
Abstract. The analysis of dynamic positron emission
tomography (PET) studies provides clinically useful
parametric information, but often requires complex and time-
consuming compartmental or non-compartmental techniques.
Independent component analysis (ICA), a statistical method
used for feature extraction and signal separation, is applied to
dynamic PET studies to facilitate the initial interpretation and
visual analysis of these large image sequences. ICA produces
parametric images, where structures with different kinetic
characteristics are assigned opposite values and readily
discriminated, improving the identification of lesions and
facilitating the posterior detailed kinetic analysis.

Introduction

Although in oncology, the visual inspection of the positron
emission tomography (PET) images is practiced routinely for
tumor diagnosis, detection of metastases and evaluation of
treatment, quantitative measures based on the normalization
of tracer concentrations for the injected activity and body
weight (standardized uptake values; SUV) are becoming
common in the clinical praxis in oncological PET studies (1).
However, the use of SUV as a method of classifying tissue
areas as benign or malignant is still under discussion among
nuclear medicine physicians and oncologists (2,3).

Dynamic 18F-FDG PET studies offer differential diagnostic
information and therefore represent an accurate approach to
quantify 18F-FDG kinetics. Such studies are increasingly used
in oncology for diagnosis, therapy management and evaluation
(4). The analysis of dynamic PET sequences, however, often
requires complex analysis using compartmental or non-
compartmental models, where several difficulties must be
overcome, such as determination of the input function of

the concentration of the radioactive tracer in plasma,
intrinsic inaccuracies at the time of selecting the appropriate
compartmental model, or time-consuming computations
involving a large amount of image data to be processed.

We investigated the use of independent component
analysis (ICA) to reduce the initial amount of image data to a
smaller, comprehensive and easily managed set of parametric
images. ICA has been shown to produce promising results in
the analysis of task-related functional magnetic resonance
imaging (fMRI) techniques (5), and extraction of the input
function in dynamic myocardial and brain PET studies
(6,7).

Materials and methods

Independent component analysis. Independent component
analysis (ICA) is a statistical and computational technique
for revealing hidden factors that underlie sets of random
variables, measurements, or signals.

ICA defines a generative model for the observed
multivariate data, which is typically given as a large database
of samples. In the model, the data variables are assumed to
be linear mixtures of some unknown latent variables, and the
mixing system is also unknown. The latent variables are
assumed to be non-Gaussian and mutually independent and
are called the independent components of the observed data.
These independent components, also called sources or factors,
can be found by ICA, which is used as a method for blind
source separation (8). The intuitive notion of maximum
non-Gaussianity or more classical notions like maximum
likelihood estimation and minimization of mutual information
can be used to derive different objective functions, whose
optimization enables the estimation of the ICA model.

Due to its computational and theoretical simplicity,
kurtosis, or rather its absolute value, has been widely used as
a measure of non-Gaussianity in ICA. However, it can be
sensitive to outliers (9) and is not a robust measure of non-
Gaussianity. Therefore, other objective functions for ICA
estimation have been proposed.

The entropy of a random variable, a basic concept of
information theory, can be interpreted as the amount of
information given by the observation of a variable. Negentropy
is a slightly modified version of differential entropy that
is always non-negative, equal to 0 only if a variable has a
Gaussian distribution and is invariant for invertible linear
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transformations. The advantage of using negentropy as a
measure of non-Gaussianity is that it is well justified by
statistical theory. The problem with using negentropy,
however, is that it is computationally difficult. Estimating
negentropy using the definition would require an estimate
(possibly non-parametric) of the probability density function.
Therefore, simpler approximations of negentropy based on the
maximum-entropy principle were developed (10) and are
used together with a fixed-point (11,12) iteration scheme by
the FastICA algorithm (8).

The fixed-point algorithm directly finds independent
components of (practically) any non-Gaussian distribution
using any non-linear function g(u). Examples include:
i) ‘pow3,’ g(u) =u3; ii) ‘tanh,’ g(u) =tanh(a1 • u); and iii)
‘gauss,’ g(u) =u • exp(-a2 • u2/2) where a1 and a1 are some
suitable constants, often taken as a1=1 and a1=1.

To estimate several independent components, the one-unit
FastICA algorithm is run using several units (‘unit’ refers to
computational unit, which eventually becomes an artificial
neuron). To prevent individual weight vectors of the neurons
from converging to the same maxima, the outputs should be
de-correlated after every iteration step. The utilized de-
correlation approaches are symmetric (‘symm’), i.e. estimation
of all independent components in parallel, and deflation
(‘defl’), i.e. estimation of independent components one-by-one.

FastICA has a number of desirable properties including
fast convergence confirmed by simulations and experiments
on real data (13), selection of a suitable nonlinear function g
to obtain robust and/or minimum variance algorithms and
computational simplicity. It has been used for separating
artifacts in magneto-encephalography data (14), finding
hidden factors in financial data (15), reducing noise in natural
images (16) and separating signals from interfering ones in
telecommunications (17).

Another approach for ICA estimation was derived from a
neural network viewpoint (18,19), and is based on maximizing

the output entropy (or information flow) of a neural network
with non-linear outputs. The principle of network entropy
maximization, or infomax, was proven to be equivalent to
maximum likelihood estimation. This equivalence requires
that the non-linear functions used in the neural network are
chosen as the cumulative distribution functions corresponding
to the densities of source signals.

Using the infomax approach (18) and a conjugate gradient
method (20), the previously developed code is able to execute
spatial (sICA) or temporal (tICA) ICA of 2D images (5).
Spatial ICA (sICA) seeks a set of mutually independent
component (IC) source images and corresponding set of
unconstrained time courses. Temporal ICA (tICA) seeks a
set of IC source time courses and corresponding set of
unconstrained images.

Both sICA and tICA are based on the assumption that the
probability density function (pdf) of the independent sources
is highly kyrtotic and symmetric. Since this assumption is not
warranted for dynamic PET datasets, we proposed to apply
skew-ICA to the dynamic PET datasets. Skew-ICA embodies
the assumption that images are characterized by the skewness
(rather than kurtosis) of their pdfs; an assumption consistent
with spatially localized regions of activity (21).

Before applying an ICA algorithm to the data, some
preprocessing techniques are commonly used to make the
problem of ICA estimation simpler and better conditioned (8).
The most basic and necessary preprocessing is to center the
data, i.e. make them a zero-mean variable, which implies that
source signals are zero-mean as well. This preprocessing is
performed solely to simplify the ICA algorithms.

Another useful preprocessing strategy in ICA is to whiten
the observed variables, which linearly transforms the observed
vector x so its components are uncorrelated and their variances
are unified. One popular method of whitening is using the
eigenvalue decomposition (EVD) of the covariance matrix.
The utility of whitening relies on the number of estimated
parameters being reduced. Since whitening is a simpler and
more standard procedure than any of the ICA algorithms, it

THIREOU et al:  BLIND SOURCE SEPARATION FOR THE ANALYSIS OF PET STUDIES1008

Figure 1. Application of FastICA to a liver metastasis study. The utilized
de-correlation approaches are symmetric (a-c) and deflation (d-f). Non-
linearity functions are 'pow3' (a and d), ‘tanh’ (b and e) and ‘gauss’ (c and f).

Figure 2. Analysis of a dynamic PET study of a tumor in the vicinity of
bladder. Tumor and vessel images generated using FastICA and ‘tanh’ (a
and d), and ‘gauss’ (b and e) non-linearities with skew-sICA (c) and skew-
tICA (f) images of the same study.
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is a good idea to reduce the complexity of the problem using
this method.

It may also be useful to simultaneously reduce the
dimension of the data with whitening. The eigenvalues of the
covariance matrix that are too small would then be discarded,
as done in the statistical technique of principal component
analysis, and often has the effect of reducing noise. Moreover,
dimension reduction prevents overlearning, which is sometimes
observed in ICA (22).

Clinical data. The study included 17 patients with colorectal
tumor recurrences and 1 patient with liver metastasis, who
were referred on the basis of clinical symptoms and radio-
logical examinations, either CT or MRI. The final diagnosis
was based on the histological data obtained from surgical
specimens. None of the patients had received chemotherapy
or radiation therapy at least 3 months prior to the PET study,
and all patients gave their informed consent. The study was
performed in accordance with the Institutional Review Board
requirements.

Dynamic PET studies were performed after intravenous
injection of 300-370 MBq 18F-FDG for 60 min. A 23-frame
protocol was used (10x1 min, 5x2 min and 8x5 min). The
18F-FDG was prepared according to the protocol described
by Toorongian et al (23). 

A dedicated PET system (ECAT EXACT HR+; Siemens,
Erlangen, Germany) was used for the patient studies. The
system consists of four rings of 72 BGO detector blocks.
Each block detector is divided into an 8x8 matrix, while the
crystal size of an individual detector element is 4.39x4.05x30
mm3. The system allows the simultaneous acquisition of 63
transverse slices with a theoretic slice thickness of 2.4 mm
and has an axial field of view of 15.3 cm. The system was
operated in two-dimensional mode (with septa extended).
Transmission scans for a total of 10 min were obtained with
three rotating germanium pin sources before the first
radionuclide application for the attenuation correction of the
acquired emission tomographic images.

All PET images were attenuation corrected, and an
image matrix of 128x128 pixels was used. The images were
reconstructed using an iterative reconstruction algorithm
(weighted least-square method, ordered subsets, four subsets,
and six iterations) and the standardized uptake values (SUV)
were calculated using: SUV = tissue concentration (MBq/g)/
(injected activity (MBq)/body weight (g).

The SUV calculations were done based on the last study
frame (55-60 min post injection). No partial volume correction
was performed, however, SUV measurements were performed
on volumes of interest (VOIs) spanning several tomographic
slices, instead of conventional methods that average the
measured concentration over a ROI drawn in just one slice.

Results

Dynamic PET images are assumed to be the sum of components
representing different structures. Each component consists of a
time course and contribution ratio to the voxels (parametric
image), showing the spatial distribution of the corresponding
structure in the target tissue. Application of the ICA to real
clinical studies aims to create a set of parametric images
where different structures are readily identified. The images
created by applying FastICA to the liver metastasis study are
presented in Fig. 1.

A known ambiguity for ICA is that the order and variances
of the independent components cannot be determined. FastICA
can extract an arbitrary group of components depending on
the implemented criterion and initial conditions. Contrary to
the symmetric de-correlation approach, images depicting the
structures of interest appear in the first independent components
when using the deflation method. Moreover, they have better
contrast and signal-to-noise characteristics, especially for the
‘tanh’ and ‘gauss’ non-linearity. The results obtained and
initial conclusions drawn for this case have been verified by
applying the same analysis to all of the colorectal tumor
recurrence clinical studies.

When using the ‘tanh’ non-linearity, the tumor and vessels
are shown in black in different images (Fig. 2) corresponding
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Figure 3. Independent components (ICs) of the studies presented in Figs. 1
(a and c) and 2 (b and d), calculated using the ‘tanh’(a and b) and ‘gauss’
(c and d) functions.

Figure 4. First skew-sICA and skew-tICA image (a and b) of a colorectal tumor
recurrence study. First Skew-sICA image of the liver metastasis study presented
is Fig. 1 (c), and skew-sIC time courses of the study shown in a and b (d).
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to decreasing and increasing independent components,
respectively (Fig. 3). In the case of ‘gauss’ non-linearity,
tumors are presented in black and vessels in white. The
corresponding ICs are both decreasing. Tumor IC always has
negative values, and vessel IC is positive. Thus, the
structures present in the resulting ICA images could be
identified in both cases.

Fig. 4 shows the results of applying skew-sICA and
skew-tICA to 2 clinical studies. The first skew-tICA image
contains a bright area corresponding to the lesion, leaving the
area covered by the vessels in black, whereas vessels are
displayed in white and tumors in gray/black in the second
skew-tICA image. However, increased noise levels complicate
tumor detection in several cases (Fig. 4b). On the other hand,
skew-sICA images show better noise characteristics and
improve the separation of structures (Fig. 4a and c). Although
no correlation has been found between the order of skew-
sICA images and the structures present within them, the
shape of the resulting IC time courses allows the identification
of structures. In all cases, the skew-sICA images corresponding
to monotonically increasing time courses display tumors in
white, while monotonically decreasing time courses are related
to images depicting vessels (Fig. 4d). In the case of a tumor
in the vicinity of the bladder (Fig. 2), skew-sICA and skew-
tICA provide comparable images, delineating the tumor
slightly better than the ‘tanh’ and ‘gauss’ non-linearity
FastICA approaches.

Discussion

Independent component analysis is an approach to linear
decomposition and blind source separation (BSS) that is
becoming increasingly popular as a tool for analyzing
biomedical data (24,25). We have applied the ICA method
in dynamic PET studies to reduce the initial amount of
image data to a comprehensive set of parametric images,
supporting visual interpretation and assisting the application
of compartment modeling.

In general, all ICA and BSS algorithms have two
ambiguities of arbitrary permutation and scaling, and the
estimated components are ordered in a post-processing step
using several criteria, e.g. according to the decreasing value

of normalized kurtosis, sparseness, linear predictability,
Hurst exponent, entropy, etc. However, some algorithms
(e.g. AMUSE) are able to deliver online-ordered estimated
components and done automatically (26,27).

Performing singular value decomposition (SVD) on the
original data, as in the case of the infomax-skew-ICA, makes
it possible to sort the ICs by the amount of variance of the
original signal, which explain and select the components with
the largest variances, thus reducing the time required for the
analysis. If SVD is not applied, the deflation de-correlation
approach, which estimates the ICs one-by-one, is generally
more desirable than estimating all ICs in parallel (symmetric
approach) when a specific IC is to be calculated (28). Using
the deflation de-correlation in the FastICA technique, the
computational load of the method is decreased and images
with improved structure detectability are generated.
Concordant with Naganawa et al, this approach is better
suited for analyzing dynamic PET studies (7).

Among the non-linearity functions used in FastICA,
‘tahn’ and ‘gauss’ provide better quality images than ‘pow3’
and are able to separate structures with different kinetic
characteristics such as tumors and vessels (Figs. 1 and 2). On
the other hand, all structures present in the dynamic studies
may be depicted in the skew-ICA images. Structures with
different kinetic characteristics are easily discriminated, as
they are assigned opposite values (Fig. 4c). In all cases, the
identification of structures is based on the shape and sign of
corresponding ICs (Figs. 3 and 4). The sign of unmixed
components in ICA does not necessarily match those of the
original signals, and negative ICs could therefore be generated.
In all clinical data studied, ICs corresponding to structures
positively displayed in the parametric images have positive
values and similar shape with the time activity curves
(TACs). Negative ICs correspond to negatively displayed
structures with shapes symmetrically opposite to the original
TACs. Although further modifications are required to exactly
estimate original TACs (6,7), ICs can readily identify structures
present in the images and assist visual interpretation.

The high kurtosis pdf signals extracted with standard ICA
are characteristic to many natural source signals, such as
speech, but there is no a priori reason to suppose that the pdfs
of source images have high kurtosis for dynamic PET data. On
the contrary, source images consisting of spatially localized
features such as vascular activity surrounded by a homogeneous
background have skewed pdfs (21). Incorporating physically
realistic assumptions improves the robustness of ICA and
has been shown to provide results for fMRI data that appear
physically more plausible than those obtained with other
traditional methods (5). Similarly, when skew-ICA is applied
to studies with lesions in the vicinity of hot organs (e.g.
bladder), the structures of interest are better discriminated
(Fig. 2).

Spatial ICA separates the activity of different structures
under the assumption that its distribution is spatially
independent from each other. The assumption of spatial
independence could be weakened by the partial-volume and
spillover effects in the PET images. The time courses of
different structures may also be correlated with each other
because the convolution process of tracer kinetics usually
relates them. In practice, the discrimination of structures is
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Figure 5. SUV images of the studies presented in Figs. 1 (a) and 2 (b).
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easier in spatial than temporal ICA images, with the exception
of lesions near the bladder (Fig. 2).

SUV (Fig. 5) and ICA images have comparable diagnostic
performance. However, SUV offers information only on the
static image frame (here at 55-60 min post-injection) under
evaluation, independently of the previous image frames,
whereas ICA generates images reflecting the underlying
kinetics of the radiotracer uptake and offers additional time-
related information. Moreover, the use of SUV as a method
for classifying tissue areas as benign or malignant is still
under discussion among nuclear medicine physicians and
oncologists (2,3), as high metabolic activity (reflected by
FDG uptake) can arise for a large number of reasons that are
unrelated to tumors. A wide variety of benign disorders have
high SUVs (29) including inflammation areas, a common
cause of ‘false positive’ 18F-FDG PET scans (30). On the
other hand, some malignant lesions may not necessarily have
particularly high SUVs. Furthermore, high degrees of
fluctuation for the SUVs from one day to another have been
observed. Camera quality controls and calibrations are other
parameters on which SUV measurements depend. In addition,
there is currently no study on the dependence of SUVs on the
type of PET camera (i.e. BGO- vs. LSO-based tomographs,
etc.) or data processing prior to image formation, such as
attenuation and scatter corrections, efficiency normalization
methods, etc., while some studies already indicated dependence
on the image reconstruction method (31). Therefore, the utility
of information provided by the SUVs largely depends on its
integration with all available clinical and instrumental data
(32), and ICA could be an alternative to the SUV-based
evaluation for studies that require dynamic PET acquisitions.

In conclusion, the results presented above showed that
independent component analysis automatically generates
images in which structures with different kinetic characteristics,
such as tumors and vessels, are assigned opposite values and
readily discriminated. Especially in cases where poor image
quality due to lack of iterative image reconstruction or
lesions characteristics (size, location, etc.) complicate the
visual interpretation of dynamic 18F-FDG-PET datasets, ICA
could improve the detectability of lesions. Moreover, it has
little computational complexity and images are produced in a
short time. Therefore, ICA can provide an accurate tool for
the support of both the visual inspection and posterior detailed
kinetic analysis of the dynamic series via compartmental or
non-compartmental models by facilitating a more accurate
selection of ROIs. The possibility of quantitative analysis of
the dynamic PET studies using independent component
analysis is under investigation.
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