). Phospholipid metabolic pathways are regu‑
larly found to be dysregulated in lung cancer, yielding distinct 
signatures  (58). Several studies have revealed perturbed 
levels of phospholipids in the blood of patients with lung 
cancer (42,43,46,47,54). Yu et al (47) previously performed 
a study based on electrospray ionization‑MS and found that 
lung cancer samples had significantly increased levels of 
lysophosphatidylethanolamine(18:1) and phosphatidylethanol‑
amine(40:4), and decreased levels of cholesterol ester(18:2) 
and sphingomyelin(22:0) compared with those in healthy 
controls. The cancer classifier built using these four phos‑
pholipids was characterized by Area under the ROC Curve 
(AUC) values to be 82.3 and 80.8% in the training and valida‑
tion set, respectively (47). Another previous study based on 
LC‑MS encompassed 100 patients with early lung cancer and 
a matched group of 300 healthy individuals regarding sex, age 
and smoking exposure. Upregulation of phosphatidylcholines 
(PC), diacylophospholipids and SMs coupled with the down‑
regulation of lysophosphatidylcholines (LPCs), such as LPC 
18:2, LPC 18:1 and LPC 18:0 distinguished lung cancer cases 

from controls. An effective cancer classifier composed of seven 
components was built with an AUC of 0.88 (43). Recently, 
Wang et al  (54) performed single‑cell RNA sequencing of 
different early‑stage lung cancers and found that global aber‑
ration of lipid metabolism in various cell types, including T 
cells, B cells, fibroblasts, endothelial cells and epithelial cells, 
with glycerophospholipid metabolism as the most altered 
(with the smallest P‑value) lipid metabolism‑related pathway. 
Untargeted lipidomics was performed in an exploratory cohort 
of 311 participants with nine phospholipids (LPC 16:0, 18:0 
and 20:4; PC 16:0‑18:1, 16:0‑18:2, 18:0‑18:1, 18:0‑18:2 and 
16:0‑22:6; and triglycerides 16:0‑18:1‑18:1) being identified 
to be the features most beneficial for early lung cancer detec‑
tion. Using these nine features, a LC‑MS‑based targeted assay 
achieved 100.0% specificity for early lung cancer detection 
on an independent validation cohort (54). In a hospital‑based 
lung cancer screening cohort of 1,036 participants examined 
by LDCT and a prospective clinical cohort containing 109 
participants, the assay reached ≥90.0% sensitivity and 92.0% 
specificity for the discrimination of patients with lung cancer 
compared with healthy controls (54).

Urine metabolomics. Compared with other biospecimens, 
urine can be obtained from larger cohorts non‑invasively 
and is therefore accepted more easily by the public. Similar 

Table II. Continued.

B, Urine

	 	 Analytical		
First author, year	 Research subjects	 techniques	 Major findings	 (Refs.)

Hanai et al, 2012	 20 LC (11 eLC)	 GC‑MS	 Tetrahydrofuran, 2‑chloroethanol, 2‑pentanone,	 (62)
	 and 20 CTR		  2‑methylpyrazine, cyclohexanone, 2‑ethyl‑1‑hexanol,	
			   2‑phenyl‑2‑propanol, isophorone and	
			   2,6‑diisopropylphenol were significantly upregulated in	
			   LC samples	
Mathe et al, 2014	 469 LC (211 eLC)	 UPLC‑ESI‑	 Levels of creatine riboside, nacetylneuraminic acid,	 (63)
	 and 536 CTR	 QTOF‑MS	 cortisol sulfate and an unidentified glucuronidated	
			   compound referred to as ‘561+’ were significantly	
			   elevated in the LC group	
Haznadar et al,	 178 LC (28 eLC)	 Liquid	 Creatine riboside was associated with lung	 (64)
2016	 and 351 CTR	 chromatography	 cancer risk in the overall case‑control set, whilst creatine	
		  ‑MS	 riboside and nacetylneuraminic acid were associated with	
			   lung cancer risk in a European‑American cohort	
Funai et al, 2020	 46 LC (23 eLC)	 Liquid	 O‑aminohippuric acid was significantly upregulated in	 (65)
	 and 185 CTR	 chromatography	 LC samples compared with that in CTR samples	
		  ‑MS and NMR		
				  

LC, lung cancer; eLC, early lung cancer; CTR, control; COPD, chronic obstructive pulmonary disease; NMR, nuclear magnetic resonance; 
MS, mass spectrometry; GC‑MS, gas chromatography‑MS; UHPLC‑Q‑Orbitrap‑HRMS, ultra‑high‑performance liquid chromatography‑quad‑
rupole‑Orbitrap‑high‑resolution MS; ESI, electrospray ionization; MALDI, Matrix‑Assisted Laser Desorption Ionization; LDI, laser 
desorption/ionization; UPLC‑ESI‑QTOF, ultraperformance liquid chromatography‑electrospray‑ionization‑quadrupole time‑of‑flight; AUC, 
area under the curve; LDL, low density lipoprotein; VLDL, very low‑density lipoprotein; HDL, high‑density lipoprotein; PC, phosphatidyl‑
cholines; LPC, lysophosphatidylcholine; SM, sphingomyelin.
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Table III. Metabolic studies of exhaled breath applied to LC.

First author,	 Research	 Analytical		  Sensitivity,	 Specificity,	
 year	 subjects	 techniques	 Major Findings	 %	 %	 (Refs.)

Phillips et al, 1999	 87 LC (16 eLC)	 GC‑MS	 A predictive model employing nine	 85.1	 80.5	 (70)
	 and 91 CTR		  VOCs (butane, tridecane, tridecane,			 
			   octane, hexane, heptane, hexane,			 
			   pentane and decane) exhibited			 
			   sufficient sensitivity and specificity			 
			   to be considered as a screen for LC in			 
			   a high‑risk population			 
Poli et al, 2005	 36 eLC, 25	 GC‑MS	 The combination of the 13 VOCs	 72.2	 93.6	 (71)
	 COPD		  allowed the correct classification			 
	 and 50 CTR		  of the cases into groups. Together			 
			   with conventional diagnostic			 
			   approaches, VOC analysis could			 
			   be used as a complementary test			 
			   for the early diagnosis of LC			 
Phillips et al, 2007	 193 LC	 GC‑MS	 Mean typicality scores employing a	 84.6	 80.	 (72)
	 (120 eLC)		  16‑VOC model were significantly			 
	 and 211 CTR		  higher in patients with LC compared			 
			   with those in the control group. The			 
			   predictive model achieved near‑			 
			   maximal performance with six breath			 
			   VOC			 
Fu et al, 2014	 97 LC (50 eLC),	 FT‑ICR‑MS	 The concentrations of 2‑butanone,	 89.8	 81.3	 (73)
	 32 BPN and 88		  2‑hydroxyacetaldehyde, 3‑hydroxy‑2‑			 
	 CTR		  butanone and 4‑hydroxyhexenal			 
			   in the exhaled breath of patients			 
			   with LC were significantly			 
			   higher compared with that in			 
			   the BPN and CTR samples			 
Li et al, 2015	 85 LC (44 eLC),	 FT‑ICR‑MS	 A model based on elevated levels of	 96	 84	 (74)
	 34 BPN and		  the six carbonyl VOCs (2‑butanone,			 
	 85 CTR		  2‑hydroxyacetaldehyde, 3‑hydroxy‑2‑			 
			   butanone, 4‑hydroxyhexenal, acrolein			 
			   and malondialdehyde) effectively			 
			   discriminates patients with LC from			 
			   healthy controls in addition to patients			 
			   with BPN			 
Sakumura et al,	 107 LC (70 eLC)	 GC‑MS	 In total, 68 VOCs were detected as	 95	 89	 (75)
2017	 and 29 CTR		  LC markers and a combination of five			 
	 		  VOCs (CHN, methanol, CH3CN,			 
	 		  isoprene and 1‑propanol) was			 
	 		  sufficient for 89.0% screening			 
	 		  accuracy			 
Rudnicka et al,	 108 LC (17 eLC)	 GC‑MS	 In total, 88 VOCs were identified in	 Validation	 Validation	 (76)
2019	 and 121 CTR		  the exhaled breath. The statistical	 group, 80;	 group, 91.2;	
			   analysis revealed seven analytes	 test group,	 test group,	
	 		  (acetone, methyl acetate, isoprene,	 86.4	 86.4	
	 		  methyl vinyl ketone, cyclohexane,			 
	 		  2‑methylheptane and cyclohexanone)			 
	 		  to have the highest discriminatory			 
	 		  power			 
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to blood samples, urine also contains useful metabolic infor‑
mation for detecting the occurrence of lung cancer (59). The 
composition of urine is naturally less complex in comparison 
with that of plasma or serum, making it more popular for 
metabolomics analysis  (59). In addition, once the blood is 
filtered by the glomerulus, certain components like metabo‑
lites can be concentrated in the urine, making their detection 
easier compared with that of other types of biological fluids. 
The first study to measure potential urinary metabolomic 
cancer biomarkers based on NMR and MS was published in 
2006 and the concentration of nucleosides was found to be 
significantly increased in patients with breast cancer when 
compared with the normal controls (60). Carrola et al (61) first 
showed the valuable potential of using NMR‑based metabo‑
lomics for finding putative biomarkers of lung cancer in the 
urine in 2011. Previous studies have since analyzed urinary 
metabolites employing either NMR or MS for early detection 
of lung cancer (Table II) (62-65).

The majority of urine metabolomic studies into patients 
with lung cancer found alterations in creatine and creati‑
nine, making creatine and creatinine potentially valuable 
biomarkers for early lung cancer detection (61,63). To further 
assess whether creatine was elevated in the urine samples of 
subjects prior to lung cancer diagnosis, a detailed prospective 
study based on LC‑MS was previously conducted (64). Urine 
samples from 178 patients with lung cancer and 351 volun‑
teers were collected and examined, where it was revealed that 
elevated creatine levels were associated with lung cancer risk 
in both European‑ and African‑Americans (64). Consistently, 
creatine and creatinine have been shown to be upregulated in 
other biofluids, such as serum and saliva, in patients with lung 
cancer (39,66). In the human body, creatine is synthesized from 
methionine, glycine, and arginine, which is then converted 
into creatinine (67). Therefore, the increase in creatine and 
creatinine levels may be associated with upregulated amino 
acid metabolism. Nevertheless, the promising results of 

urinary creatine and creatinine in early lung cancer detection 
remain to be validated by independent studies based on mate‑
rial collected real‑time during lung cancer screening.

Exhaled breath metabolomics. Normal metabolism produces 
a variety of volatile organic compounds (VOCs), which can 
be expelled through respiration  (68). Therefore, exhaled 
breath has also been explored as a potential source of cancer 
biomarkers. It was first shown that VOCs in the exhaled breath 
could be used to differentiate patients with lung cancer from 
healthy individuals in 1999 (69). Since then, accumulating 
evidence has been supporting the utility of VOC detections 
in the exhaled breath for the early detection of lung cancer, 
most yielding high degrees of sensitivity and specificity 
(Table III) (70-78).

Lung cancer causes oxidative stress and induces oxidase 
enzymes in tumor tissues, which in turn produce higher 
concentrations of specific VOCs, especially carbonyl VOCs in 
the exhaled breath. Carbonyl VOCs are produced by biochem‑
ical pathways, such as the respiratory chain and oxidative 
phosphorylation pathway, as intermediates, some of which can 
yield unique information into specific pathways, such as lipid 
oxidation induced by free radicals (79,80).

Consequently, several studies have focused on the identi‑
fication of carbonyl VOCs as markers of lung cancer in the 
exhaled breath (73,74,81). Fu et al (73) previously found that 
the concentrations of 2‑butanone, 2‑hydroxyacetaldehyde, 
3‑hydroxy‑2‑butanone and 4‑hydroxyhexenal (4‑HHE) in 
the exhaled breath of patients with lung cancer were signifi‑
cantly higher compared to those in the exhaled breath of 
healthy controls and patients with benign pulmonary nodules 
(BPN). This was found using Fourier transform‑ion cyclotron 
resonance MS (73). Bousamra et al (81) then showed that the 
sensitivity and specificity of breath analysis was associated 
with the number of the elevated VOCs. Among patients with 
lung cancer, three or four elevated cancer markers (2‑butanone, 

Table III. Continued.

First author,	 Research	 Analytical		  Sensitivity,	 Specificity,	
 year	 subjects	 techniques	 Major Findings	 %	 %	 (Refs.)

Chen et al, 2021	 160 LC (74 eLC),	 GC‑MS	 In total, 20 VOCs discriminated LC	 NR	 NR	 (77)
	 70 BPN and		  from CTR (AUC=0.987); 19 VOCs			 
	 122 CTR		  discriminated LC from BPN			 
			   (AUC=0.809)			 
Tsou et al, 2021	 148 LC (8 eLC)	 SIFT‑MS	 In total, 116 VOCs were analyzed in	 96	 88	 (78)
	 and 168 CTR		  the exhaled breath samples and a			 
			   quantitative VOCs databank integrated			 
			   with the application of an XGBoost			 
			   classifier (a machine learning method)			 
			   provided a persuasive platform for			 
			   lung cancer prediction			 

LC, lung cancer; eLC, early lung cancer; CTR, control; COPD, chronic obstructive pulmonary disease; BPN, benign pulmonary nodules; 
GC‑MS, gas chromatography‑mass spectrometry; NR, not reported; FT‑ICR‑MS, Fourier transform‑ion cyclotron resonance mass spectros‑
copy; SIFT‑MS, selected ion flow tube mass spectrometry; VOC, volatile organic compound; AUC, area under the curve.
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2‑hydroxyacetaldehyde, 3‑hydroxy‑2‑butanone and 4‑HHE) 
produced a specificity of 95% to discriminate patients with 
lung cancer from healthy controls. Furthermore, an enhanced 
model based on the elevated levels of the six carbonyl VOCs, 
including the four markers identified in Fu's work (73), plus 
acrolein and malondialdehyde, was found to effectively 
discriminate patients with lung cancer from healthy indi‑
viduals in addition to patients with BPN (73). The sensitivity 
in each case was ≥96%, with specificity ranging from 64% for 
BPN to 86% for smokers and 100% for non‑smokers and for 
the three groups combined 84% (74).

Other potential metabolic biomarkers that can be used 
for the early detection of lung cancer were also obtained in 
previous studies. Typical examples are isoprene, methanol and 
acetone (71,75,76). Despite these promising advances, the lack 
of normalization and standardization has led to significant 
variations in the VOC profiles and/or concentrations among 
the different studies and no commercial products have been 
used in clinical practice due to the lack of uniform sampling 
standards and sample storage methods.

6. Conclusions

The metabolome is the most representative of the molecular 
phenotype of an organism, where the concentrations of 
metabolites directly reflect the current biochemical activity 
of the organism. Therefore, metabolomics is considered a 
suitable approach for increasing the efficacy of detecting 
early‑stage lung cancer. However, such applications require a 
deeper understanding into how these measurements relate are 
associated with human physiology and cancer pathology. It 
remains to be elucidated which metabolites can be measured 
in biofluids which are readily accessible to accurately reflect 
cancer status. Although progress has been made, it remains 
unclear to what extent the metabolites in biofluids can reveal 
about the metabolic activity of the tumor. Additional metabolo‑
mics experiments in fluids associating these measurements to 
the physiology of cancer would be a promising future direction.

In addition, global metabolic alterations in biofluids do not 
allow for the differentiation of cancer from other diseases with 
systemic metabolic alterations such as hypercholesteremia 
and phenylketonuria. The issue of such confounding effects in 
metabolomic analysis will be minimized if the tumor tissues 
are tested appropriately using NMR and MS. Therefore, it 
would be of benefit to identify differentiating metabolites in 
tissues through untargeted metabolomics before testing them 
in the biofluids through targeted metabolomics. Several studies 
have recently highlighted the role of extracellular vesicles 
(EVs) and their cargo (protein and RNAs) in lung cancer diag‑
nosis (82‑85), proposing EVs to be another potential source 
of cancer biomarkers. Therefore, combined metabolomics 
approaches for EVs phenotyping would provide vital insights 
into the characteristics of EVs in cancer and potentially iden‑
tify novel strategies for the early detection of lung cancer.

One of the challenges with metabolomics is the vast number 
and chemical complexity of metabolites that exist, such that no 
current metabolomics approach can cover these complexities 
comprehensively. This leads to inaccuracy in the early detec‑
tion of lung cancer. The present review proposes that currently, 
the optimal metabolomics method for research would be 

combination with other ‘omics’ approaches to comprehensively 
elucidate the changes in metabolites in lung cancer whilst also 
to improve the accuracy of lung cancer screening.
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