Clinical-imaging-radiomic nomogram based on unenhanced CT effectively predicts adrenal metastases in patients with lung cancer with small hyperattenuating adrenal incidentalomas

LIXIU CAO1*, HAOXUAN YANG2*, DESHUN YAO3*, HAIFENG CAI3, HUIJING WU1, YIXING YU4, LEI ZHU5, WENGUI XU5, YONGLIANG LI6 and JINGWU LI7

1Department of Nuclear Medical Imaging, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China; 2Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China; 3Department of Oncology Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China; 4Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China; 5Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, P.R. China; 6Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China; 7Department of Tumor Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China

Received October 18, 2023; Accepted April 26, 2024
DOI: 10.3892/ol.2024.14472

Abstract. The aim of the present study was to develop and evaluate a clinical-imaging-radiomic nomogram based on pre-enhanced computed tomography (CT) for pre-operative differentiation lipid-poor adenomas (LPAs) from metastases in patients with lung cancer with small hyperattenuating adrenal incidentalomas (AIs). A total of 196 consecutive patients with lung cancer, who underwent initial chest or abdominal pre-enhanced CT scan with small hyperattenuating AIs, were included. The patients were randomly divided into a training cohort with 71 cases of LPAs and 66 cases of metastases, and a testing cohort with 31 cases of LPAs and 28 cases of metastases. Plain CT radiological and clinical features were evaluated, including sex, age, size, pre-enhanced CT value (CTpre), shape, homogeneity and border. A total of 1,316 radiomic features were extracted from the plain CT images of the AIs, and the significant features selected by the least absolute shrinkage and selection operator were used to establish a Radscore. Subsequently, a clinical-imaging-radiomic model was developed by multivariable logistic regression incorporating the Radscore with significant clinical and imaging features. This model was then presented as a nomogram. The performance of the nomogram was assessed by calibration curves and decision curve analysis (DCA). A total of 4 significant radiomic features were incorporated in the Radscore, which yielded notable area under the receiver operating characteristic curves (AUCs) of 0.920 in the training dataset and 0.888 in the testing dataset. The clinical-imaging-radiomics nomogram based on initial plain CT images by integrating the Radscore and clinical-imaging factors provided a potential tool to effectively differentiate LPAs from metastases in patients with lung cancer with small hyperattenuating AIs.

Introduction

Adrenal incidentalomas (AIs) are frequently observed during clinical investigation and the detection rate is increasing
with the increasing role of CT, MRI and PET in diagnosing, staging, and follow-up of malignancies (1,2). Among AIs, 70-80% are adenomas and only ~5% are metastases, but the risk of metastases increases substantially in patients with a history of lung cancer. Numerous patients with lung cancer at the time of diagnosis present with distant metastases, with the adrenal gland the frequent site of metastatic spread (3,4). In a number of cases, a specific diagnosis of AIs can be established through a combination of endocrine function tests, clinical symptom assessment and radiological analysis. However, in patients with a history of lung cancer and non-functioning AIs, radiologic characteristics play an important role in evaluating those patients (5,6). Furthermore, when a small AI [long diameter (LD) ≤4 cm] with pre-enhanced CT value (CT_{pre}) ≥10 Hounsfield units (HU) is detected at the initial chest or abdominal plain CT scan, immediate differentiation between metastases and lipid-poor adenomas (LPAs) can be challenging due to overlapping imaging features (7-9). As a result, additional confirmatory steps, such as adrenal washout CT, chemical-shift MRI, PET/CT scans or biopsies, may be required for an accurate diagnosis (10-14).

Although the use of adrenal washout CT for characterizing LPAs has demonstrated relatively high sensitivity and specificity (15), several drawbacks warrant consideration, such as radiation hazards, additional cost and the potential risks associated with contrast media, including potential renal damage and allergic reactions. In addition, in vulnerable populations such as patients with diabetes or renal insufficiency, and the elderly and paediatric populations, the potential risks may be further exacerbated. Chemical-shift MRI, which is the most sensitive examination method, still leaves a portion of LPAs (~10-20%) as indeterminate. Additionally, not all patients have high-quality MRI images, and some patients have contraindications for MRI examination (16,17). As for PET/CT scans, there is a certain overlap in fluorodeoxyglucose uptake between metastases and adenomas (18). Moreover, PET/CT is not commonly available in a number of medical institutions, and thus results in greater financial and time costs for the patient. Adrenal biopsy, as an invasive test, may lead to some complications (19).

Therefore, it would be of great significance if the images could provide more valuable information to help identify LPAs from metastases in patients with lung cancer on the initial discovery examination, which is usually a chest or abdominal plain CT scan, especially for patients with diabetes or renal insufficiency.

Radiomics can extract larger numbers of objective and quantitative image-related features from CT images. These features encompass texture, geometry and intensity, offering insights into tumor heterogeneity and enabling the exploration of potential correlations between pathophysiology and biomedical images (20,21). A combined radiomic model incorporating radiomic features with relevant clinical and imaging features, as a complex bioinformatics mining tool, may improve the accuracy of differential diagnosis, classification and prediction (22,23). However, the specific effectiveness of the Radscore and the combined radiomic model based on unenhanced CT in differentiating LPAs from metastases in patients with lung cancer is not known.

Thus, the present retrospective study attempts to develop and validate a clinical-imaging-radiomic nomogram combining the Radscore with significant clinical-imaging features based on initial unenhanced CT to differentiate LPAs from metastases in patients with lung cancer with small hyperattenuating AIs.

Materials and methods

Patients. The present study received approval (approval no. RMYY-LLKS-2023202) from Tangshan People's Hospital Institutional Ethics Committee (Tangshan, China). Written informed consent was obtained from all patients regarding the use and publication of their existing clinical-pathological-CT data. Patients with a history of histopathological verification of lung cancer before or after undergoing chest or abdominal plain CT scan with diagnostic indications such as ‘adrenal metastasis’ or ‘adrenal adenoma’ or ‘adrenal nodule or mass’ from January 2014 to March 2022 were included at Tangshan People's hospital (Tangshan, China). Inclusion criteria were as follows: i) CT_{pre} ≥10 HU and small unilateral lesions; ii) non-functioning adrenal tumor; and iii) availability of complete imaging and clinical data. The eligibility criteria for diagnosing adrenal metastases were as follows: i) Histological confirmation through needle biopsy or resection specimen (n=2); ii) interval development of an adrenal mass compared with a previous CT scan showing a normal adrenal gland (n=63); and iii) short-term interval growth [a 20% reduce or increase in the total sum of the disease within six months (24)] in the same patient (n=29). The eligibility criteria for diagnosing LPAs were as follows: i) Surgical excision with subsequent histopathological assessment (n=81); and ii) stability in size after at least 1-year interval (mean follow-up time, 738±601 days; n=21) (25).

The present study included a total of 196 patients with adrenal lesions, consisting of 94 metastases and 102 LPAs. The patients were randomly divided into a training cohort (n=137, comprising 66 metastases and 71 LPAs) and a testing cohort (n=59, comprising 28 metastases and 31 LPAs) using a random seed method at a ratio of 7:3 (Fig. 1).

Images protocol. Given the retrospective nature of the present study, multiple CT scanners were employed, including the Brilliance 16 and Ingenuity core 64 (Philips Healthcare) and the GE Discovery CT 750 HD (Cytiva). All patients underwent chest or abdominal plain CT scans, with the following scanning parameters: 120 Kv, automatic tube current of 200-300 mA, 2 or 5-mm slice thickness, and then 5 mm images were reconstructed with a section thickness of 1.25 or 2 mm.

Imaging features. The LD, short diameter (SD), shape, laterality (right or left), border, homogeneity, CT_{pre} and calcification of AIs were independently measured and assessed by two radiologists who possessed 6 and 10 years of experience in diagnosing abdominal CT images using thin-sliced plain CT scans. The LD and SD measurements were taken at the maximum cross-section of the AIs. A region of interest covering two-thirds of the maximum axial area of the nodule was delineated, ensuring exclusion of adjacent fat. In some cases, their results were consistent.
and their results were directly used in subsequent analyses; When there was a disagreement, a consensus was reached through discussion (26).

Radiomics feature extraction, selection and Radscore building. A total of two abdominal radiologists, each with 4 and 6 years of experience using the 3D Slicer software (version 4.13.0; National Institutes of Health), manually delineated volumes of interest (VOIs) for the AIs. Great care was taken to encompass as much of the lesion as possible while meticulously avoiding the inclusion of external structures (Fig. 2A) (27). The reproducibility of VOIs delineated by both radiologists was evaluated, and those delineated by the radiologist with 6 years of experience were chosen for subsequent radiomics analysis (Fig. 2B). Radiomics’ features were extracted using Slicer Radiomics (version 1.0.0; Artificial Intelligence in Medicine Program), an extension that utilized SuperBuild to create a separate library, pyradiomics (version 3.0; Artificial Intelligence in Medicine Program) and a dependent scripted Module. These features were computed on both original or pre-processed images, employing Laplacian of Gaussian filters with varying σ values (1.0, 2.0, 3.0, 4.0, 5.0) and wavelets. The calculation was performed with an intensity bin width of 25 and resampled voxel dimensions of 1x1x1 mm³. The extracted radiomics features included first-order statistics, shape characteristics and texture features. Texture features encompassed gray level dependence matrix, gray level co-occurrence matrix, neighbouring gray tone difference matrix, gray level size zone matrix and gray level run length matrix. The least absolute shrinkage and selection operator (LASSO) method, renowned for its capability to reduce dimensionality and redundancy, was employed for feature selection in the training dataset (Fig. 2C). The optimal value of the penalization parameter λ was identified through a five-fold cross-validation process. Subsequently, the optimal features were determined by adjusting λ to correspond to one standard error of the minimum loss (Fig. 2D).
After deleting the high correlation coefficient (>0.7), the remaining useful features were employed in constructing the Radscore using a multivariable logistic regression formula:
\[
\text{Radscore} = \frac{1}{1 + e^{(-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \ldots - \beta_m x_m)}}.
\]

Diagnostic validation of Radscore and significant clinical and imaging features. The potential diagnostic performance of the Radscore, and the significant clinical and imaging features for differentiating metastases from LPAs were assessed using the area under the receiver operating characteristic (ROC) curves (AUCs), and the optimal cut-off values for maximum specificity and sensitivity were determined using the Youden index.

Development and validation of the clinical-imaging-radiomic model and nomogram. The risk factors for diagnosis of metastases were selected by stepwise binary logistic regression based on a likelihood test. Subsequently, the final risk factors were introduced in the multiple logistic regression to establish the clinical-imaging-radiomic model in the training cohort. The performance of this model was evaluated by AUC in both the training and testing datasets. To further evaluate the diagnostic ability of the nomogram developed from the clinical-imaging-radiomic model, a decision curve analysis (DCA) and calibration curve were employed.

Development and validation of the clinical-imaging model. Sex, age, CT_pre and shape were significant differences in the training and testing datasets between LPAs and metastases by the chi-square test or independent-sample t-test. Three variables including sex, age and CT_pre selected by multivariate logistic regression were independent factors for differentiating metastases from LPAs in patients with lung cancer. Then, the final risk factors were incorporated in the multivariate logistic
Table I. Clinical-imaging characteristics and rad-score of patients in the training and testing cohorts.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n=137)</th>
<th>LPAs (n=71)</th>
<th>Metastases (n=66)</th>
<th>P value</th>
<th>Total (n=59)</th>
<th>LPAs (n=31)</th>
<th>Metastases (n=28)</th>
<th>P-value</th>
<th>P(^{\Delta}) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td><0.0001(^{a})</td>
<td></td>
<td></td>
<td></td>
<td>0.001(^{a})</td>
<td>0.448</td>
</tr>
<tr>
<td>Male</td>
<td>80 (58.39%)</td>
<td>30 (42.25%)</td>
<td>50 (75.76%)</td>
<td></td>
<td>31 (52.54%)</td>
<td>10 (32.26%)</td>
<td>21 (75%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>57 (41.61%)</td>
<td>41 (57.75%)</td>
<td>16 (24.24%)</td>
<td><0.0001(^{a})</td>
<td>28 (47.46%)</td>
<td>21 (67.74%)</td>
<td>7 (25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, (years)</td>
<td>58.96±9.87</td>
<td>56.10±11.08</td>
<td>62.05±7.27</td>
<td>0.448</td>
<td>58.73±11.65</td>
<td>55.42±12.94</td>
<td>62.39±8.88</td>
<td>0.020(^{a})</td>
<td>0.885</td>
</tr>
<tr>
<td>Long diameter (mm)</td>
<td>19.86±7.52</td>
<td>19.92±7.01</td>
<td>19.81±8.09</td>
<td>0.934</td>
<td>20.10±8.79</td>
<td>20.61±9.32</td>
<td>20.17±8.35</td>
<td>0.849</td>
<td>0.662</td>
</tr>
<tr>
<td>Short diameter (mm)</td>
<td>15.84±5.99</td>
<td>15.93±5.49</td>
<td>15.74±6.52</td>
<td>0.852</td>
<td>16.63±7.32</td>
<td>17.39±7.87</td>
<td>15.78±6.69</td>
<td>0.405</td>
<td>0.431</td>
</tr>
<tr>
<td>Lesion location</td>
<td></td>
<td></td>
<td></td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
<td>0.098</td>
<td>0.629</td>
</tr>
<tr>
<td>Right</td>
<td>53 (38.69%)</td>
<td>23 (32.39%)</td>
<td>30 (45.45%)</td>
<td></td>
<td>25 (42.37%)</td>
<td>10 (32.26%)</td>
<td>15 (53.57%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>84 (61.31%)</td>
<td>48 (67.61%)</td>
<td>36 (54.55%)</td>
<td></td>
<td>34 (57.63%)</td>
<td>21 (67.74%)</td>
<td>13 (46.43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT(_{pre}) (Hu)</td>
<td>32.72±10.72</td>
<td>26.30±8.48</td>
<td>39.62±8.35</td>
<td><0.001(^{a})</td>
<td>32.86±10.72</td>
<td>29.35±11.91</td>
<td>36.75±7.71</td>
<td>0.006(^{a})</td>
<td>0.929</td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
<td>0.003(^{a})</td>
<td></td>
<td></td>
<td></td>
<td>0.024(^{a})</td>
<td>0.187</td>
</tr>
<tr>
<td>Regular</td>
<td>123 (89.78%)</td>
<td>69 (97.18%)</td>
<td>54 (81.82%)</td>
<td></td>
<td>49 (83.05%)</td>
<td>29 (93.55%)</td>
<td>20 (71.43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular</td>
<td>14 (10.21%)</td>
<td>2 (2.82%)</td>
<td>12 (18.18%)</td>
<td></td>
<td>10 (16.95%)</td>
<td>2 (6.45%)</td>
<td>8 (28.57%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneity</td>
<td>0.773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.338</td>
<td>0.268</td>
</tr>
<tr>
<td>Homogenous</td>
<td>130 (94.89%)</td>
<td>67 (94.16%)</td>
<td>63 (95.45%)</td>
<td></td>
<td>58 (98.31%)</td>
<td>30 (96.77%)</td>
<td>28 (100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogenous</td>
<td>7 (5.11%)</td>
<td>4 (5.63%)</td>
<td>3 (4.55%)</td>
<td></td>
<td>1 (1.69%)</td>
<td>1 (3.23%)</td>
<td>0 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td>0.140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.289</td>
<td>0.902</td>
</tr>
<tr>
<td>Sharp</td>
<td>135 (98.54%)</td>
<td>71 (100%)</td>
<td>64 (96.97%)</td>
<td></td>
<td>58 (98.31%)</td>
<td>31 (100%)</td>
<td>27 (96.43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blotted</td>
<td>2 (1.46%)</td>
<td>0 (0%)</td>
<td>2 (3.03%)</td>
<td></td>
<td>1 (1.69%)</td>
<td>0 (0%)</td>
<td>1 (3.57%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcification</td>
<td>0.517</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.130</td>
<td>0.625</td>
</tr>
<tr>
<td>Yes</td>
<td>3 (2.19%)</td>
<td>1 (1.41%)</td>
<td>2 (3.03%)</td>
<td></td>
<td>2 (3.39%)</td>
<td>0 (0%)</td>
<td>2 (7.14%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>134 (97.81%)</td>
<td>70 (98.59%)</td>
<td>64 (96.97%)</td>
<td></td>
<td>57 (96.61%)</td>
<td>31 (100%)</td>
<td>26 (92.86%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radscore</td>
<td>0.48±0.37</td>
<td>0.22±0.24</td>
<td>0.76±0.27</td>
<td><0.0001(^{a})</td>
<td>0.45±0.36</td>
<td>0.23±0.24</td>
<td>0.70±0.30</td>
<td>0.0001(^{a})</td>
<td>0.593</td>
</tr>
</tbody>
</table>

\(^{a}\)P<0.05 indicates a significant difference between LPAs and metastases in the training or validation cohort; P\(^{\Delta}\)<0.05 indicates a significant difference between the training and validation cohorts. LPAs, lipid-poor adenomas; CT, computed tomography; Hu, Hounsfield units; CT\(_{pre}\), pre-enhanced CT value.
regression to construct the clinical-imaging model in the training cohort. AUC analysis was used to quantify the predictive performance of clinical-imaging model in the training dataset and test the predictive performance in the testing dataset, respectively (Fig. S1).

Statistical analysis. R software (version 4.1.2; The R Foundation) and IBM SPSS Statistics software (version 21; IBM Corp.) were used for statistical analyses. Quantitative parameters and categorical variables were compared using the Mann-Whitney U test or independent-sample t-test and chi-square test, respectively. The inter-observer reproducibility of feature extraction was evaluated using the intra-class correlation coefficient (ICC). An ICC value <0.5 indicated low consistency, while values between 0.5 and 0.79 were considered medium, and values ≥0.8 indicated high consistency.

The LASSO regression was implemented using the 'glmnet' package in R software, the 'corplot' package was used to calculate the correlation between variables, logistic regression and nomogram were implemented by the 'rms' package, and DCA was implemented by the 'rmda' package. P<0.05 was considered to indicate a statistically significant difference.

Results

Clinical and imaging characteristics. Patient characteristics, including sex, age, LD, SD, location, CTpre, shape, border, homogeneity, calcification and Radscore, showed no significant differences between the training and testing datasets (Table I; P>0.05), indicating that it was reasonable to randomly partition the complete dataset by random seeds. However, sex, age, CTpre, and shape were significant differences between metastases and LPAs in both the training and testing datasets (Table I; P<0.05).

Radiomics feature extraction, selection and Radscore construction. A total of 1,316 quantitative features were extracted from the plain CT images. The inter-observer ICC of the radiomics features was <0.5, 0.5-0.79 and ≥0.8 for 2, 6 and 92%, respectively, indicating that the reproducibility of feature extraction was deemed satisfactory. Based on the training dataset, 13 meaningful features were selected by LASSO (Fig. 3). Next, 9 features with high collinearity were deleted and 4 potential predictors remained to calculate the Radscore for each patient using the following formula: Radscore =1/[1+exp(82.3458+13.8774x origial_shape_Flatness+ 87.0981xwaveletLLH_glmc_Idn-0.0015xwaveletLLH_gldm_DependenceNonUniformity-0.0301xwaveletLLL_firstorder_ Maximum)], Patients with LPAs had relatively lower Radscores in both the training and testing datasets (Table I; P<0.05).

Validation of Radscore and the performance of significant clinical and imaging features. The Radscores for patients in the two cohorts were shown in Fig. 4A and B. The Radscore yielded an AUC of 0.920 [95% confidence interval (CI), 0.879-0.962] with a sensitivity, specificity and accuracy of 0.788 (95% CI, 0.689-0.887), 0.901 (95% CI, 0.832-0.971) and 0.847 (95% CI, 0.845-0.849) in the training dataset, respectively. An AUC of 0.888 (95% CI, 0.808-0.968) with a sensitivity, specificity and accuracy of 0.750 (95% CI, 0.590-0.910), 0.871 (95% CI, 0.753-0.989) and 0.814 (95% CI, 0.809-0.819) was achieved in the testing dataset, respectively (Fig. 4C and D). The Radscore showed the highest differential diagnostic performance compared with significant clinical-imaging features. The cut-off values for age, CTpre and Rad-score were 60.5 years, 28.5 HU and 0.567, respectively (Table II).

Validation of the clinical-imaging-radiomic model and nomogram. A total of four variables including sex, age, CTpre and Radscore selected by multivariate logistic regression were independent factors for distinguishing between metastases and LPAs in patients with lung cancer. AIs in male patients [(Odds ratio, OR), 5.380 (1.267-22.850); P=0.024] with age >60.5 years [OR, 1.074 (0.998-1.156); P=0.057], CTpre >28.5 HU [OR, 1.179 (1.078-1.289); P<0.001] and Radscore >0.567 [OR, 473.911 (41.943-5354.651); P<0.001] tended to have metastases.

The clinical-imaging-radiomic model provided an AUC of 0.968 in the training dataset and 0.915 in the testing dataset (Fig. 5A and B). Meanwhile, the AUCs of the clinical-imaging-radiomic model were significantly higher than the clinical-imaging model (details of the clinical-imaging model are found in Fig. S1) in both training and testing cohorts (Table III). The nomogram revealed that >115.33 could be considered lung cancer metastases, with an AUC of 0.953, a sensitivity of 92.6%, a specificity of 86.3% and an accuracy of 89.3% in the training dataset. The AUC, sensitivity, specificity and accuracy of the nomogram was 0.850, 89.3%, 80.6 and 84.7% in the testing dataset when using 115.33 as the cut-off value (Fig. 5C-E). Favourable calibration curves were shown in both the training (P=0.940) and testing datasets (P=0.094; Fig. 5F and G).

Clinical application value according to DCA. Compared with the clinical-imaging model (details of models in Fig. S1) and the Radscore, the DCA of the nomogram had the highest clinical net benefit at almost all the threshold probabilities, showing that the clinical-imaging-radiomic nomogram is a potential tool to effectively predict metastases in patients with lung cancer with small hyperattenuating AIs (Fig. 6).
Discussion

The present study aimed to settle a real diagnostic conundrum for clinicians and radiologists. Most patients with lung cancer present with adrenal metastases at the time of diagnosis and an adrenal mass may be the only sign of cancer dissemination (28). Correctly differentiating metastases from LPAs is pivotal for optimal treatment. While in clinical practice, small unilateral AIs with CT-pre ≥10 HU are usually discovered in patients with lung cancer undergoing routine non-contrast chest or abdominal CT scans. Unfortunately, most patients currently need to go for enhanced CT due to the difficulty in differentiating LPAs from metastases with initial plain CT (7‑9). The present study was confined to initial plain CT on account that the aim was to determine whether the analysis based on initial plain CT images alone would be sufficient to make a satisfactory differential diagnosis. If the distinction was valid, it would help avoid the additional examinations and risks associated with contrast media.

Radiomics may be an important predictor for differential diagnosis in tumors and the application of Radiomics has been increasing in adrenal lesions (29,30). Yi et al (29) discovered that the radiomic nomograms by incorporating clinical risk factors and Radscore based on enhanced and unenhanced CT images could effectively differentiate lipid-poor adenoma from subclinical pheochromocytoma, with favourable specificity, sensitivity and accuracy. He et al (30) concluded that the radiomic nomogram based on pre-enhanced CT by integrating the Radscore and traditional clinical factors helped to effectively identify aldosterone-producing adenoma. To the best of our knowledge, few previous studies have determined whether a clinical-imaging-radiomic nomogram could be used to differentiate LPAs from metastases based on initial plain CT images in patients with lung cancer and with small unilateral AIs. Previous studies concerning adrenal metastases or LPAs have proved radiomics could provide some promising results. However, these findings have some limitations including small sample sizes, non-comprehensive

Table II. The optimal cut-off values of individual variables in the training cohort by receiver operating characteristic analysis.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cut-off</th>
<th>Area under the curve</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>-</td>
<td>0.668 (0.590‑0.745)</td>
<td>79.8%</td>
<td>57.8%</td>
<td>62.5%</td>
<td>71.9%</td>
</tr>
<tr>
<td>Age</td>
<td>60.5</td>
<td>0.655 (0.563‑0.747)</td>
<td>65.2%</td>
<td>67.6%</td>
<td>65.2%</td>
<td>67.6%</td>
</tr>
<tr>
<td>CT-pre</td>
<td>28.5</td>
<td>0.864 (0.805‑0.924)</td>
<td>93.9%</td>
<td>67.6%</td>
<td>72.9%</td>
<td>92.3%</td>
</tr>
<tr>
<td>Shape</td>
<td>-</td>
<td>0.577 (0.526‑0.628)</td>
<td>18.2%</td>
<td>97.2%</td>
<td>85.7%</td>
<td>56.1%</td>
</tr>
<tr>
<td>Rad-score</td>
<td>0.567</td>
<td>0.920 (0.879‑0.962)</td>
<td>78.8%</td>
<td>90.1%</td>
<td>88.1%</td>
<td>82.0%</td>
</tr>
</tbody>
</table>

PPV, positive predictive value; NPV, negative predictive value.

Figure 4. Sorted Radscore for patients in the (A) training cohort and (B) in the testing cohort. The Receiver operating characteristic curve of the Radscore in the (C) training cohort and in the (D) testing cohort. LPAs, lipid-poor adenomas.
CAO et al: UNENHANCED CT NOMOGRAM EFFECTIVELY DIFFERENTIATE SMALL ADRENAL INCIDENTALOMAS

Analysis (no combination of clinical, radiological features and radiomics features), involving different primary malignant tumors or different adrenal malignant tumors, and no studies have introduced Radscore (4,31,32). For example, Ho et al (31) revealed that the contrast-enhanced CT texture features achieved a mean AUC of 0.800, indicating the potential ability for distinguishing between benign and malignant lesions. Yet, the malignant lesions included not only metastases but also two cases of adrenal cortical carcinomas, and the study suffered from a small sample size (20 patients). In addition, Ho et al (31) did not discuss primary malignant tumors. Furthermore, although Andersen et al (4) proved certain texture parameters could statistically differentiate benign adrenal masses from metastases in patients with a history of lung cancer and constructed a diagnostic model, the AUC (0.73), sensitivity (58%), accuracy (68%) and specificity (77%) were relatively low.

Table III. Comparison of the performance of the Radscore, clinical-imaging model, and clinical-imaging-radiomic model in both training and testing cohorts.

<table>
<thead>
<tr>
<th>Model</th>
<th>Training cohort</th>
<th>Testing cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC</td>
<td>Z statistic</td>
</tr>
<tr>
<td>Clinical-imaging-radiomic model vs. clinical-imaging model</td>
<td>0.968 vs. 0.896</td>
<td>3.098</td>
</tr>
<tr>
<td>Clinical-imaging-radiomic model vs. Radscore</td>
<td>0.968 vs. 0.920</td>
<td>2.892</td>
</tr>
<tr>
<td>Clinical-imaging model vs. Radscore</td>
<td>0.896 vs. 0.920</td>
<td>0.726</td>
</tr>
</tbody>
</table>

AUC, area under the curve.

Figure 5. The receiver operating characteristic curve of the clinical-imaging-radiomic model in (A) the training cohort and in (B) the testing cohort. (C) The clinical-imaging-radiomic nomogram. (D and E) The difference in points between lipid-poor adenomas and metastases was apparent in the training cohort and in the testing cohort, and the dashed lines represented the cut-off value (115.3) of nomogram points. (F and G) Calibration curve of the clinical-imaging-radiomic nomogram in the training cohort and in the testing cohort. CT_pre, pre-enhanced CT value.

Figure 6. Decision curve analysis for the Radscore, clinical-imaging model and nomogram model.
As a part of a growing number of studies using Radscore, the present study established a Radscore using 4 radiomics features on unenhanced CT, and the best cut-off value of 0.567 afforded a specificity of 90.1% and a sensitivity of 78.8% for identifying adrenal metastases in the testing cohort. In addition, the Radscore had favourable predictive performance for adrenal metastases with an AUC of 0.888 and OR of 473.911, which demonstrated that the Radscore could be a useful stand-alone factor for identifying metastases from LPAs in patients with lung cancer.

Sex and age, as clinical-imaging risk factors, were included in the predictive model for distinguishing LPAs from lung cancer metastases in the present study. It was revealed that male patients aged >60.5 years were associated with a higher likelihood of being diagnosed with lung cancer metastases. This observation may be attributed to the specific selection of lung cancer (33). Additionally, CT_{pre} was another important feature for identifying metastases of lung cancer. Metastases exhibited significantly higher plain CT attenuation compared with LPAs, with a cut-off value exceeding 28.5 HU and an OR of 1.179. This finding aligns with previous research by Ho et al (31), who revealed the statistical significance of unenhanced CT attenuation in distinguishing benign from malignant adrenal masses. Homogeneity, shape and border revealed no statistical significance in the present study, inconsistent with Moawad et al (34) and Ho et al (31). It is likely that the small size of metastases (<4 cm) used in the present study reflects the early stages of cancer, without neo-angiogenesis or necrosis, thus they demonstrated approximately the same homogeneous, uniform and fine with LPAs from traditional imaging assessment (35,36).

The present study developed a clinical-imaging-radiomic nomogram by integrating the Radscore, sex, age and CT_{pre} based on pre-enhanced CT for identifying metastases from LPAs with a large study cohort, and the diagnostic performance of which was further improved (AUC=0.915). The present study demonstrated that the clinical-imaging-radiomic nomogram based on initial plain CT images is a potential tool to predict metastases successfully before surgery, which could enable individualized treatment strategies for each patient with lung cancer. The promising results of the present study may have important clinical applications including that additional examinations may no longer be required. Compared with enhanced CT, PET/CT or MRI, the plain CT is easier to obtain, is less time-consuming, produces reliable image quality and is cheaper. Therefore, the findings of the present study can be quickly applied to clinical practice.

In conclusion, the novel points of the present study contain three key aspects: i) The focus on a specific research population, namely patients with small unilateral AIs, as opposed to previous studies which included all AIs regardless of size or laterality (4,31,32); ii) the differentiation between adrenal metastases and LPAs based solely on plain CT images with a large sample size, in contrast to most previous studies that utilized enhanced CT images with smaller sample sizes and generally distinguished between benign (including adrenal adenoma and other benign lesions (for example, oncocytoma and ganglioneuroma)) and malignant (including adrenal metastases and adrenocortical carcinomas) adrenal tumors (4,31,34); and iii) an improved AUC value of 0.915 for the model developed in the present study compared with previous studies (AUC=0.730-0.850), indicating the current model has superior predictive performance (4,31,34).

The present study has several noteworthy limitations. Firstly, the single-centre and retrospective nature of the study may introduce population bias, which could limit the generalizability of the findings. Secondly, a subset of patients did not have histological confirmation in accordance with the inclusion criteria of the study, potentially leading to diagnostic uncertainty in these cases. Thirdly, the present research lacked external validation of the nomogram. To enhance the robustness and reliability of the present findings, further research should prioritize validation on a larger scale, potentially involving multiple centres.

In conclusion, the clinical-imaging-radiomic nomogram built by integrating the Radscore and traditional clinical-imaging risk factors helped to accurately identify metastases in patients with lung cancer with small hyperattenuating AIs.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The data generated in the present study are not publicly available due to patient privacy purposes but may be requested from the corresponding author.

Authors’ contributions

JL, YL, LC, WX and HC designed the study. LC, HY, DY, HW, YY and LZ collected, analyzed and interpreted the data. HY and DY wrote the original draft of the manuscript. WX and HC reviewed the manuscript. LC and HW confirm the authenticity of all the raw data. All authors contributed to the article, and read and approved the final version of the manuscript.

Ethics approval and consent to participate

The present study was approved (approval no. RMYY-LLKS-2023202) by the Medical Ethics Committee of Tangshan People’s Hospital (Tangshan, China). Written informed consent was obtained from each patient included and the present study was performed in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Patient consent for publication

The patients provided written consent for publication.

Competing interests

The authors declare that they have no competing interests.
References

20. Gillies RJ, Kinahan PE and Hricak H: Radiomics: Images are more than pictures, they are data. Radiology 278: 563‑577, 2016.