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Abstract. Vessel invasion (VI) is an important factor affecting 
the prognosis of gastric cancer (GC), and the accurate deter‑
mination of preoperative VI for locally advanced GC is of 
great clinical significance. Traditional methods for the evalu‑
ation of VI require postoperative pathological examination. 
Noninvasive preoperative evaluation of VI is therefore crucial 
to determine the best treatment strategy. To determine the 
value of preoperative prediction of gastric VI based on portal 
venous phase computed tomography (CT) radiomic features 
and machine‑learning models, a retrospective analysis of 
296 patients with locally advanced GC confirmed through 
pathological examination was performed. They were divided 
into two groups, VI+ (n=213) and VI‑ (n=83), based on patho‑
logical results. Using pyradiomics to extract two‑dimensional 
radiomic features of the portal venous stage of locally advanced 
GC, data were divided into training (n=207) and validation 
sets (n=89), with a ratio of 7:3, and three feature selection 
methods were cascaded and merged. Finally, least absolute 
shrinkage and selection operator (LASSO) regression was 
used for feature screening to obtain the optimal feature subset. 
Four current representative machine‑learning algorithms were 
used to construct the prediction model, the receiver operating 
characteristic curve was constructed to evaluate the predic‑
tive performance of the model, and the area under the curve 
(AUC), accuracy, sensitivity, and specificity were calculated. 
The differentiation degree, and the Lauren's and CA199 clas‑
sifications were independent risk factors for locally advanced 
GC VI. Pyradiomics extracted 864 quantitative features of 
portal vein images of locally advanced GC. After filtering 
out low variance features using R, 236 features remained. 

Next, 18 features were screened using the LASSO algorithm. 
Extreme gradient boosting (XGBoost), logistic regression, 
Gaussian naive Bayes, and support vector machine models 
were constructed based on the 18 best features screened out of 
the portal venous CT images of advanced GC and three inde‑
pendent risk factors of GC VI in clinical features predicted 
the training set AUC values of 0.914, 0.897, 0.880, and 0.814, 
respectively. The predicted validation set AUC values were 
0.870, 0.877, 0.859, and 0.773, respectively. The DeLong test 
results indicated no statistically significant difference in AUC 
values between the XGBoost and logistic regression models 
in the training and validation sets. The four machine‑learning 
models showed high predictive performance. The logistic 
regression model had the highest AUC value in the validation 
set (0.877), and the accuracy and F1 score were 77 and 87.6%, 
respectively. CT radiomic features and machine‑learning 
models based on the portal venous phase can be used as a 
noninvasive imaging method for the preoperative prediction 
of VI in locally advanced GC. The logistic regression model 
exhibited the highest diagnostic performance.

Introduction

In China, gastric cancer (GC) is one of the most common 
malignant tumors of the digestive system. As the fifth most 
common cancer and third most deadly cancer, >1,000,000 
new cases and ~783,000 deaths from GC were reported world‑
wide in 2018 (1). Gastric cancer onset is insidious, progresses 
rapidly, and is associated with poor treatment efficacy. 
Although patients with GC can undergo radical treatment 
through surgical resection in the early stages, the postoperative 
recurrence rate is as high as 60%, and the long‑term prognosis 
of patients remains unsatisfactory. The postoperative recur‑
rence of GC has become the primary cause of death in GC 
patients, which is related to the tumor size, degree of differ‑
entiation, pathological type, and TNM stage (2,3). In addition, 
several studies have confirmed that vessel invasion (VI) is an 
independent risk factor for the recurrence and metastasis of 
locally advanced GC (4‑8). Therefore, accurate preoperative 
evaluation of VI in locally advanced GC is of great clinical 
significance. The evaluation of VI traditionally requires 
postoperative pathological examination, which delays the 
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formulation of a preoperative individualized treatment plan (9). 
Therefore, exploring methods of noninvasive assessment of VI 
prior to surgery to determine the best treatment strategy for 
patients with locally advanced GC is particularly important. 
Radiomics is based on medical imaging images to obtain more 
objective, quantitative, deeper, and visually complex tumor 
features. With the continuous development and improvement 
of radiomics, the diagnostic ability of artificial intelligence 
(AI)‑based methods has become equal to or even better than 
that of human experts in several different types of cancer. As 
a result of this success, AI approaches are currently helping 
solve more complex clinical decision‑making challenges, such 
as tumor identification and prediction, the study of the tumor 
microenvironment, assessment of the response to different 
treatment modalities, identification of treatment‑related 
changes, and imaging representations of genotypic features 
associated with prognosis (10‑12).

In the present study, radiomics analysis was performed 
based on computed tomography (CT) images of the portal 
venous phase of locally advanced GC, combined with the diag‑
nostic model established by AI. A variety of machine‑learning 
algorithms were used for comparison, aiming to explore the 
value of machine‑learning models based on the radiomics 
characteristics of portal vein phase CT in predicting VI of 
locally advanced GC before surgery.

Materials and methods

Patients. Between July 2011 and December 2020, informa‑
tion was retrospectively collected from 296 patients (214 
men and 82 women) with locally advanced GC who were 
admitted to our hospital and whose diagnoses were confirmed 
through pathological examination. Their ages varied from 28 
to 86 years, with the median age of 60.75 years. The inclu‑
sion criteria were as follows: Patients underwent radical 
surgical resection, locally advanced GC was pathologically 
confirmed with VI results, and abdominal contrast‑enhanced 
CT (CECT) examination was performed ≤2 weeks before 
surgery. The exclusion criteria were as follows: Received 
radiotherapy, chemotherapy, radiochemotherapy, or other 
nonsurgical treatments before surgery; lesions too small 
or images where the quality was too poor to be evaluated; 
incomplete clinicopathological data; and macroscopic VI 
by the tumor. The pathological evaluation of VI was based 
on the presence of tumor cell infiltration in the lymphatic 
vessels and arteriovenous vessels of the peritumor under 
the microscope  (9). Based on postoperative pathological 
results, 213 patients were confirmed as VI+, and 83 patients 
were VI‑. Patients were divided into training (n=207) and 
validation sets (n=89) using a stratified sampling method 
according to the ratio of 7:3. Among them, 149 VI+ and 58 
VI‑ cases were assigned to the training set, while 64 VI+ 
and 25 VI‑ cases were assigned to the validation set. The 
flowchart of case screening is presented in Fig. 1. Clinical 
data of patients in terms of sex, age, location, TNM stage, 
degree of differentiation, Lauren's classification, carcinoem‑
bryonic antigen levels, and CA125 levels were collected. The 
study was approved by the Institutional Review Board of The 
First Hospital of Zhengzhou University (Zhengzhou, China; 
approval no. 2021‑KY‑1070‑002).

CT image acquisition protocol. A Discovery CT 750HD scanner 
was used to perform the CECT examination. The primary 
imaging parameters were as follows: Tube voltage, 100 kVp; tube 
current, selection automatic mA; pitch, 1.375; detector collima‑
tion, 0.625 mm; rotation time, 0.5‑0.6 sec; and reconstruction 
slice thickness, 5 and 1.25 mm. Contrast medium (370 mg 
I/ml) was injected through the cubital vein with a high‑pressure 
syringe at a flow rate of 3.5 ml/sec and a dose of 1.5 ml/kg body 
mass. Arterial phase and venous phase scans were performed at 
25 and 60 sec after the injection of the contrast agent.

Radiomic analysis. The portal venous phase thin slice images 
(1.25  mm) of locally advanced GC were introduced into 
Pyradiomics (version 3.0, https://pyradiomics.readthedocs.io) 
for imaging feature extraction and analysis.

Tumor segmentation. The tumor region of interest (ROI) 
was manually delineated based on the portal venous phase 
CT images. The images were exported in Digital Imaging 
and Communications in Medicine format. Two abdominal 
imaging radiologists with 5 years of diagnostic experience 
(doctor A) and 13 years of diagnostic experience (doctor B), 
respectively, were asked to select the largest slice of the tumor 
and determine the contour (Fig. 2). If an agreement could not 
be reached, the results were judged by another radiologist with 
36 years (doctor C) experience in abdominal diagnosis. CT 
images of 50 cases were randomly selected, and the ROIs were 
delineated by doctors A and B every 2 weeks, respectively, and 
radiomics features were extracted. An intraclass correlation 
coefficient (ICC) >0.75 indicated good consistency.

Radiomics feature extraction and screening. In total, 864 
quantitative features of locally advanced GC were extracted by 
Pyradiomics based on portal venous phase images, including 
first‑order features, shape features, gray co‑occurrence matrix 
features, gray run matrix features, gray region size matrix 
features, adjacent gray difference matrix features, and gray 
dependence matrix features. The Mann‑Whitney U test and 
Student's t‑test were used for feature selection. After filtering out 
low variance, the minimum absolute contraction and selection 
algorithm was used to further screen the optimal feature subset 
with low co‑linearity. Meanwhile, linear fusion was adapted to 
calculate the score of the radiomics signature for every patient 
(Rad‑score=constant + coefficient x imaging features).

Construction of predictive model. Four machine‑learning 
algorithms, extreme gradient boosting (XGBoost), logical 
regression, Gaussian naive Bayes (GNB), and support vector 
machine (SVM) were used to select the optimal feature subset. 
To evaluate the prediction ability of the model, the receiver 
operating characteristic (ROC) and calibration curves were 
used to test the prediction efficiency and fitness of the model. 
The calibration curve was modified by 1,000 self‑weightlifting 
resampling and then evaluated by the Hosmer‑Lemeshow test. 
The accuracy, sensitivity, and specificity were calculated based 
on the optimal threshold value in the training set.

Statistical analysis. R version 3.4.3 (http://www.r‑project.
org) (13) was used for statistical analysis through R Studio 
(version 1.1.383) (14). Quantitative data were compared using 
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an independent samples Student's t‑test if data were normally 
distributed or otherwise a Mann-Whitney U test, and qualita‑
tive data were analyzed using a χ2 test. The pROC package was 
used to draw the ROC curve, and the rms package was applied 
to draw the calibration curve. The glmnet package was used 

to realize the least absolute shrinkage and selection operator 
(LASSO) regression with a five‑fold cross‑validation method 
to screen radiomics features. The XGBoost, logical regression, 
SVM, and GNB algorithms were performed using the pack‑
ages xgboost, glm, kernlab, and e1071, respectively.

Figure 1. Flow chart of patient screening. VI, vascular invasion.

Figure 2. Area of interest was delineated for locally advanced gastric cancer. The venous phase enhanced CT images showed a marked thickening of the 
stomach wall from the cardia, with uniform enhancement on enhanced scan (red arrow). The red area delineates areas of interest along the tumor. CT, 
computed tomography.
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Results

Clinicopathological features. Statistically significant differences 
were found in tumor location, TNM stage, differentiation degree, 
Lauren's classification, CA125, and CA199 levels between VI+ 
and VI‑ patients with locally advanced GC (all P<0.05, Table I), 
but no statistically significant differences in sex, age, and CEA 
were observed (P>0.05, Table I). Multivariate logistic regression 
model analysis showed that the degree of differentiation, Lauren's 
classification, and CA199 levels were independent risk factors for 
predicting VI in locally advanced GC (Table II).

Radiomics feature extraction repeatability assessment. 
The extracted radiomics features were based on the 
ROIs delineated by the doctors two times, which showed good 
intragroup consistency, and with ICC values >0.75. Radiomics 
features based on ROIs outlined by the two doctors also exhib‑
ited good intergroup consistency.

Radiomic feature screening. A total of 864 radiomics 
features were extracted based on the ROI from the CT 
images in the portal venous phase. After filtering out low 
variance features, 236 radiomics features were obtained. 
Next, 18 optimal radiomics features were finally selected 
by the LASSO algorithm, including two original features 
(original‑gldm‑Dependence Non‑Uniformity Normalized, 

original‑glrlm‑ShortRunEmphasis) and 16 wavelet features 
(wavelet‑LLLglszm Zone Entropy, wavelet‑HLHgldm 
Dependence Non Uniformity Normalized, wavelet‑LLLngtdm 
Contrast, wavelet‑LLLglrlm Short Run Low Gray Level 
Emphasis, wavelet‑LLHglszm Small Area Low Gray 
Level Emphasis, wavelet‑LHHglszm Zone Variance, 
wavelet‑LHL first order Median, wavelet‑LLLglcm Imc1, 
wavelet‑LHHglrlm Gray Level Variance, wavelet‑LHHglrlm 
Gray Level Non Uniformity Normalized, wavelet‑LLH first 
order Total Energy, wavelet‑HHLgldm Small Dependence 
Low Gray Level Emphasis, wavelet‑HLHglszm Low Gray 
Level Zone Emphasis, wavelet‑HLHglszm High Gray 
Level Zone Emphasis, wavelet‑HHHngtdm Contrast, and 
wavelet‑LLLglszm High Gray Level Zone Emphasis). In 
the training set, the Rad‑score value [presented as median 

Table I. Comparison of the clinicopathological factors between the VI+ and VI‑ set of patients with locally advanced gastric 
cancer.

Factor	 VI+ (n=213)	 VI‑ (n=83)	 χ2/t	 P‑value

Sex, n			   ‑1.341	 0.084
  Male	 148	 66		
  Female	 65	 17		
Age, years	 63 (54, 69)	 61 (54, 67)	 ‑0.646	 0.518
Tumor location, n			   ‑3.386	 <0.001
  Cardia	 98	 56		
  Gastric body	 30	 13		
  Gastric antrum	 85	 14		
TNM, n			   ‑5.833	 <0.001
  Ι	 9	 20		
  ΙΙ	 37	 32		
  ΙΙΙ/ΙV	 167	 31		
Differentiation, n			   ‑7.65 	 <0.001
  Middle	 50	 67		
  Low	 163	 16		
Lauren, n			   ‑1.896	 0.042
  Intestinal	 75	 41		
  Diffuse	 46	 14		
  Mixed	 92	 28		
CEA, ng/mla	 2.24 (1.43, 4.06)	 2.77 (1.68, 4.70)	 1.633	 0.103
CA125, kU/la	 8.40 (6.14, 11.97)	 10.60 (7.31, 15.77)	 2.562	 0.010
CA199, kU/la	 9.95 (4.97, 23.24)	 14.60 (7.19, 27.20)	 2.092	 0.036

aData are presented as the median (first quartile, third quartile). VI, vascular invasion.

Table II. Multivariate logistic regression model analysis.

			   95% Confidence
Factor	 P‑value	 Odds ratio	 interval

Differentiation	 0.003	 13.651	 7.265‑25.650
Lauren	 0.042	 1.349	 1.011‑1.799
CA199	 0.044	 1.796	 1.406‑2.186
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(lower quartile, upper quartile)] of VI+ patients [0.763 (0.681, 
0.831)] was significantly higher than that of VI‑ patients [0.672 
(0.616, 0.753)]. In the validation set, the Rad‑score value of 
VI+ patients [0.746 (0.668, 0.800)] was higher than that of 
VI‑ patients [0.721 (0.625, 0.794)], and the difference between 
these two groups was statistically significant.

Value of CT radiomics model in predicting VI in advanced GC. 
The machine‑learning model was constructed by combining 
the 18 best image radiomics features screened using venous 
CT images of locally advanced GC and the three independent 
risk factors of GC VI in clinical features. The diagnostic effi‑
cacy and ROC curve of different machine‑learning models for 
predicting VI of locally advanced GC are shown in Table III 
and Fig. 3. The AUC values of prediction models based on 

XGBoost, logical regression, GNB, and SVM in training sets 
were 0.914, 0.897, 0.880, and 0.814, respectively. The AUC 
values of prediction models in verification sets were 0.870, 
0.877, 0.859, and 0.773, respectively. Calibration curves of 
the validation set showed that the predicted results of the four 
machine‑learning models corresponded with the pathological 
results (Fig. 4). The results of the DeLong test indicated no 
significant difference in AUC value between the XGBoost 
and logical regression models either in the training set or in 
the validation set. Among the four machine‑learning models, 
the logical regression model showed the highest AUC value 
of 0.877 (95% confidence interval: 0.788‑0.964) in the valida‑
tion set. The accuracy and F1 scores of the logical regression 
model were 77.7 and 84.0%, respectively (Table III). Finally, 
the nomogram is shown in Fig. 5.

Table III. Summary of the performance of the different models in the training and test sets.

	 Training set	 Validation set
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 AUC	 Accuracy	 F1	 AUC	 Accuracy	 F1
Model	 (95% CI)	 (95% CI)	 (95% CI)	 (95% CI)	 (95% CI)	 (95% CI)

XGBoost	 0.914	 0.816	 0.885	 0.870	 0.787	 0.876
	 (0.875‑0.953)	 (0.774‑0.857)	 (0.860‑0.910)	 (0.769‑0.971)	 (0.751‑0.823)	 (0.852‑0.900)
Logistic	 0.897	 0.823	 0.871	 0.877	 0.777	 0.840
	 (0.853‑0.940)	 (0.801‑0.846)	 (0.852‑0.891)	 (0.788‑0.964)	 (0.691‑0.863)	 (0.751‑0.930)
GNB	 0.880	 0.799	 0.850	 0.859	 0.770	 0.876
	 (0.832‑0.928)	 (0.775‑0.823)	 (0.828‑0.873)	 (0.755‑0.961)	 (0.717‑0.823)	 (0.818‑0.935)
SVM	 0.814	 0.707	 0.763	 0.773	 0.662	 0.795
	 (0.755‑0.873)	 (0.659‑0.755)	 (0.704‑0.821)	 (0.647‑0.898)	 (0.550‑0.774)	 (0.750‑0.841)

AUC, area under the curve; CI, confidence interval; XGBoost, extreme gradient boosting; SVM, support vector machine; GNB, Gaussian naive 
Bayes.

Figure 3. Schematic diagram of ROC of different models in the training set and validation set. ROC, receiver operating characteristic curve; AUC, area under 
the curve; CI, confidence interval; XGBoost, extreme gradient boosting; SVM, support vector machine; GNB, Gaussian naive Bayes.
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Discussion

In this study, 18 radiomics features screened using venous 
CT images of locally advanced GC were used to construct 
image omics labels, and three clinical features screened by 
multivariate logistic regression were incorporated into the 
model for training and testing, indicating the rationality of 
this study in selecting the optimal feature subset. At the 
same time, XGBoost, logistic, GNB, and SVM models were 
constructed in this study. Their AUC values and accuracy, 
sensitivity, and specificity in the test set were good, indicating 
that the four machine‑learning models had high predictive 
efficiency, suggesting the feasibility of feature selection and 
model training in this study. In the test set, the best efficacy 
and highest accuracy in terms of the AUC value of the differ‑
entiation index was shown by the logistic model, followed by 
the XGBoost, GNB, and SVM models. However, no statis‑
tical significance in the AUC value difference between the 
four models was found. The AUC of the XGBoost model in 
the training set was 0.914, but decreased to 0.870 in the test 
set, showing an obvious overfitting phenomenon. The AUCs 
of the logistic model in the training and test sets were 0.897 
and 0.877, respectively, which were relatively stable with no 
overfitting phenomenon and continued to have good fitting 
and prediction abilities. In this study, the calibration curves 
of the four models were good, indicating that the results 
predicted by the four models showed high consistency with 
the pathological results. Based on these results, the logistic 
model is the best model to predict the VI status of locally 
advanced GC.

The primary reason for the poor prognosis of locally 
advanced GC is postoperative recurrence and metastasis, 
which has become the primary cause of death. VI is closely 
related to the pathological characteristics of tumor growth and 
metastasis. Previous studies have confirmed that the detection 

of VI is of great clinical value in the diagnosis and treatment 
of GC. The VI status of GC is generally confirmed based on 
the postoperative pathological examination, and the obtained 
results cannot fully reflect the heterogeneity of locally 
advanced GC. Therefore, some limitations in the guiding of 
preoperative management of GC patients exist.

A previous study on primary liver cancer found that the 
nomogram constructed using the random forest method is a 
potential biomarker for predicting microvascular invasion and 
relapse‑free survival in solitary hepatocellular carcinoma (15). 
Similarly, in a study of intrahepatic cholangiocarcinoma 
with mass formation  (16), both CECT radiomics analysis 
and radiomics factors could predict microvascular invasion, 
and the nomogram could further improve the prediction 
efficiency. Previous studies have reported that CT radiomics 
demonstrates good performance in the pathological grading of 
gastric neuroendocrine tumors, prognostic prediction of GC 
patients, and neoadjuvant chemotherapy response in advanced 
GC patients (17‑19). Other studies have shown that the normal‑
ized iodine concentration based on energy spectrum CT can 
reflect the angiogenesis of GC (20,21), which is closely related 
to the recurrence and prognosis of GC. Based on these studies, 
the prediction of VI of advanced GC based on radiomics 
should be feasible. To the best of our knowledge, reports on the 
preoperative prediction of VI in GC are rare (5,7). Therefore, 
a preliminary study on the VI of GC based on radiomics and 
machine learning was performed, and these results may form 
the basis of further research.

Radiomics has excellent clinical application value in the 
grading and staging of GC, predicting prognosis, and evalu‑
ating response (5). Portal venous phase CT images of locally 
advanced GC effectively reflect the biological behavior of 
the tumor, and VI can promote the growth and metastasis 
of GC cells. Therefore, radiomics analysis based on portal 
venous phase CT images is helpful for the prediction of VI 
status in locally advanced GC. In this study, original features 
and wavelet features based on high‑pass and low‑pass were 
screened from portal venous phase CT images, reflecting 
tumor morphological differences and image inhomogeneity. 
In a study on the prediction of the VI in borderline pancreatic 
cancer patients after neoadjuvant therapy, Ahmed et al (22) 
found that a circumferential interface ≥180 degrees, contour 
deformity ≥grade 3, and/or a contact length of tumor >2 cm 
may be important predictors, and its performance of predic‑
tion yielded AUCs of 0.85‑0.88 and 0.92‑ ‑0.87 for arterial 
and venous invasion, respectively. However, the sample size 
was small, and the clinical indicators were not included. 
Yang et al (23) developed a nomogram model integrating the 
clinical and radiomics features to predict the microvascular 
invasion of hepatocellular carcinoma, which showed that the 
AUC values of the model in the training and validation sets 
were 0.943 and 0.850, respectively, and the predictive perfor‑
mance of the model was lower than that of the prediction 
models constructed by XGBoost, logistic regression, and GNB 
in this study. Li et al (24) explored the value of the nomo‑
gram based on prothrombin induced by vitamin K absence‑II, 
α‑fetoprotein, and tumor size for predicting microvascular 
invasion in early hepatocellular carcinoma. The results 
showed that the model can predict microvascular invasion in 
early hepatocellular carcinoma. However, the study included 

Figure 4. Calibration curves of four machine learning models in the vali‑
dation sets. XGBoost, extreme gradient boosting; SVM, support vector 
machine; GNB, Gaussian naive Bayes.
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only 43 patients, only clinical features were included in the 
nomogram model, and the validation set was lacking. Given 
this, CT‑based radiomics has distinct value in the prediction 
of preoperative VI. Nevertheless, the determination of optimal 
features for evaluating preoperative VI is still controversial, 
and accounting for specificity and sensitivity using a single 
feature is difficult. Related research on the preoperative 
prediction of VI in GC using machine‑learning models has 
not yet been reported.

Machine learning has important clinical value in the 
preoperative prediction of VI in locally advanced GC. In this 
study, the AUC values of the XGBoost, logistic regression, 
and GNB models constructed based on CT images in a portal 
venous phase were higher than 0.80 for the prediction of the 
VI of locally advanced GC in the validation set, indicating 
good diagnostic performance, while the AUC of the SVM 
model in the validation set was relatively low.

Currently, numerous reports have been published on the use of 
machine‑learning algorithms to predict tumor VI (25‑27). Using 
radiomics and clinical and CT image features, Jiang et al (26) 
developed the XGBoost model and three‑dimensional convolu‑
tional neural network (3D‑CNN) model to predict microvascular 
invasion in hepatocellular carcinoma. The AUC value of the 
3D‑CNN model was higher than that of the XGBoost model 
in both the training and validation sets, which was 0.952 vs. 
0.980 and 0.887 vs. 0.906, respectively. Moreover, its predictive 
performance was higher than that of the prediction model in 
this study. Although radiomics is an advanced technique for 
image analysis, the extracted features are usually based on the 
manual delineation of ROI and rely on personal experience; 
thus, it cannot represent the most accurate decision (27). The 
most important advantage of the 3D‑CNN model is the high 
efficiency in identifying microvascular invasion, which can be 
done automatically with minimal work, time, and materials. For 

Figure 5. Nomograph prediction model for fusion of clinical features and imaging Radscore.
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the construction of the 3D‑CNN model, only the original image 
is required, and clinical data and radiological or radiomics 
features are not required. In addition, Liu et al (28) showed that 
the deep‑learning and SVM models based on arterial phase CT 
images and clinical features can predict microvascular inva‑
sion in hepatocellular carcinoma, and the deep‑learning model 
exhibited better performance with an AUC value of 0.845. The 
reason why the predictive performance of the previous study was 
lower than that of the present study may be due to the difference 
in sample sizes between the two studies. With a smaller sample 
size, ‘falling into the local optimal solution’ readily occurs, and 
achieving the global optimal parameter value is thus difficult.

This study had several limitations. This study prelimi‑
narily discussed the value of predicting VI in advanced gastric 
cancer based on preoperative CT images, However, due to the 
lack of data related to postoperative recurrence and prognosis, 
further research is being conducted taking into account these 
factors. The present study was a single‑center study with a 
small sample, and the stability and practicability of the models 
require further confirmation. The machine‑learning models 
in this study were based only on internal data, and further 
external validation is required. Finally, the models were only 
based on CT images in the portal venous phase, and CT images 
in other phases should also be compared.

In conclusion, machine‑learning models based on portal 
venous phase CT images can effectively predict the VI status 
of locally advanced GC before surgery. The predictive perfor‑
mance of the logistic regression model was relatively good 
and is expected to be an advanced means for the preoperative 
noninvasive prediction of VI status in locally advanced GC.
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