
ONCOLOGY LETTERS  30:  431,  2025

Abstract. Pathological staging is essential for guiding treat‑
ment decisions and determining prognosis in patients with 
non‑small cell lung cancer (NSCLC). The present study aimed 
to establish a model using intratumoral and peritumoral features 
from computed tomography radiomics data and a multi‑task 
learning algorithm, and evaluate its predictive performance 
for the pathological stage of NSCLC. Data from 198 eligible 
patients with NSCLC from The Cancer Imaging Archive data‑
base were retrospectively analyzed, which was used to develop 
four radiomics models to classify the pathological stages of 
NSCLC. These models combined the traditional random forest 
and multi‑task random forest algorithms with the volumes of 
interest for the intratumoral region alone and with the intratu‑
moral and peritumoral regions combined. Subsequently, the 
data from 90 patients from a real‑world dataset were collected 
for use as an external test set. Diagnostic performance was 
evaluated using accuracy, precision, sensitivity, specificity, F1 
scores and receiver operating characteristic curves. The results 
revealed that, in the internal test set, the area under the curve 
(AUC) values for model 1 (single‑task model based on the 
intratumoral region), model 2 (single‑task model combining 

intra‑ and peritumoral regions), model 3 (multi‑task model 
based on the intratumoral region) and model 4 (multi‑task 
model combining intra‑ and peritumoral regions) were 0.814, 
0.900, 0.896 and 0.938, respectively. In the external test set, 
the AUC values were 0.821, 0.921, 0.858 and 0.939, separately. 
Moreover, the results of the DeLong test indicated that the 
AUC difference between model 1 and 4 was statistically 
significant (P<0.05). In conclusion, the multi‑task radiomic 
model incorporating both intratumoral and peritumoral 
regions demonstrated favorable diagnostic efficacy in the 
predictive pathological staging of NSCLC.

Introduction

Lung cancer is one of the most prevalent types of malignant 
tumors and the leading cause of cancer‑related mortality 
worldwide (1,2), with an estimated 2 million new cases and 
1.76 million deaths per year (3). Non‑small cell lung cancer 
(NSCLC) is the predominant type, accounting for ~85% of 
primary lung malignancies (3). It can be categorized into two 
major histological subtypes: Squamous cell carcinoma (SCC) 
and adenocarcinoma (ADC) (4,5).

The 5‑year survival rate for patients with NSCLC is 
variable, as the stage of the disease markedly impacts treat‑
ment options and patients prognosis  (6). Prognosis varies 
considerably depending on the tumor stage at diagnosis, with 
studies reporting that the 5‑year survival rate for patients with 
stage IA‑IIIA NSCLC ranges from 23‑83% (7,8). In addition, 
treatment options differ according to the pathological staging, 
with surgical resection being the preferred approach for most 
patients with stage I and II NSCLC, whilst non‑surgical treat‑
ments are more suitable for those patients with stage III and IV 
NSCLC (9,10). Therefore, accurately defining the pathological 
staging of NSCLC before initiating treatment is crucial for 
clinicians to implement optimal strategies related to actual 
stage and ultimately improve clinical outcomes. Currently, 
achieving accurate pathological staging for SCC and ADC 
exclusively using preoperative data remains a challenge 
for clinicians.

Imaging techniques such as computed tomography 
(CT), magnetic resonance imaging (MRI) and positron 
emission tomography (PET)/CT are widely used for tumor 
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screening (11). However, PET/CT is restricted by radiation 
exposure, high costs and the unavailability of equipment. 
MRI also has disadvantages concerning longer acquisition 
times and high costs (12,13). By contrast, CT, with its high 
resolution and short acquisition time, is utilized in clinical 
practice worldwide for diagnosis, staging, survival prediction 
and monitoring treatment response in patients with lung 
cancer (14‑18).

Radiomics is an emerging technology that uses 
high‑throughput quantitative imaging features for disease 
diagnosis and prognosis assessment. It systematically quanti‑
fies tumor phenotypes and genetic information by extracting 
and analyzing large volumes of image data (19). The radiomics 
models developed by Yu et al (20) were the first to suggest 
potential imaging biomarkers for predicting the pathological 
staging of NSCLC. The authors established radiomics models 
that accurately predicted the pathological stages of NSCLC 
(stage IA, IIA, IIB, IIIA, IIIB and IV). However, due to the 
limited sample size of each stage, the authors further analyzed 
binarized stages of early cancer (stage  I‑II) and advanced 
cancer (stage III‑IV), which achieved an AUC of 0.82. Aside 
from the aforementioned study, the present study did not iden‑
tify any other literature on machine learning for predicting 
the pathological staging of NSCLC in the PubMed database. 
However, the study by Yu et al (20) focused solely on features 
extracted from intratumoral tissue, neglecting the implications 
of peritumoral tissue. Certain studies have indicated that the 
peritumoral region also contains valuable information asso‑
ciated with predicting histological subtype, prognosis and 
lymph node metastasis (21,22). To date, the role of peritumoral 
regions in predicting the pathological staging of NSCLC has 
not been explored.

Most current research has focused on single‑task models. 
Compared with single‑task learning, multi‑task learning 
models have demonstrated improved performance across 
≥1 tasks, with enhanced generalization ability and robust‑
ness (23). Several studies have assessed the association between 
histological subtype and clinical staging. The multi‑task deep 
learning model developed by Chen et al (4) and the multi‑task 
radiomics model by Lin et al  (24) have shown promising 
results in predicting histological subtypes and clinical staging, 
respectively. However, these studies exclusively included 
clinical staging as part of the analysis. Therefore, whether 
multi‑task models can enhance the ability to predict the 
pathological staging of NSCLC remains a subject for further 
investigation.

The aim of the present study was to evaluate the perfor‑
mance of joint peritumoral features and multi‑task learning 
in predicting the pathological staging of NSCLC. Single‑task 
and multi‑task learning were combined with the volumes of 
interest (VOIs) from the intratumoral region and the intra‑
tumoral and peritumoral regions combined, to develop four 
radiomics models for classifying the pathological staging of 
NSCLC.

Materials and methods

Patients. Patients were selected from two publicly available 
datasets (NSCLC‑Radiogenomics and NSCLC‑Radiomics‑
Genomics) on The Cancer Imaging Archive (TCIA) 

platform (25,26), supported by funding from the National 
Cancer Institute. Additionally, a real‑world dataset comprising 
patients with NSCLC from the First Hospital of Jilin 
University (Changchun, China), collected between January 
2021 and December 2022, was retrospectively analyzed. All 
patient data were anonymous. The inclusion criteria were 
as follows: i) Newly diagnosed and untreated NSCLC; ii) 
confirmed pathological staging (stage I‑IV, according to the 
American Joint Committee on Cancer 8th edition, 2017) (27) 
and the histological subtype (SCC and ADC), as confirmed 
by postoperative pathology; and iii) available pre‑treatment 
CT images. The exclusion criteria were as follows: i) Previous 
neoadjuvant therapy; ii) multiple primary tumors in the lungs; 
and iii) incomplete or poor‑quality imaging data.

Data from all patients from the NSCLC‑Radiogenomics 
and NSCLC‑Radiomics‑Genomics datasets were collected 
and the patients were randomly divided into two groups: 70% 
for the training set and 30% for the internal test set, including 
151  cases of early stage and 47  cases of advanced stage 
NSCLC, and 69 cases of SCC and 129 cases of ADC. An addi‑
tional 90 patients from the First Hospital of Jilin University 
were assigned to the external test set. The recruitment process 
for these patients is illustrated in Fig. 1.

The present study was approved by the Ethical Institution 
Review Committee of The First Hospital of Jilin University 
and was exempt from the requirement for informed consent. 
Informed consent was obtained by the TCIA database for the 
imaging and clinical data of the NSCLC‑Radiogenomics and 
NSCLC‑Radiomics‑Genomics publicly accessible datasets.

Image acquisition. The NSCLC‑Radiogenomics dataset, 
sourced from the Stanford University School of Medicine 
and the Palo Alto Veterans Affairs Healthcare System, as 
well as the NSCLC‑Radiomics‑Genomics dataset from the 
MAASTRO Clinic of the Netherlands, were publicly available 
in the TCIA database. The data for the external test set were 
obtained from the Picture Archiving and Communications 
System of the First Hospital of Jilin University. Based on the 
information provided by all databases, the scanning param‑
eters were as follows: 80‑140 kV; 124‑699 mAs; matrix size, 
512x512; slice intervals: 0.625‑3 mm. Moreover, the entire 
lung of each patient was scanned.

Clinical information and data processing. Among 
eligible cases, sex, pathological staging and histological 
subtype classification information were collected. The 
tumor‑node‑metastasis (TNM) stages of all eligible patients 
were reassessed according to the 8th edition of the TNM 
staging (27) system by a pathologist with >5 years of experi‑
ence. Based on pathological staging, patients were categorized 
into early stage and advanced stage groups.

Image segmentation. To eliminate differences in voxel 
size between different datasets, images were resampled to 
1x1x1 mm3 using RIASEG software (28,29) (https://github.
com/lisherlock/RIASEG; version 1.0). In the present study, 
semi‑automatic segmentation was employed to delineate the 
VOI. After the software automatically segmented the intratu‑
moral region layer by layer, a junior radiologist (radiologist A; 
3 years of experience) checked and adjusted the segmented 
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areas. The final segmentation was evaluated again by a senior 
radiologist (radiologist B; 10 years of experience) for quality 
control. Following the segmentation of the intratumoral region 
VOI, the built‑in extension function software of the was used to 
automatically expand the outlined VOI outward by 10 mm (21) 
to create a VOI that included the peritumoral region, thus 
generating the intratumoral and peritumoral regions VOI 
(Fig. 2). During the segmentation process, attention was paid 
to exclude large blood vessels, bronchi, soft tissues of the chest 
wall, ribs and mediastinum to ensure that the VOI reflected the 
actual lesion. Both the intratumoral and the combined intra‑
tumoral and peritumoral VOIs were mapped for each lesion.

Radiomics feature selection and radiomics model construction. 
The process of feature selection and model construction was 
divided into two steps: i) Evaluation of the reliability and 
reproducibility of radiomics features among observers; and 
ii) feature selection and model construction using two algo‑
rithms. Firstly, to assess intra‑class reproducibility, 20 cases 
were randomly selected and segmented twice by radiologist A, 
with a 2‑week interval. To evaluate inter‑class reproducibility, 
the same 20 cases were segmented by radiologist C (5 years 
of experience) after segmentation by radiologist A. Inter‑ and 
intra‑class correlation coefficients (ICCs) were calculated to 
evaluate the intra‑ and inter‑observer agreement in feature 
extraction  (30,31), with an ICC of >0.75 indicating good 

agreement. Thus, features with an ICC of >0.75 were retained 
for further feature extraction. Secondly, the retained features 
were normalized using standard deviation, followed by feature 
selection and model construction using the random forest (RF) 
or multi‑task (MT)‑RF algorithms, performed in Python 3.7.1 
(https://www.python.org/downloads/release/python‑371/). RF is 
a type of embedded feature selector which can automatically 
produce the relative importance of features during the model 
training process. MT‑RF is an extension of the traditional RF 
algorithm that accounts for correlations and common features 
among related tasks, which means to identify and select features 
that are important for all tasks (4,23). Namely, it simultaneously 
considers relationships between multiple tasks and leverages 
feature correlations to enhance the performance and predictive 
accuracy of the model.

The multi‑task learning model proposed in the present 
study consisted of two components: i) A pathological staging 
task branch, which classified cases into early and advanced 
stages; and ii) a histologic subtype task branch, which classi‑
fied cases as ADC and SCC. However, the single‑task model, 
which used the traditional RF algorithm, focused solely on 
pathological staging.

Statistical analysis and comparative methods. Accuracy, 
precision, sensitivity, specificity, F1 score and AUC were 
utilized as the evaluation metrics for classification results. The 

Figure 1. Flow chart for patient inclusion and exclusion. NSCLC, non‑small cell lung cancer; CT, computed tomography; SCC, squamous cell carcinoma; 
ADC, adenocarcinoma.

https://www.spandidos-publications.com/10.3892/ol.2025.15177
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AUC comprehensively reflects the sensitivity and specificity 
of the model, which is suitable for class imbalance problems. 
As the DeLong test is applicable to the non‑parametric test 
of the paired receiver operating characteristic (ROC) curve, 
it can effectively evaluate the statistical significance of model 
performance and avoid the influence of class imbalance on 
indicators. Therefore, the present study used the DeLong test 
to compare the AUC values of different models. Demographic 
characteristics in the training, internal test and external test 
sets were compared using the χ² test. Statistical analyses of 
the demographic data were performed using SPSS software 
(version 26.0; IBM, Corp.). P<0.05 was considered to indicate 
a statistically significant difference and all reported statistical 
significance levels were two‑sided.

Model comparisons were performed in two aspects: i) 
Comparison of different VOI models; and ii) comparison 
between the multi‑task and single‑task models. First, models 
that integrated features from the intratumoral and peritumoral 
regions were compared with those based solely on features 
from the intratumoral region. This comparison aimed to 
determine whether the inclusion of peritumoral features could 
enhance the classification performance of the model. Second, 
to assess whether the multi‑task model, constructed by adding 
a histological subtype classification branch, could improve its 
performance in predicting the pathological stage of NSCLC, 
the multi‑task model was compared with the single‑task model.

Results

Patient characteristics. A total of 198  patients from 
NSCLC‑Radiogenomics and NSCLC‑Radiomics‑Genomics 
datasets were included in the present study and subsequently 
assigned to either the training set (n=138) or the internal test 
set (n=60). Additionally, 90 patients from the First Hospital of 

Jilin University were assigned as an external test set (age range, 
42‑76 years). The demographic and tumor characteristics of all 
patients were presented in Table I. Statistical analysis revealed 
no significant differences in these characteristics among the 
training, internal test and external test sets.

Radiomic feature selection and model construction. Radiomic 
features were extracted from the delineated VOIs. Using an 
ICC threshold of >0.75 as a reliability standard, a total of 1,259 
stable radiomic features were retained from the intratumoral 
VOI, whilst 1,331 stable features were retained from the 
combined intratumoral and peritumoral VOI. Subsequently, 
the MT‑RF and RF algorithms were employed for feature 
selection and model construction. The MT‑RF algorithm 
generated a feature importance score for each task, which was 
then aggregated to provide a comprehensive assessment of 
feature importance across all tasks. Similarly, the RF algorithm 
generated a feature importance score to all retained features. 
The features were ranked from highest to lowest importance. 
Figs. 3 and 4 present histograms of the top 20 most important 
radiomic features used in model development by the RF and 
MT‑RF algorithms, respectively.

Performance evaluation of models
Single‑task radiomics model. Table II and Fig. 5 demonstrate 
the performance of the single‑task models on both the internal 
and external test sets in the present study. The results revealed 
that model 1 achieved an AUC of 0.814 and 0.821 for the 
internal and external test sets, whilst model 2 achieved an 
AUC of 0.900 and 0.921 for the internal and external test sets, 
respectively.

Multi‑task radiomics model. Table III and Fig. 6 demon‑
strate the performance of the multi‑task models on both the 
internal and external test sets in the present study. The results 

Figure 2. Image segmentation. Representative images from (A) Patient 1 and (B) patient 2 in the present study. Purple represents the intratumoral region, and 
blue represent the intratumoral and peritumoral regions.
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revealed that the AUC for the model 3 was 0.896 and 0.858 
for the internal test set and external test set, respectively. By 

contrast, model 4 achieved AUC values of 0.938 and 0.939 for 
the internal and external test sets, respectively.

Figure 3. Weight histograms of the top 20 most important radiomic features identified using the random forest algorithms. (A)  Intratumoral region. 
(B) Intratumoral and peritumoral regions

Table I. Patient characteristics.

Characteristic	 Training set (n=138)	 Internal test set (n=60)	 External test set (n=90)	 P‑value

Sex				    0.211
  Male	 93 (67.4)	 47 (78.3)	 59 (65.6)	
  Female	 45 (32.6)	 13 (21.7)	 31 (34.4)	
Pathological staging				    0.202
  Early cancer (stage I‑II)	 103 (74.6)	 48 (80.0)	 76 (84.4)	
  Advanced cancer (stage III‑IV)	 35 (25.4)	 12 (20.0)	 14 (15.6)	
Histologic subtype				    0.296
  SCC	 44 (31.9)	 25 (41.7)	 36 (40.0)	
  ADC	 94 (68.1)	 35 (58.3)	 54 (60.0)	

Data are presented as n (%). Differences were assessed using the χ2 test. SCC, squamous cell carcinoma; ADC, adenocarcinoma.

https://www.spandidos-publications.com/10.3892/ol.2025.15177
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Comparison of radiomics models. Fig. 7 presents the ROC 
curves for all models. The results indicated that model 4 
achieved the highest AUC (internal test set, 0.938; external test 
set, 0.939). Additionally, models incorporating both intratu‑
moral and peritumoral regions (models 2 and 4) had markedly 
higher AUC values than the corresponding models based solely 
on the intratumoral region (models 1 and 3). The multi‑task 
models (models 3 and 4) also exhibited notably higher AUC 
values compared with the corresponding single‑task models 
(models 1 and 2).

The results of the DeLong test for the four models are 
presented in Table IV. The findings indicated that the AUC of 
models 1 and 4 were significantly different in both the internal 
test set (P=0.049) and the external test set (P=0.046).

Additionally, to assess the diagnostic performance of 
model 4 for peripheral and central types, tumor (T) stages of 
≤T2 and ≥T3, and its applicability to cases with atelectasis, 
the present study performed subgroup analyses. The results 
are presented in Table SI. The findings demonstrated that the 
model in the present study performed well for both central 

and peripheral lung cancers, suggesting that tumor location 
does not markedly affect model performance. However, the 
model exhibited a slightly improved predictive performance 
for T2‑ cases compared with T3+ cases. This discrepancy may 
stem from the smaller sample size in the T3+ subgroup, which 
limited the sensitivity of the model to minority groups. Future 
research should incorporate more complex cases to enhance 
the generalization capability of the model.

Discussion

The TNM staging of tumors is crucial for evaluating patients, 
as it implies the extent of the disease and notably impacts 
therapeutic decisions and prognosis. Clinicians must assess 
the clinical staging of patients with NSCLC before surgery; 
however, discrepancies between clinical and pathological 
staging are commonly encountered (9). In practice, treatment 
plans for patients with resectable lung cancer are primarily 
based on the final pathological stage rather than the clinical 
stage (32). Therefore, accurately identifying the pathological 

Figure 4. Weight histograms of the top 20 most important radiomic features identified using the multi‑task‑random forest algorithms. (A) Intratumoral region. 
(B) Intratumoral and peritumoral regions.
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stage of NSCLC before treatment can aid clinicians in tailoring 
personalized therapies and improving clinical outcomes.

The present study developed four radiomics models 
to predict the pathological staging of NSCLC: Model 1, a 
single‑task model based on the intratumoral region; model 2, 
a single‑task model combining intra‑ and peritumoral regions; 
model 3, a multi‑task model based on the intratumoral region; 
and model 4, a multi‑task model combining intra‑ and peritu‑
moral regions. The results indicated that model 4 demonstrated 
the best performance for pathological staging, achieving an 
AUC of 0.938 on the internal test set and 0.939 on the external 
test set. Shape features and textural features served critical 
roles in model 4. Shape features are easy to interpret, with 
original_shape_Maximum2DDiameterSlice and original_
shape_Maximum2DDiameterRow quantifying the maximum 
2D diameters of tumors in axial planes and arbitrary slice 
orientations, respectively. These metrics directly reflect 
local tumor extension. As tumor size is a key determinant 
of T‑staging, these features demonstrate strong associations 
with tumor dimensions, thereby markedly contributing to 

distinguishing early from advanced stage cases. Texture 
features were used to describe the heterogeneity within the 
tumor volume. Studies have reported that textural features 
analysis may identify adverse biological characteristics of 
lung tumors, including aggressive phenotypes, malignancy 
grading, resistance to radiotherapy/chemotherapy and prog‑
nostic outcomes (33‑36). The most prominent texture feature 
in model 4, log‑sigma‑1‑0‑mm‑3D_ngtdm_Busyness, was 
calculated from a neighborhood gray‑tone difference matrix 
after edge enhancement via 3D Gaussian filtering (σ=1.0 mm). 
This metric reflects the frequency of local texture variations. 
High Busyness values indicate complex texture patterns, 
which may be associated with high tumor malignancy and 
invasive potential (37,38). Therefore, it may guide clinicians 
in selecting optimal treatment strategies and predicting patient 
outcomes.

Several retrospective studies have reported the notable 
potential of radiomics in predicting NSCLC staging. For 
instance, Yu et al (20) identified potential imaging markers to 
predict NSCLC pathological stages, though this study focused 

Table II. Performance of the single‑task radiomics models in internal and external test sets.

A, Internal test set						    

Model	 AUC	 Accuracy	 Precision	 Sensitivity	 Specificity	 F1 score

1	 0.814	 0.883	 0.692	 0.750	 0.916	 0.720
2	 0.900	 0.866	 0.666	 0.666	 0.916	 0.666

B, External test set						    

Model	 AUC	 Accuracy	 Precision	 Sensitivity	 Specificity	 F1 score

1	 0.821	 0.866	 0.562	 0.642	 0.807	 0.600
2	 0.921	 0.800	 0.423	 0.785	 0.802	 0.550

AUC, area under the curve.

Figure 5. Receiver operating characteristic curves of the single‑task radiomics models in the internal and external test sets. AUC, area under the curve.

https://www.spandidos-publications.com/10.3892/ol.2025.15177
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exclusively on intratumoral features and did not involve 
peritumoral characteristics. To further assess the role of peri‑
tumoral features in the pathological staging of NSCLC, the 
present study developed radiomics models that incorporated 

the intratumoral and peritumoral regions and compared them 
with models based solely on the intratumoral features. Using 
both multi‑task and single‑task models, it was demonstrated 
that radiomic models with the intratumoral and peritumoral 

Table III. Performance of the multi‑task radiomics models in internal and external test sets.

A, Internal test set						    

Model	 AUC	 Accuracy	 Precision	 Sensitivity	 Specificity	 F1 score

3	 0.896	 0.866	 0.666	 0.666	 0.916	 0.666
4	 0.938	 0.866	 0.666	 0.666	 0.916	 0.666

B, External test set						    

Model	 AUC	 Accuracy	 Precision	 Sensitivity	 Specificity	 F1 score

3	 0.858	 0.877	 0.600	 0.642	 0.921	 0.620
4	 0.939	 0.900	 0.727	 0.571	 0.960	 0.640

AUC, area under the curve.

Figure 6. Receiver operating characteristic curves of the multi‑task radiomics models in the internal and external test sets.

Figure 7. Receiver operating characteristic curves of all radiomics models in the internal and external test sets.
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regions combined achieved higher AUCs (0.938 and 0.900 in 
the internal test set, respectively) than models relying solely on 
intratumoral regions. The external test set also yielded similar 
results, supporting the hypothesis that integrating peritumoral 
features may enhance the predictive accuracy for the patho‑
logical stage of NSCLC.

Currently, most studies have focused on single‑task models; 
however, certain research has demonstrated that multi‑task 
models could extract more information by integrating multiple 
related tasks, thereby enhancing the learning outcomes for ≥1 
tasks. These multi‑task approaches exhibited greater gener‑
alization ability and robustness compared with single‑task 
learning (4,23). Chen et al (4) developed a multi‑task deep 
learning model comprising a histological subtype branch and 
clinical stage branch, elaborating the potential relationship 
between these factors. The study reported that the incorpora‑
tion of staging tasks effectively improved the classification 
accuracy of histological subtypes, suggesting an association 
between these two elements. Similarly, Lin et al (24) constructed 
a multi‑task radiomics model differentiating between histo‑
logical subtypes and clinical stages in patients with NSCLC. 
The study reported that this multi‑task model performed well 
in predicting clinical stages, but the lack of external validation 
raised concerns about the generalizability of the model. The 
results of the aforementioned studies underscore the associa‑
tion between histological subtype and clinical staging tasks, 
indicating that predictive performance may be enhanced 
through a multi‑task modeling approach. However, these 
investigations emphasized clinical staging rather than patho‑
logical staging.

To assess the potential association between the patho‑
logical stage and histological subtype of NSCLC, and to assess 
whether predictive performance could be improved through a 
multi‑task modeling approach, the present study incorporated 
the histological subtype into the framework for pathological 

staging of NSCLC. Using preoperative CT images from 
198 patients, multi‑task radiomics models were constructed 
based on the MT‑RF algorithm. To evaluate the generaliz‑
ability of models, an external validation was performed using 
data from the First Hospital of Jilin University. Furthermore, 
to assess the efficacy of the multi‑task approach in classifica‑
tion, the multi‑task models were compared with the single‑task 
radiomics models built via identical VOIs. The results indi‑
cated that the AUCs of the two multi‑task radiomics models 
(models 3 and 4) were superior to those of the single‑task 
models (models 1 and 2). These findings suggest that inte‑
grating the histological subtype into a multi‑task framework 
may enhance the diagnostic performance of pathological stage 
prediction in NSCLC.

Meanwhile, the results of the DeLong test revealed that 
the multi‑task model, which combined the intratumoral and 
peritumoral features, markedly outperformed the single‑task 
model that established solely on intratumoral features. This 
multi‑task model achieved superior performance compared 
with the AUC of 0.82 reported by Yu et al (20). This finding 
suggests that the radiomics model incorporating the intratu‑
moral and peritumoral regions, as well as multi‑task learning, 
enhanced the diagnostic performance of pathological stage 
classification in NSCLC.

However, the present study has certain limitations. Firstly, 
the sample size was relatively small, and the data was unbal‑
anced with regard to staging. To address this, external validation 
was performed to demonstrate the generalization of the model. 
Whilst the external test set demonstrated a good generalization 
performance of the model (AUC=0.939), the data were from a 
single source and may be limited by specific scanning protocols 
or population characteristics. To further validate the generality 
of the model, future studies should perform multi‑center studies 
in collaboration with multiple healthcare institutions to incor‑
porate data from different centers, devices and populations to 
fully evaluate the stability of the model in different clinical 
settings. Secondly, the lack of relevant clinical variants, such 
as genetic mutations and molecular biomarkers in the TCIA 
database, limited the current analysis. Future studies should 
prospectively collect multimodal data (including genomic 
and pathological biomarkers) to develop an integrated predic‑
tive model containing imaging‑clinical‑molecular features. 
The current research focuses on establishing a foundational 
framework for radiomics, which provides the cornerstone for 
subsequent exploration. Additionally, the present study utilized 
the 8th edition of TNM staging system, which is widely used in 
clinical practice, rather than the latest 9th edition. This choice 
was made as the 9th edition had not yet been broadly utilized. 
Therefore, further studies are necessary to advance this research.

In conclusion, the inclusion of peritumoral features 
significantly enhanced the AUC of predictive models for path‑
ological staging in NSCLC. Additionally, the implementation 
of multi‑task learning further contributed to this improve‑
ment. Finally, the multi‑task radiomics model incorporating 
the intratumoral and peritumoral regions demonstrated good 
diagnostic performance in the pathological staging of NSCLC.
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