
Abstract. This report deals with the discussion of the findings
obtained from the application of two computational intelligence
methodologies for the detection of microcalcifications in
screening mammography data. Genetic programming and
inductive machine learning have been applied, in order to
produce meaningful diagnostic rules for the medical staff.
The data used in the experiments correspond to information
acquired from two images of each breast of the patient, along
with some associated patient information such as the age at
time of study. Similar datasets have been previously used in
an attempt to facilitate the development of computer
algorithms to aid screening. Experienced screening radio-
logists have double-read the screening mammograms, they
have weighted the malignancy ratings and averaged out the
levels of suspiciousness assigned to each finding in the
screenings. The diagnostic rules which were obtained from
both genetic programming and machine learning have been
evaluated in detail and then analyzed and discussed by
collaborative medical experts, in parallel to findings from
related literature. Results seem encouraging for further use
and analysis by medical staff specializing in screening
mammography.

Introduction 

Breast cancer affects 1 of 9 women, >180,000 women are
diagnosed with invasive cancer in the United States each year
(1). Added to this, 25,000 cases of ductal and lobular cancer
in situ are diagnosed annually. Breast cancer continues to be
the leading cause of non-preventable cancer death in developed

countries. The early detection and diagnosis of breast cancer
represents an important factor in its treatment and consequently
the survival rate. Screening mammography is considered the
most reliable method of early detection, accounting for a
decrease in mortality of up to 18-23% (2). Although some
cancers produce a mammographic appearance that is virtually
pathognomonic of the disease, many malignant lesions have
morphologic characteristics that cannot be differentiated from
benign lesions. For this reason, biopsy of suspicious lesions
plays an important role in the diagnosis of breast cancer. Breast
cancer usually appears on a mammogram as: a) a spiculated
mass (a dense, irregular, spiculated mass that is not related to
prior surgery is the only feature that is virtually patho-
gnomonic of a malignant lesion) (3; p.377); b) pleiomorphic,
heterogeneous microcalcifications (mammography is the
only technique capable of detecting them). When found in
isolation, microcalcifications are an indication of early-stage
breast cancer (4); c) a focal asymmetric density with ill-defined
margins or microlobulations, is a non-specific characteristic
that suggests a malignant process; and d) an architectural
distortion of the normal breast parenchyma which is a subtle
manifestation of breast cancer.

The current work attempts to approach the problem of
breast cancer diagnosis from screening mammography data
using algorithmic approaches belonging to the field of artificial
intelligence (AI). AI is considered the attempt of humans to
equip computers with human logic and intelligence, when
handling uncertain, approximate, or complex situations.
Various methodologies for exploring this idea have been
developed during the last decades, each representing a
different viewpoint of the operating principles and cognitive
mechanisms existing inside the human brain. Some of the
most famous approaches of this kind (5) are: a) neural networks
(an attempt to imitate mathematically, a simplified structure
of the neuron-synapses network met inside the brain); b) fuzzy
set theory (defines ways of handling ambiguity and quantifying
or approximating fuzziness contained inside common language
and reasoning); c) genetic algorithms and evolutionary
computing (computational and mathematical representation
of the main principles of Darwin's evolution theory, in the
form of a computer algorithm); d) machine learning (based
on the fact that, humans take decisions based on rational
hypotheses and estimations - incorporated by mathematical
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logic and statistics - while they also add experience to their
skills as they understand complex situations, by characterizing
and classifying the importance of perceived information).

The present work, deals with two such computational
intelligence approaches for medical diagnosis, namely inductive
machine learning (6-8) and genetic programming (9-13). In
computer literature a variety of intelligent approaches can be
found trying to handle problems related to breast cancer
diagnosis. In ref. 14 a combined approach of neural networks
and evolutionary programming is presented, for computer
assisted mammography. The work by Boccignone et al (15)
proposes the use of information theory and wavelets for
handling mammograms. The construction of a Bayesian
network for mammographic diagnosis of breast cancer was
proposed by Kahn et al (16). Mass lesion detection with a
fuzzy neural network is attempted by Cheng and Cui (17).
Purely neural network based approaches, the most popular on
the matter of computational intelligence-based screening
mammography diagnosis have been reported (18-23). An
intelligent clustering method for the detection of micro-
classification clusters in mammography was presented
(24). Fuzzy sets and pattern classification are combined for
classification of microcalcifications (25). Finally, computer
aided diagnosis approaches in mammograms have also been
proposed by Sittek et al (26) and Christoyianni et al (27).

Below, we present the main computational intelligence
methodological issues contained in this report, as well as
details regarding the data set used to extract medical expert
rules for screening mammography.

Materials and methods

We used data of 200 histologically proven malignant lesions
discovered during screening to apply computer algorithms that
may point in the direction of a specific histologic diagnosis.
The data were collected during the last decade from the
radiological departments of various Greek hospitals. All
available data were inserted in a two dimensional matrix,
where each column represented one diagnostic attribute (the
last one denoting the final diagnosis for the training cases)
and each row represented the complete diagnostic information
regarding each case collected. Data were either numerical or
nominal. Their analysis was performed using algorithms based
on inductive machine learning and genetic programming,
aiming at producing a set of rules in an attempt to differentiate
between the various types of breast cancers using mammo-
graphy and pathology data.

Among different ML approaches, entropy information
based inductive machine learning has been the most widely
and successfully applied tool (6,7). The idea is based on
the measurement of entropy information when coping with
historical (past) data, as well as the ‘divide and conquer’
principle for forming inductive decision trees, proposed
theoretically by Hunt et al (8). Inductive machine learning
based on measures of entropy information is capable of
handling medical diagnosis in practice, because of the nature
of problems met in medical decision making, such as: a)
difficulties in applying mathematical modelling techniques,
b) existence of nominal attributes and approximate quantities
and concepts, c) difficulties in discrimination among various

possible diagnoses, d) heuristic nature of the solutions applied,
and e) possible missing attribute values, etc. In the last decade,
ML theories have also served as the basis for the spread of
modern methodologies used in addition to classical statistics,
for advanced data analysis in complex domains of application.

On the other hand, genetic programming operates by
mimicking a living population where survival of the fittest
applies. Fitness is how successful a member is in completing
a task and the least fit members are eliminated. Also, new
members are added by means of mutation, breeding and
random generation. Regarding the genetic optimization
approach followed within this work, we construct rule-bases
using genetic programming (GP) (9,28) techniques. The idea
is addressed in refs. 9,29 where the genetic programming
approach is used to build a kind of decision trees. Genetic
programming, found with a proper function set, has been
proved capable of finding optimal solutions in a reasonable
time for a variety of classification tasks (29). Genetic
programming is an extension to the inspiration of genetic
algorithms (GA) (30). The GP theory enables the use of
functional tree-nodes that offer powerful intelligent tools
like the symbolic regression problem solving (29). An
extension to the concept of standard GP is the strongly typed
or type-constrained GP (10,31). By using the latter approach,
it is possible to construct two-valued logic (modus ponens)
expressions with the use of grammars, which preserve a
satisfactory rate of success when used as classification rules
in many domains (28,31).

For each case of breast cancer, all four standard mammo-
graphic views were used (craniocaudal and mediolateral
oblique, for each breast), as well as clinical and pathology
data. All cases were rated according to the level of concern
by using the standard Breast Imaging Reporting and Data
System, or BIRADS, recommendations. BIRADS consists of
a lexicon of terminology that aims to standardize mammo-
graphy reporting. A coding system has been designed to
facilitate database maintenance (32). A total of 12 diagnostic
attributes shown in Table I, were given as an input into the
algorithm. Brief comments follow, regarding the attributes of
the study.

PANOURGIAS et al:  COMPUTATIONAL INTELLIGENCE FOR MALIGNANT LESIONS1038

Table I. Diagnostic attributes of the study.
–––––––––––––––––––––––––––––––––––––––––––––––––
Age
Mass-shape and size (where applicable)
Mammographic parenchymal pattern
Presence of microcalcifications
Presence of architectural distortion
Other associated findings (nipple retraction/skin thickening)
BIRADS score (1-5)
Histologic diagnosis
Lymph node status
Estrogen receptor status
Progesterone status
Histologic size

–––––––––––––––––––––––––––––––––––––––––––––––––
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Firstly, all women included in the study were >45 years
old. Regarding, mammographic parenchymal pattern, there is
a classification system devised by Tabar that categorizes the
breast parenchyma into subtypes. In each of these patterns,
the mammographic image is a mixture of the structural
components of the breast, i.e. lobules, fibrous tissue, adipose
tissue, milk ducts and blood vessels. Pattern I refers to
relatively dense breast tissue, most commonly found in
premenopausal women. Pattern II and III represent the end-
result of involution, where the images are dominated by
adipose tissue. Pattern IV refers to dense, nodular breast
tissue where perception of small lesions is often difficult.
Pattern V is dominated by extensive fibrosis and the capability
of mammography to reveal small pathologic lesions, is limited
(33). The attribute referred in Table I as other associated
findings, includes the presentce of nipple retraction and skin
thickening. Finally, regarding BIRADS score (1-5), category I
refers to a negative mammogram and category II includes all
mammograms with a benign finding. Mammograms of these
two categories require no further evaluation and were not
included in the study. Mammograms classified as BIRADS
III means that a finding of intermediate concern was detected
that requires further evaluation. Category IV includes mammo-
grams with lesions that have a high probability of malignancy,
such as microcalcifications and category V refers to mammo-
grams with a lesion that is probably malignant, such as a
spiculated mass.

The main histologic types of breast cancer include ductal
cancer DCIS (ductal cancer in situ) and invasive ductal cancer,
and lobular cancer LCIS (lobular cancer in situ) and invasive
lobular cancer. Over 80% are variants of ductal cancer. In
the non-invasive type (DCIS) the tumor cells are confined
to the duct epithelium and do not penetrate the basement
membrane, whereas in the invasive type, the tumor cells
invade the basement epithelium and invade the surrounding
tissues. Mammography has made it possible to detect DCISs,
and they comprise 20-30% of detected cancers in a screening
program.

The majority of invasive cancers are invasive ductal cancers
and account for 65% of the breast cancers diagnosed in the
United States (34). Non-invasive lobular carcinoma, lobular
cancer in situ or LCIS, does not form a palpable mass or a
visible lesion by mammography, so they were not included in
the study. A woman with LCIS has a 15% chance of developing
an invasive cancer in either breast, with a total risk of 30%
over the next 20 years and beyond (35). For this reason, it is
currently classified as a premalignant lesion rather than a true
cancer.

Invasive lobular cancer frequently infiltrates the normal
breast tissue in a diffuse manner, without causing architectural
distortion. This may be the reason why it is not often apparent
on mammograms and is generally larger at diagnosis. Invasive
lobular cancer accounts for <10% of breast cancer, it tends to
be bilateral more often than ductal cancer (20% of the cases
are bilateral) and also, multicentric in the same breast (36).

All mammograms were reviewed and the imaging attributes
of the mammograms were recorded. The imaging attributes
included the presence of: a) a mass, its shape (spiculated,
round, oval) and its margins (ill-defined or well-defined), b)
microcalcifications and their shape (pleiomorphic, hetero-

geneous), c) architectural distortion, and d) associated findings
(nipple retraction and skin retraction). Breast lesion location
defined as quadrant (upper outer, lower outer, upper inner,
lower inner) and left or right breast were also noted. The
pathology and other data were recorded on a separate sheet, so
the radiologist was initially blinded to the histology diagnosis.

Results

Although GP obtains higher diagnostic accuracy and better
generalization over the available dataset, it came out that
ML generally performs superior to GP, in terms of compre-
hensibility and medical impact, from the purely medical
viewpoint. Below we give the most interesting extracted
rules obtained with the two computational intelligence
approaches applied on the specific screening mammography
data.

If a mass with ill-defined margins is observed in the right
breast, in the upper outer quadrant, it is most likely invasive
ductal cancer. It is a well known fact that the presence of an
ill-defined or spiculated mass is observed on a mammogram,
it is almost pathognomonic of an invasive ductal cancer. This
type of malignancy produces collagen and causes a desmo-
plastic reaction and fibrosis. This produces a spiculated mass
on a mammogram (3). Also, most cancers (60-70%) are
observed in the upper outer half of the breast.

If a patient presents with a focal asymmetric density and a
BIRADS score 3 in the right breast, the lesion is suggestive of
invasive ductal cancer, if the size is >14 mm or in both breasts.
Invasive lobular cancer cells have decreased E-cadherin
expression which is a glue-like substance that provides
cell-to-cell adhesion, a feature prominent in invasive ductal
carcinoma that causes cells to stick together and produce a
mammographically visible mass (37). This is why invasive
lobular cancer is less apparent on mammograms and therefore,
generally larger at diagnosis. Silverstein et al found that the
average size at diagnosis for invasive ductal cancers was
23 mm and for invasive lobular cancers 30 mm (38).

If a patient presents a suspicious lesion and a BIRADS score 5
in the upper inner quadrant of the right breast and the size of
the lesion is <21 mm, then the diagnosis is most probably
invasive ductal cancer, whereas if it is >21 mm then it is
invasive lobular cancer.

If a patient presents a focal asymmetric density, a BIRADS
score 5 and a lesion size <42 mm, then the diagnosis is more
often invasive ductal cancer, whereas if it is >42 mm, then it
is invasive lobular cancer. A mammogram with a suspicious
lesion that has been classified as category V of BIRADS
score suggests a high probability of malignancy and often is
due to the presence of an invasive ductal cancer. It is interesting
to note that in a study that included 50,000 invasive ductal
cancers and invasive lobular cancers, Arpino et al found that
54% of invasive lobular cancers are >2 cm, compared to 48%
of invasive ductal cancers (39). It was also found that invasive
lobular cancers presented as a large tumor exceeding 5 cm, as
compared with 9% of invasive ductal cancers.
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If a patient with a BIRADS score 4 presents with suspicious
microcalcifications on a mammogram in the upper outer
quadrant and an associated architectural distortion, then the
diagnosis is more likely to be invasive ductal cancer, whereas
if the microcalcifications are not accompanied by architectural
distortion, then the diagnosis of DCIS is more probable. DCIS
is a form of malignant transformation of the epithelial cells
lining the mammary ducts and lobules. The proliferating cells
are confined by an intact basement membrane. Necrotic debris
in the lumen of the duct produces microcalcifications which
are visible on a mammogram (40). Breaks in the basement
membrane result in stromal invasion of cancer cells, causing
invasive ductal cancer which is visible on a mammogram.

If a mass is ≥3, meaning if it is obscured or spiculated then
the histology diagnosis is invasive ductal cancer. A
spiculated lesion on a mammogram is virtually patho-
gnomonic of breast cancer. Strands of fibro-malignant
tissues, radiating out from an ill-defined mass, produces this
spiculated appearance (3; p.580). Many cancers do not elicit
the desmoplasia that produces spiculation, but even in these
cases, tumor infiltration is often reflected in the mammo-
graphically ill-defined or, less often, in partly obscured
borders. However, a well-circumscribed benign lesion may
seem to have obscured margins because of superimposing
breast tissue. This often results in the need for ultrasound or
tissue sampling to differentiate the lesion.

If the mass margin is <3, i.e. circumscribed, ill-defined or
lobulated, and the size is <1 cm, then the lesion is invasive
ductal cancer, otherwise if it is >1 cm, then it is invasive
lobular cancer. The values of the variables for mass margins
correspond to ‘0 = circumscribed’, ‘1 = ill-defined’, ‘2 =
lobulated’, ‘3 = obscured’, ‘4 = speculated’. Generally,
circumscribed or lobulated lesions are more often benign
masses and only 7% of malignant lesions are well-circum-

scribed and usually the medullary type which have a more
favorable diagnosis (41), or rarer types of malignancies such
as lymphoma, colloid and papillary carcinoma. Ill-defined
margins suggest a malignant process, because they are believed
to represent tumor infiltration of the surrounding tissue.

Discussion

The aforementioned results suggest several interesting trends.
Despite the limited information (no prior studies, no normal
cases, many more cases of invasive ductal cancer than
other types of cancer) and the fact that different types of
abnormalities (microcalcifications, masses, architectural
distortion) were included, the classification performances
of determining that an identified lesion was a specific
histologic subtype was reasonable and consistent when
using inductive machine learning techniques. Note that the
initial experimentation did not produce the expected results
about the role of age as a criterion for separating between
different types of breast cancer diagnosis, due to the fact that
the subjects used in the study were rather not representatively
selected for the entire value range. For this reason, age was
later excluded from further experimentation. Nevertheless,
according to literature (Table II) it is known that the risk of
developing breast cancer increases with age, with a rapid rise
in incidence after the age of 50, a fact which is in tune with
our main experimental finding pointing the critical value of
54 years of age for indicating the presence of a type of breast
cancer. Another fact coming up from our study is that the
extracted rules often included the right breast as a determining
factor. This warrants further investigation as it has not been
proven in the literature. At this point, it should be noted that
there are many other data useful for breast cancer diagnosis
that were not used here, such as: a) prior mammographic
studies for comparison, b) inclusion of other types of cancer
besides invasive ductal cancer that comprised the majority of
our case, and c) benign tumoral lesions. This is probably
the reason why the performance of genetic programming
classification systems was generally below expectations (most
of the rules presented in this paper came from the inductive
machine learning approach). The computerized classification
methods often used histology findings such as size to categorize
the mammographic lesions. It would be interesting to see
how well the classification systems would perform without
histology data, using only a larger number of radiological
features. These issues have to be further investigated with
larger datasets that include a greater number of attributes, a
substantial amount of normal patients and more cases of
cancers other than invasive ductal cancers that composed the
majority of our present dataset to improve the performance of
the classification systems, particularly ones relying of genetic
programming. There is great potential for improvement, but
ultimately, the most significant test in the future will be to
assess where radiologists can use such classification systems
to improve their clinical performance.
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